111 research outputs found

    博斯腾湖湿地水文状态指标对入湖水量变化的响应关系[J]

    No full text
    以水面面积为湖泊典型的水文状态指标,分析自然来水频率下水文状态指标湖面面积对入湖水量变化的响应关系,探讨湖泊入湖水量与水面面积之间的定量关系。所选用的自然来水频率为5.00%、10.00%、25.00%、50.00%、75.00%、90.00%以及95.00%下的入湖水量,并计算出不同频率入湖水量下的湖泊水面面积。研究表明,来水频率越小,入湖水量越多。博斯腾湖入湖水量与年平均水面面积变化趋势大致相同,入湖水量较多的年份,博斯腾湖水面面积较大,而入湖水量较少的年份,博斯腾湖水面面积相对也较小,即随着频率的增加,湖泊水面面积呈递减趋势

    高中地理学习兴趣与学习效果的调查与分析案例研究[J]

    No full text
    怎样学好地理,提高地理学习成绩,一直是高中地理老师最为关心的问题.高中学生地理学习兴趣和学习效果密切相关,本文通过问卷,调查了疆内一所高中的学生地理兴走和学习效果的现状,并分析其原因,最后提出相关解决对策

    塔里木河下游生态输水的合理时间初探/Primary Study on the Rational Time of Ecological Water Conveyance to Lower Reaches of the Tarim River[J]

    No full text
    基于塔里木河下游8次生态输水资料和植被调查,从输水时间与天然植被落种时间的生态默契角度,分析了8次输水时间、水量以及博斯腾湖与塔里木河来水的规律,并根据塔里木河下游32种植物的落种时间,分别从不同乔、灌、多年生草本和一年生草本植物的落种与河道过水时间的相关性,对目前输水时间的合理性进行了评判,从塔里木河下游天然植被生态恢复的角度,提出了塔里木河下游最适宜的输水时间。结果显示:①由于调水沿途损耗较大,目前输水正以博斯腾湖调水向依靠塔里木河来水转变,因此,塔里木河有没有水向下游输送是生态输水的先决条件;②前8次输水过程中,过水时间主要集中在4-6月和8-10月两个时间段,这是由于博斯腾湖水量49.73%在4-6月;而塔里木河水量82.33%集中在8-10月;③从8次输水看,由于没有考虑到天然植被的落种更新问题,因此,河道过水时间与天然植被的相关性偏低,塔里木河来水的输水时间较博斯腾湖更为合理;④从下游乔、灌、草落种时间看,最适宜的输水时间是7-9月;从塔里木河给水时间的可行性看,每年最佳的给水时间是8月中旬到9月底

    乌鲁木齐市城市发展战略中人口规模研究/Population development trend of Urumqi in future[J]

    No full text
    人口因素是社会经济发展的重要因素,人口的增长趋势将影响到未来社会经济的可持续发展。文中根据乌鲁木齐市统计年鉴相关数据构建数学模型,对乌鲁木齐市未来人口总量、年龄结构、适度人口进行了预测,分析乌鲁木齐市未来人口发展特征及社会影响并结合上述问题提出针对性的政策建议

    Kv1.2 G329T recapitulates the magnified positive modulation of Kv1.2 FRAKT by sevoflurane.

    No full text
    <p>(A) Effects of 1 mM sevoflurane on mutant whole-oocyte Kv1.2 currents evoked by a voltage step to +60 mV from a holding voltage of -100 mV. <i>Black</i>, <i>red</i> and <i>grey</i> current traces correspond to control, anesthetic-exposed, and washout, respectively. The scale bars indicate 50 ms and 1 μA. (B) Concentration-response relations of various general anesthetics acting on wild type and mutant Kv1.2 currents. <i>Solid</i> lines are the best fits assuming the double Hill equation (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#sec002" target="_blank">Materials and Methods</a>). N = 4–8 oocytes for each dose. Best-fit parameters are summarized in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#pone.0143363.t001" target="_blank">Table 1</a>.</p

    Positive modulation by sevoflurane is T1 domain-independent in Kv1.2 and Kv1.2-FRAKT, and T1 domain-dependent in K-Shaw2.

