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Abstract: Growth of hexagonal GaN on Si(100) templates via pulsed laser 
deposition (PLD) was investigated for the further development of GaN-on-Si 
technology. The evolution of the GaN growth mechanism at various growth 
times was monitored by SEM and TEM, which indicated that the GaN 
growth mode changes gradually from island growth to layer growth as the 
growth time increases up to 2 hours. Moreover, the high-temperature 
operation (1000°C) of the PLD meant no significant GaN meltback occurred 
on the GaN template surface. The completed GaN templates were subjected 
to MOCVD treatment to regrow a GaN layer. The results of X-ray diffraction 
analysis and photoluminescence measurements show not only the reliability 
of the GaN template, but also the promise of the PLD technique for the 
development of GaN-on-Si technology. 
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1. Introduction 

GaN-on-Si has recently attracted much interest as an alternative to the GaN-on-sapphire 
structures used in light-emitting diodes (LEDs) [1–3] and high electron mobility transistors 
(HEMTs) [4,5] due to the low cost and large production scale of the Si substrate, and its high 
thermal and electrical conductivity. However, the lattice and thermal mismatches between GaN 
and Si are as large as 16.7% and 113%, indicating that stress control is required to avoid 
cracking of GaN on Si, especially when the thickness of the epitaxial GaN layer exceeds 1 μm. 
Several studies of the strain release in GaN-on-Si growth have proposed using various buffer 
layer structures (such as an Al2O3, AlGaN, AlN/AlGaN superlattice, or SiNx interlayer) [6–9] 
and patterned Si substrates [10,11]. Unfortunately, the growth of thicker GaN films (> 2 μm) on 
Si without crack formation still remains a challenge. 
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Moreover, for GaN-on-sapphire LEDs, the LED structures are usually designed for and 
fabricated into different configurations (flip-chip or vertical-type) [12,13] via metal bonding 
and removal of the sapphire substrate, so as to improve the heat dissipation of the LED and 
obtain greater power output. A similar approach has been carried out with GaN-on-Si [14]. 
Generally, GaN is grown on Si(111) substrates due to the three-fold symmetry of this plane, 
which is a good match to the hexagonal GaN crystallite. However, removal of the Si(111) 
substrate is not easy because of the difference in bonding energy between Si(111) and Si(100) 
atoms, resulting in a 20 times slower etching rate of Si(111) (~12 μm/hour for KOH solution at 
90°C) than of Si(100). The long substrate removal process degrades the crystal quality and the 
optoelectronic performance of GaN-on-Si(111) LEDs. On the other hand, for GaN-on-Si 
HEMTs, although ultrahigh breakdown voltages for GaN power devices on Si(111) have been 
demonstrated [15,16], integration of GaN HEMTs with advanced Si electronics is difficult, as 
the Si(100) substrate is more widely used in silicon devices. Therefore, whether LED for 
enhancing light output or HEMT for integrating Si device, the development of the 
GaN-on-Si(100) growth is necessary. To this end, we employed high-temperature pulsed laser 
deposition (PLD) to fabricate a hexagonal GaN template on Si(100). The GaN-on-Si(100) 
template allows the regrowth of GaN devices without any interlayer through the use of 
metalorganic chemical vapor deposition (MOCVD). The characteristics of the GaN-on-Si(100) 
template growth mechanism, crystal quality and optical properties were thoroughly 
investigated by double-crystal X-ray diffraction (XRD), scanning electron microscopy (SEM), 
transmission electron microcopy (TEM), atomic force microscopy (AFM), and 
photoluminescence (PL) measurements. 

2. Experimental 

All PLD-grown GaN films were grown on a 430 μm-thick Si(100) substrate at 1000°C in 
nitrogen plasma ambient atmosphere. The working pressure was 1.13 × 10−4 Torr with the 
injection of N2 plasma. A KrF excimer laser (λ = 248nm) was employed as the ablation source, 
and was operated with a repetition rate of 1 Hz and a pulse energy of 60 mJ. The GaN target 
was fabricated via hydride vapor phase epitaxy and set at a fixed distance of 9 cm from the 
substrate, and was rotated at 30 rpm during film deposition. We monitored deposition thickness 
as a function of time in order to understand the growth mechanism of the GaN film on the 
Si(100) substrate. 

