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Abstract 

Food protein hydrolysates are often produced in unspecific industrial batch processes. The hydrolysates composition 
underlies process-related fluctuations and therefore the obtained peptide fingerprint and bioactive properties may 
vary. To overcome this obstacle and enable the production of specific hydrolysates with selected peptides, a ceramic 
capillary system was developed and characterized for the continuous production of a consistent peptide composi-
tion. Therefore, the protease Alcalase was immobilized on the surface of aminosilane modified yttria stabilized zirconia 
capillaries with a pore size of 1.5 µm. The loading capacity was 0.3 µg enzyme per mg of capillary with a residual 
enzyme activity of 43%. The enzyme specific peptide fingerprint produced with this proteolytic capillary reactor sys-
tem correlated with the degree of hydrolysis, which can be controlled over the residence time by adjusting the flow 
rate. Common food proteins like casein, sunflower and lupin protein isolates were tested for continuous hydrolysis 
in the developed reactor system. The peptide formation was investigated by high-performance liquid chromatogra-
phy. Various trends were found for the occurrence of specific peptides. Some are just intermediately occurring, while 
others cumulate by time. Thus, the developed continuous reactor system enables the production of specific peptides 
with desired bioactive properties.
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Introduction
Food proteins are important macronutrients providing 
the human body with essential amino acids. Nutrients of 
hydrolyzed products are better accessible for the human 
body, since the proteins are pre-digested (Koopman et al. 
2009). Generally, natural enzymatic breakdown occurs in 
the gastrointestinal tract. Bacteria and cells release diges-
tive enzymes or their inactive precursors. In an activated 
form, they hydrolyze the protein substrate at specific sites 
and the released peptides can be absorbed. Some poly-
peptides with a size of 2–20 amino acids show biological 
activities in terms of regulating the gastrointestinal, nerv-
ous, cardiovascular or immune system (Meisel and Bock-
elmann 1999; Nagpal et al. 2011; Korhonen and Pihlanto 
2006) and show anti-microbial (Hancock and Sahl 2006; 
Haque and Chand 2008) or anti-carcinogenic properties 

(Fitzgerald 1998; Suarez-Jimenez et al. 2012). When using 
enzymes for digesting food proteins, an enzyme specific 
peptide composition, the so-called peptide fingerprint 
is formed. In chromatographic analysis the hydrolysate 
is separated and the peptides show a highly specific and 
reproducible pattern. The entirety of produced protein 
fragments and peptides is called proteolysome (Pimenta 
and Lebrun 2007).

In industrial processes, protein hydrolysis is often car-
ried out in batch processes and is mostly used in fermen-
tation and enzyme based processes, like brewing, cheese 
manufacturing, meat tenderization or baking (God-
frey and Reichelt 1982). Hydrolysis is conducted by an 
enzymatic or acidic breakdown of proteins (Tsugita and 
Scheffler 1982). For food protein hydrolysates, the sub-
strate and enzymes are mixed in huge, tempered tanks, 
and require continuous stirring, as well as a constant 
temperature and pH level for several hours. The enzyme 
is then inactivated by pH-shifting and/or increasing the 
temperature. These processes are uncontrolled, so the 
resulting peptide fingerprint and the product properties 
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vary and large quantities of expensive enzymes are used 
only once (Pasupuleti and Braun 2008; Hou et al. 2017).

To reduce energy and enzyme costs and produce con-
tinuously defined hydrolysates, the enzymes need to 
be stabilized. This can be done by protein engineer-
ing, chemical modification, immobilization or adding 
additives for stabilization. The most common method 
is to immobilize the enzymes on a solid support (Moe-
hlenbrock and Minteer 2011). To this end, the enzymes 
are chemically modified by adding crosslinkers like glu-
taraldehyde to the peptide chain (Walt and Agayn 1994). 
Crosslinking can also be carried out in a two step sys-
tem with reagents such as 1-ethyl-3-(3-dimethylamino-
propyl) carbodiimide (EDC). To increase the efficiency 
of EDC-mediated amine-coupling, the carboxylates are 
activated by N-hydroxysuccinimide (NHS) which form 
an amine-reactive NHS-ester. The covalent amide bond 
is then formed with the secondary amine of the coupling 
enzyme, respectively the amine group of the support 
(Staros et al. 1986).