    No full text
    <p>(A) Concentration-response relations of various general anesthetics acting on ΔT1-Kv1.2. <i>Solid</i> line is the best fit to the Hill equation for <i>n</i>-butanol. (B) Concentration-response relations of various general anesthetics acting on ΔT1-Kv1.2 FRAKT. <i>Solid</i> lines are the best fits to the Hill equation (propofol and <i>n</i>-butanol) or double Hill equation (sevoflurane, isoflurane, and halothane). Best-fit parameters for results in panels A and B are summarized in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#pone.0143363.t001" target="_blank">Table 1</a>. (C) Concentration-response relations of sevoflurane acting on K-Shaw2 and ΔT1-K-Shaw2. <i>Solid</i> line is the best-fit double Hill equation to the K-Shaw2 data with the following parameters: <i>K</i><sub>1</sub> = 0.08 mM, <i>A</i><sub>1</sub> = 0.18, <i>n</i><sub>H1</sub> = 1, <i>K</i><sub>2</sub> = 4 mM, <i>A</i><sub>2</sub> = 1.4, <i>n</i><sub>H2</sub> = 1. These parameters are similar to those previously published for wild type K-Shaw2 (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#pone.0143363.t001" target="_blank">Table 1</a>) [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#pone.0143363.ref007" target="_blank">7</a>]. K-Shaw2 and ΔT1-K-Shaw2 were tested at +60 mV. N = 2–8 oocytes for each dose.</p

    Novel <i>G</i>-<i>V</i> relations of Kv1.2 FRAKT and Kv1.2 G329T in the absence and presence of sevoflurane.

    No full text
    <p>(A) Families of whole-oocyte Kv1.2 FRAKT currents in the absence (<i>left</i>) and presence of 1 mM sevoflurane (<i>right</i>). Currents were evoked by step depolarizations from a holding voltage of -100 mV. The steps were delivered in increments of 10 mV from -90 to 130 mV. The scale bars indicate 100 ms and 2 μA. (B) Families of whole-oocyte Kv1.2 G329T currents in the absence (<i>left</i>) and presence of 1 mM sevoflurane (<i>right</i>). Currents were evoked by step depolarizations from a holding voltage of -100 mV. The steps were delivered in increments of 10 mV from -90 to 70 mV. The scale bars indicate 100 ms and 1 μA. (C) <i>G</i>-<i>V</i> relations of Kv1.2 FRAKT (<i>red</i>) and Kv1.2 G329T (<i>blue</i>) under control (<i>open</i>) or with 1 mM Sevoflurane (<i>filled</i>) (N = 6, 4, respectively). <i>Solid</i> lines are the best fits assuming a double Boltzmann equation (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#sec002" target="_blank">Materials and Methods</a>). The best-fit parameters are summarized in Table A in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#pone.0143363.s001" target="_blank">S1 File</a>.</p

    Analysis of <i>G</i>-<i>V</i> relations from Kv1.2, ΔT1-Kv1.2, K-Shaw2, K-Shaw2 T330G and ΔT1-K-Shaw2.

    No full text
    <p>(A) Best-fit Boltzmann parameters (<i>V</i><sub>1/2</sub>, <i>z</i> and <i>G</i><sub>max</sub>) from individual paired measurements before (Ctr) and after exposure to 1 mM sevoflurane (Sevo). Each pair of symbols connected by a <i>solid</i> line represents an individual paired experiment (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143363#sec002" target="_blank">Materials and Methods</a>). The <i>G</i><sub>max</sub> graphs depict raw values before normalization (in mS). The <i>P</i> value resulting from a paired Student-<i>t</i> test is shown above each graph, and the <i>red</i> marks indicate the mean values of the sample. (B)–(E) are as described for panel A. The number oocytes examined for each Kv channel was 6, 6, 4, 6 and 6, respectively.</p

    绿洲生态人类学研究的若干问题/Issues on Oasis Ecological Anthropology Research[J]

    No full text
    通过对“绿洲生态人类学”概念的初步界定,学术界进一步注意到干旱区绿洲的地理特征、生态与社会、生计与环境之间的关系存在着很多的特殊性,从而绿洲生态人类学研究需要重视一个小型生态区域的生态环境过程,同时需要揭示相关小型社会的社会与文化的变迁以及两者之间的复杂关系。通过“历时”与“共时”相互参照,“生态边界”与“社会、文化边界”互动,“生态扩张”与“本土生计系统”的冲突与调适等三套分析模型,将上述粗浅的认识求教于国内学术界同仁,并深化相互之间的交流与切磋
    corecore