3. Results and discussion 

Figure 1 shows the XRD pattern of the GaN-on-Si(100) template with a symmetric (002) plane 
and asymmetric (102) plane. GaN peaks were found at 34.5° and 72.9° for the (002) and (004) 
plane respectively, as shown in Fig. 1(a), which clearly indicates that hexagonal-GaN (h-GaN) 
was deposited on the Si(100) by the PLD. A small peak at 69.2°, corresponding to the Si(400) 
plane, is displayed in the inset of Fig. 1(a). The low peak intensity of this feature was attributed 
to the limited penetration depth of the X-rays, as the GaN film approached a thickness of 3.54 
μm. Similarly, the wurtzite-type GaN peak of the (102) plane is shown in Fig. 1(b). Notably, no 
cubic-GaN (c-GaN) peak was observed in the XRD pattern, despite the four-fold symmetry of 
Si(100) being preferred for the growth of a cubic phase. The suppression of c-GaN formation 
was ascribed to the growth principle of PLD and N2 plasma nitridation. PLD is a highly 
nonequilibrium evaporation process, where the stoichiometry of the deposited film is very 
closely matched to that of the target used [17,18]. In our case, the laser pulse impacted the PLD 
target and generated GaN vapor, which then reacted with the N2 plasma and formed GaN on the 
Si(100). Following the PLD target, the majority of the deposited GaN was thus in the hexagonal 
phase. Even if some c-GaN had been created by the GaN vapor and N2 plasma, it would have 
readily transformed to h-GaN via the formation of stacking faults during depositing [19]. 
Simultaneously, some N2 plasma reacted with Si to form SixNy alloys on the surface of Si, and 
these can disrupt the cubic conformation on Si [20,21]. These factors thus explain why only 
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h-GaN was deposited on the Si(100) substrate. Details pertaining to the growth mechanism are 
discussed below with reference to SEM and TEM data (see Figs. 2 and 3). 
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Fig. 1. XRD of GaN-on-Si(100) template at (a) symmetric (002) and (b) asymmetric (102) plane. 
Inset of Fig. 1(a) shows the peak of the Si(400) plane at 69.2°. 

The evolution of the h-GaN growth mode on Si(100) with growth times of 10 min, and 1, 2, 
and 5 hours is shown in Fig. 2. In Fig. 2(a), one can see that a 210 nm-thick GaN film with grain 
sizes of 50–80 nm was deposited on the Si(100), which clearly indicated that the beginning of 
the initial stage of the GaN-on-Si(100) growth is similar to nucleation growth [22,23]. 
Moreover, since the nitridation process promoted the SixNy formation and prohibited c-GaN 
nucleation deposition, nucleation of only h-GaN occurred on the surface of Si(100) during the 
initial deposition. In Figs. 2(b)–2(d), the h-GaN grains started to meet through lateral growth as 
the growth time increased to 2 hours. After 5 hours of growth, full coalescence generated a 
relatively smooth surface. The root-mean-squared (RMS) roughness value of the 
GaN-on-Si(100) was measured by AFM to be 13 nm. The four dashed lines in Fig. 2(e) 
correspond to the position of the surface morphology shown in Figs. 2(a)–2(d). With increasing 
growth time, the growth rate of GaN decreased from 1.26 to 0.53 μm/hour, evidenced that the 
growth mode had completely changed from island (or column) growth to layer growth. 

In addition, for common GaN-on-Si growth by MOCVD, high thermal stability AlN (or 
AlGaN) is usually inserted between GaN and the Si substrate to avoid the occurrence of Ga-Si 
meltback etching, whereby the Si substrate reacts with Ga decomposed from the GaN grown at 
low temperature, creating a Ga-Si material during a subsequent rise in temperature [24,25]. 
This generates large voids on the GaN surface. In contrast, GaN-on-Si growth by PLD will 
prevent the meltback etching of Ga-Si due to its high-temperature operation. 
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Fig. 2. Surface morphologies of the GaN film deposited on Si(100) substrate after (a) 10 min, 
and (b) 1, (c) 2, and (d) 5 hours. The four dashed lines in Fig. 2(e) correspond to the position of 
the surface morphology shown in Figs. 2(a)–2(d). 

 

Fig. 3. (a) TEM image of GaN on Si(100) substrate. Electron diffraction patterns of (b) Si, (c) 
GaN-1, (d) GaN-2, and (e) mixed GaN-1 and GaN-2. 