As a support, highly porous solids such as ceramic 
capillaries provide a large surface area in proportion to 
its volume. Using porous ceramics has several advan-
tages compared to polymer membranes or particulate 
supports. They can be produced to have relatively high 
levels of mechanical strength, corrosion resistance and 
stability under high temperatures and pressures and 
they do not show any swelling behavior in liquid media. 
The pore diameter can be adapted to its purpose such as 
bacteria filtration (Kroll et  al. 2010), oil–water separa-
tion (Zhu et al. 2016) or gas-conversion (Xue et al. 2016). 
However, to combine reaction and separation within the 
same unit, modifications of the ceramic capillary surface 
are necessary. Common strategies for membrane acti-
vation include chemical treatments like hydroxylation, 
followed by silanization with 3-aminopropyltriethox-
ysilane (APTES) for linking the biocatalyst (Kroll et  al. 
2012). Since the enzymes are covalently bound to the 
amino group of the support, these reactors allow high 
recovery in enzyme activity. Most applications of immo-
bilized enzymes in industry are based on a conversion 
of sugar (Jensen and Rugh 1987; Bhosale et  al. 1996) or 
oil (Noureddini et  al. 2005; Tan et  al. 2010), but rarely 
protein.

To enable and characterize a continuous protein 
hydrolysis for the production of bioactive peptides under 
defined conditions, several natural proteins, that are fre-
quently used as food proteins were chosen as models for 
investigating hydrolysis. These were lupin protein, sun-
flower protein and casein. A ceramic capillary module is 
described and characterized for continuous food protein 
proteolysis and defined systematic proteolysome map-
ping. Therefore, proteases have been immobilized onto 

the macro porous ceramic support. By operating the 
system as a continuous reactor, the degree of hydrolysis 
and peptide formation is directly related to the residence 
time. Thus, also intermediate stages of proteins and pep-
tides that are formed temporarily can be detected by 
altering the flow rate.

Materials and methods
Materials
Four different proteolytic enzymes were tested for their 
activity against the food protein substrates (Table 1). All 
enzymes, proteins and reagents were obtained from com-
mercial sources and used without further purification. 
The model protein casein was purchased from Sigma 
Aldrich, USA and the lupin and sunflower protein isolates 
were purchased from Vegan Fitness & Food, Germany. 
The chemical reagents such as 4-(2-aminoethyl) ben-
zenesulfonyl fluoride hydrochloride (AEBSF) protease 
inhibition reagent Pefabloc SC, 3-aminopropyltriethox-
ysilane (APTES, 99%), N-hydroxysuccinimide (NHS), 
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 
hydrochloride (EDC) were obtained from Sigma Aldrich, 
USA. The Coomassie Brilliant Blue G250 was obtained 
from Serva Electrophoresis, Germany. The yttria (3%) 
stabilized zirconia (TZ-3Y-E) was obtained from Tosoh, 
Japan. Ammonium sulphate, methanol, phosphoric acid, 
MES and Tris buffer were purchased from Carl Roth, 
Germany.

Enzyme immobilization
For coupling the enzyme with the APTES-linker, a 
slightly modified protocol according to Hermanson 
(2013) was applied. A 0.1 M MES buffer with 0.5 M NaCl 
and 0.01 M CaCl at pH 6 was used for dissolving 10 mM 
NHS and 20  mM EDC. After 10  min of equilibration, 
0.5 g/L of enzyme was added to the solution. The ceramic 
capillary was then added for immobilizing the enzymes 
and was gently rotated on a Tube Rotator (PTR-35, 
Grant, UK) at 4 °C over night. Before using the capillary 
for continuous hydrolysis, it was rinsed and flushed with 
5 mL of protein buffer at a flow rate of 400 µL/min.

