28 research outputs found
A mononuclear iron(III) complex with unusual changes of color and magneto-structural properties with temperature: synthesis, structure, magnetization, multi-frequency ESR and DFT study
From the reaction of 2-hydroxy-6-methylpyridine (L) with iron(II) tetrafluoroborate, a new mononuclear iron(III) octahedral complex [FeL6](BF4)3 has been isolated. The color of the complex reversibly changed from red at room temperature to yellow-orange at the liquid nitrogen temperature. Magnetization measurements indicate that iron(III) in [FeL6](BF4)3 is in a high-spin state S = 5/2, from room temperature to 1.8 K. The high-spin ground state of iron(III) is also confirmed by DFT calculations. Although the spin-crossover of the complex is not observed, X-band and multifrequency high-field/high-frequency electron spin resonance (ESR) spectroscopy shows rather uncommon iron(III) spectra at room temperature and an unusual change with cooling. Spectral simulations reveal that the S = 5/2 ground state multiplet of the complex can be characterized by the temperature independent axial zero-field splitting parameter of |D| = +2 GHz (0.067 cm−1) while the value of the rhombic parameter E of the order of some tenths MHz increases on lowering the temperature. Single crystal X-ray diffraction (SCXRD) shows that the iron(III) coordination geometry does not change with temperature while supramolecular interactions are temperature dependent, influencing the iron(III) rhombicity. Additionally, the DFT calculations show temperature variation of the HOMO–LUMO gap, in agreement with the changes of color and ESR-spectra of the iron(III) complex with temperature
The Essential Oil Composition of Helichrysum italicum (Roth) G. Don: Influence of Steam, Hydro and Microwave-Assisted Distillation
Helichrysum italicum (Roth) G. Don (Asteraceae), also known as immortelle, usually grows in the Mediterranean area. The composition of the essential oil (EO) of immortelle is a mixture of various aromatic substances, mainly monoterpenes and sesquiterpenes. Distillation is the most widely used method for extraction of EO immortelle, although the yield is very low (<1%). In this work, we aim to investigate how the use of different distillation methods affects the yield and chemical composition of immortelle EO. For this purpose, we applied two conventional methods: steam distillation (SD) and hydrodistillation (HD), and a modern (environmentally friendly) technique—microwave-assisted distillation (MAD). Wild immortelles from four different locations in Croatia were collected and carefully prepared for extraction. Each sample was then analyzed by gas chromatography–mass spectrometry (GC-MS). GraphPad Prisma statistical software was used to study the statistics between different groups of connections and analyze the data on the number of connections. The results show that HD gives a significantly higher yield (0.31 ± 0.09%) compared to MAD (0.15 ± 0.03%) and SD (0.12 ± 0.04%). On the other hand, the highest number of chemical compounds was identified with MAD (95.75 ± 15.31%), and most of them are subordinate compounds with complex structures. SD isolated EOs are rich in derived acyclic compounds with the highest percentage of ketones. The results show that the application of different distillation methods significantly affects the composition of the obtained immortelle EO, considering the yield of EO, the number of isolated, derived and non-derived compounds, chemotypes and compounds with simple (acyclic) and complex structures
The Essential Oil Composition of <i>Helichrysum italicum</i> (Roth) G. Don: Influence of Steam, Hydro and Microwave-Assisted Distillation
Helichrysum italicum (Roth) G. Don (Asteraceae), also known as immortelle, usually grows in the Mediterranean area. The composition of the essential oil (EO) of immortelle is a mixture of various aromatic substances, mainly monoterpenes and sesquiterpenes. Distillation is the most widely used method for extraction of EO immortelle, although the yield is very low (<1%). In this work, we aim to investigate how the use of different distillation methods affects the yield and chemical composition of immortelle EO. For this purpose, we applied two conventional methods: steam distillation (SD) and hydrodistillation (HD), and a modern (environmentally friendly) technique—microwave-assisted distillation (MAD). Wild immortelles from four different locations in Croatia were collected and carefully prepared for extraction. Each sample was then analyzed by gas chromatography–mass spectrometry (GC-MS). GraphPad Prisma statistical software was used to study the statistics between different groups of connections and analyze the data on the number of connections. The results show that HD gives a significantly higher yield (0.31 ± 0.09%) compared to MAD (0.15 ± 0.03%) and SD (0.12 ± 0.04%). On the other hand, the highest number of chemical compounds was identified with MAD (95.75 ± 15.31%), and most of them are subordinate compounds with complex structures. SD isolated EOs are rich in derived acyclic compounds with the highest percentage of ketones. The results show that the application of different distillation methods significantly affects the composition of the obtained immortelle EO, considering the yield of EO, the number of isolated, derived and non-derived compounds, chemotypes and compounds with simple (acyclic) and complex structures