TEM study of the GaN-on-Si(100) template was employed to better understand the nature 
of the deposited GaN crystals, as illustrated in Fig. 3. Electron diffraction patterns of the circled 
areas in the cross-sectional TEM image (Fig. 3(a)) are shown in Figs. 3(b)–3(e), which contain 
two kinds of GaN diffraction patterns as well as that of Si. The first GaN pattern is denoted 
GaN-1 (marked by the red circle) and the other one is denoted GaN-2 (blue circle). The 
diffraction pattern of Si captured along the [011] zone axis was considered by the lengths and 
the angles of the Si patterns. The reciprocal lattice constants of the two types of GaN were 
measured to calculate the d-spacing. The d-spacing of GaN-1 in the [0001] and [10,10] 
directions were 0.518 and 0.280 nm respectively. Similarly, for GaN-2, a d-spacing of 0.259 
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and 0.161 nm along the [0002] and [11–20] directions was verified. The values of the d-spacing 
are close to the lattice constant of h-GaN. It is notable that the structure of GaN-1 rotated by 90° 
round the [0002] direction is equivalent to that of GaN-2. It can be inferred that the interaction 
between the diffusion energy of GaN and the surface energy of SixNy formed by nitridation 
influenced the arrangement of the h-GaN grains, resulting in two main types of h-GaN 
depositions. While the GaN-1 was found near the Si surface, the amount of GaN-1 gradually 
diminished with increasing GaN thickness. GaN-2 formation dominated as the thickness 
exceeded 1 μm. This was attributed to the lateral growth rate of GaN-2 in the [11–20] direction 
being faster than that of GaN-1 in the [10,10] direction, resembling to the lateral overgrowth of 
stripe patterns by MOCVD [26,27]. The lateral growth rate of GaN by PLD is sensitive to the 
surface roughness and the orientation of facet. To sum up the growth process, a schematic of 
the growth of GaN-on-Si(100) by PLD is displayed in Fig. 4, illustrating the contribution of 
PLD and nitridation to induce h-GaN nucleation and facilitating further h-GaN film growth. 
The growth mode gradually transitions from island growth to layer growth with increasing 
deposition time. 

 

Fig. 4. Schematic illustration for the GaN deposition behavior on Si(100) substrate by PLD (a) 
cross-view (b) plan-view. 

MOCVD was carried out on the GaN-on-Si(100) template to regrow a GaN layer and 
demonstrate the template reliability. To avoid etching of the PLD GaN film by hydrogen 
introduced during the regrowth process [28], a 160 nm-thick protected GaN layer was first 
grown by MOCVD on the template at 950°C in nitrogen ambient atmosphere for 20 min, and a 
100 nm-thick un-doped GaN layer was then grown at 1050°C in hydrogen for 10 min. Figure 5 
shows the PL spectra of the template before (sample A1, A2 and A5; with subscript 1 denoting 
deposition by PLD for 1 hour) and after GaN MOCVD regrowth (sample regrowth-A5). It was 
found that the peak PL profile of the templates is stronger and sharper with increasing total 
growth time, and it is accompanied by a shift in peak position from 360 to 365 nm. The peak 
broadening of the sample A1 was attributed to the different grain size distribution [29]. Due to 
the initial island growth of PLD-GaN, as the total growth time increased, the grain size became 
gradually large, corresponding to a narrower emission of PL spectra. Moreover, the PL peak 
shift was also explained by a power-law which depended to the crystallite size [30]. The 
slightly PL red-shift could be considered to the improved GaN crystal quality after MOCVD 
growth. Additionally, the crystal quality of PLD-GaN film was proven in the XRD rocking 
curve (in inset of Fig. 5), the full-width half-maximum (FWHM) of (0002) peak of the sample 
regrowth-A5 was smaller than of other samples. The decrease of FWHM in XRD profile 
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represented an increase of GaN grain size according to Scherrer formula [31]. Based on the PL 
and XRD results, they clearly show the reliability of the GaN-on-Si template, and the 
promising of the GaN-on-Si by PLD for the MOCVD applications. 

340 360 380 400 420 440 460 480 500
0

5000

10000

15000

20000

25000

30000

12 14 16 18 20 22
0

1x104

2x104

3x104

4x104

regrowth A5

A5

A2

 

 

XR
D 

In
te

ns
ity

 (a
.u

.)

ω (degree)

A1

regrowth A5

A5

A2

A1

P
L 

In
te

ns
ity

 (a
.u

.)

Wavelength (nm)

(0002)

 

Fig. 5. PL spectra of GaN on Si(100) substrate as a function of growth time. The XRD rocking 
curve of GaN film before and after MOCVD growth as a function of growth time displayed in 
the inset of Fig. 5. 

4. Conclusion 

In conclusion, the growth mechanism and crystal quality of the GaN-on-Si(100) template was 
verified through the measurement of structural and optical characteristics. During PLD 
deposition, nitridation influences the nucleation of h-GaN and changes the surface energy of 
Si(100), leading to mixed h-GaN island growth. The growth mode of GaN-on-Si(100) 
gradually changes from island growth to layer growth as the growth time exceeds 2 hours. As a 
proof of concept, the GaN-on-Si(100) template was treated by MOCVD to regrow the GaN 
layer. The results are clearly promising for MOCVD application using the GaN-on-Si(100) 
template prepared by PLD. 
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