Table 1 Proteolytic enzymes for protein hydrolysis

a According to King and Moss (1963)

Enzyme E.C. number Specific activity 
(U/mg)

Supplier

Alcalase® 2.5 FG 3.4.21.62 1.375a Novozymes, 
Denmark

Subtilisin A 3.4.21.62 7–15 Sigma Aldrich, USA

α-Chymotrypsin 3.4.21.1 40 Sigma Aldrich, USA

Trypsin 3.4.21.4 40 Sigma Aldrich, USA
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Protein feed solutions
For the protein feed used in the capillary module, sev-
eral natural protein sources have been selected. Casein is 
a well described protein that is obtained from mamma-
lian milk. It is the main component of bovine milk and 
consists of smaller phosphoproteins (< 25 kDa), αS1, αS2, 
β, κ and γ, which form micellar structures with reduced 
water solubility. To increase solubility, 5  g/L of casein 
were dissolved in 0.05 M Tris buffer at pH 7.8. The mix-
ture was then stirred and heated to 80 °C for 15 min.

Most plant seed storage proteins are composed of 
globulins (11S and 7S) and albumins (2S). The albu-
mins are water-soluble, whereas the globulins form 
large hexameric structures. Lupin seed protein (Lupi-
nus albus) mainly consists of α- (11S), β- (7S), γ- (7S) 
and δ-conglutin (2S), with a content of more than 35% 
of α- and 45% of β-conglutin (Duranti et  al. 2008). The 
sunflower seed protein (Helianthus anuus) is lacking the 
7S globulin and consists of α-, α′-, β-helianthinin (11S) 
and 2S albumin, with a content of more than 50–70% of 
helianthinin (Žilic et  al. 2010). In order to increase sol-
ubility of lupin and sun flower protein, 4 g/L were each 
dissolved in 0.1 M Tris buffer at pH 12. The mixture was 
stirred over night at 4 °C and was adjusted to pH 7.8 the 
next day. The solution was then stirred for 1  h at room 
temperature. Before the protein solution for continuous 
hydrolysis was used, the solutions were filtered with a 
0.45 µm PES membrane (Wicom, Germany).

Experimental setup
The basic setup of the continuous reactor consists of 
a single enzyme loaded ceramic capillary, made from 
yttrium stabilized zirconia that is fixed in a custom 
designed stainless steel housing. The system can be con-
sidered as a PFR (plug flow reactor system) to define basic 

characteristics. The protein solution is pumped through 
the capillary module by a peristaltic pump (IPC, Ismatec, 
Germany). The whole capillary module is embedded in 
a column oven (Techlab, Germany), so the temperature 
can be adjusted to 37 °C. The capillary end is sealed with 
cyanoacrylate glue for forcing the flow from the intra-
capillary space (ICS) to the extracapillary space (ECS). 
The enzyme is immobilized on the activated surface of 
the ceramic capillary by an APTES linker (Fig. 1) and is 
reached by the protein feed through the forced convec-
tive flow through the capillary pores. The immobilization 
process allows the complete utilization of the available 
surface of the capillary. This means that the enzymes 
can be immobilized on the interior and exterior surface 
as well as the pore walls. The capillary has an average 
pore size of 1.5 µm and a length of 10 cm with an outer 
diameter of 1.8  mm and an inner diameter of 1  mm. 
For each experiment the ceramic capillary is replaced 
with a new enzyme immobilized one, to prevent protein 
contaminations.

Characterization methods
Enzyme quantification
The enzyme concentration was determined using the 
Bradford reagent RotiQuant (Carl Roth, Germany) 
according to the manufacturer’s protocol. To deter-
mine the amount of immobilized enzyme the difference 
between initial and remaining enzyme concentration of 
the supernatant was calculated and referred to enzyme 
loaded onto the capillary. The amount of washed off 
enzyme was negligible.

Determination of immobilized enzyme activity
In order to determine the enzyme activity, the conversion 
of Boc-l-alanine-4-nitrophenyl ester (Sigma Aldrich, 

Fig. 1 Capillary module. Enzymes are immobilized onto the APTES functionalized ceramic support to enable a continuous hydrolysis of the protein
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USA) to 4-nitrophenol was quantified. A stock solution 
was prepared with 16  mM Boc-alanine-4-nitrophenyl 
ester dissolved in 80% acetonitrile. For enzyme prepa-
ration, 50  mg YSZ powder (yttrium stabilized zirco-
nia) were immobilized according to the protocol (see 
“Enzyme immobilization”) and washed three times with 
buffer. The powder was stirred in a beaker with 20  mL 
0.1 M Tris Buffer at pH 7.8. In the following step, 200 µL 
of stock solution were added to the glass beaker to set up 
a final concentration of 160 µM. The solution was run at 
1  mL/min through a low volume flow-through cuvette 
(Hellma Analytics, Germany) and adsorption was meas-
ured at 405  nm using a UV–VIS spectrophotometer 
(Genesys 10S, ThermoFisher, USA). To avoid  ZrO2 parti-
cle interference, a low volume 0.45 µm PES filter (Wicom, 
Germany) was used before the solution was pumped 
to the spectrophotometer. To compare the activity of 
immobilized and native enzyme, an equivalent quantity 
of native enzyme was used in the setup and the slopes of 
the linear graphs were compared. All measurements were 
made in triplicates.

Proteolytic batch digestion
All batch digestions were carried out by setting up 
the protein solution with an enzyme concentration of 
1  mg/L. The samples were incubated in a water bath at 
37  °C for 30  min. After incubation the enzymes were 
inhibited using 1 mM AEBSF and the samples were kept 
on ice.

HPLC analysis of protein hydrolysate
The hydrolysate samples were analyzed using an HPLC 
(Chromaster, Hitachi, Japan). Separation was achieved 
on a reversed phase Aeris Peptide 3.6  µm XB-C18, 
250 ×  4.6  mm (Phenomenex, USA) with an Ultra Car-
tridge C18-Peptide Security Guard column (Phenom-
enex, USA). The mobile phase eluent buffer A consisted 
of 94.9% water, 5% acetonitrile and 0.1% trifluoricacetic 
acid. Eluent B consisted of 19.9% water, 80% acetonitrile 
and 0.1% trifluoricacetic acid. The gradient elution was 
carried out using the following timetable: from 0% B to 
15% in 10  min, to 35% in 20  min, to 60% in 10  min, to 
100% in 3  min, maintaining 100% for 3  min, to 15% in 
0.1  min, keeping 15% for 6  min. The injection volume 
was 10 µL and the flow rate was 400 µL/min at 40 °C. The 
analytical wavelength was 214 nm and as a standard the 
HPLC peptide standard mixture (Sigma Aldrich, USA) 
was used.

SDS‑PAGE
All gel electrophoretic analyses were performed under 
non-reducing conditions with a 12% Tris gel using the 
Bio-Rad Protean System (Bio-Rad, USA) according to the 

manufacturer’s manual. As protein ladder a 10–250 kDa 
prestained marker was used (ThermoFisher, USA). Pro-
tein staining was performed with Coomassie blue accord-
ing to Fairbanks et al. (1971).

Results
Batch proteolysis and protease screening
In order to assess the proteolytic activity of various serine 
proteases, batch digestions were carried out with casein 
as a model protein. An enzyme, creating a high degree of 
hydrolysis in short time, was required for the use in the 
continuous reactor system. Therefore, digestive enzymes 
such as trypsin and α-chymotrypsin and subtilisin origi-
nated from Bacillus licheniformis, respectively Alcalase 
2.5, were used. An amount of 1 mg/L enzyme was used 
for each reaction mixture and the hydrolysates were then 
analyzed by SDS-PAGE and HPLC. The protein bands 
during digestion with subtilisin or Alcalase completely 
disappeared, whereas casein digested with trypsin and 
chymotrypsin remained almost unaffected (Fig. 2a). The 
enzymatic breakdown into smaller protein fragments and 
peptides was then verified by HPLC analysis. The num-
ber of peaks generated in subtilisin and Alcalase casein 
hydrolysates was significantly higher compared to trypsin 
and chymotrypsin. The subtilisin-family enzymes showed 
some similarities in their peptide fingerprint (Fig. 2b).

When digesting casein with a protease like Alcalase, 
the peptide formation occured within a few minutes 
and most casein protein components were digested after 
30–60 min (Fig. 3a). Even though Alcalase is regarded as 
an unspecific protease, the peptide fingerprint is highly 
specific. Some peptide peaks are formed in the very first 
seconds of digestion, others are formed in the later pro-
cess or are just intermediately occurring (Fig. 3b).

Setup and evaluation of the continuous digestion system
The substrates residence time is found to be inversely 
proportional to the flow rate. The residence time is dou-
bled by halving the flow rate. For the conversion of a 
specific substrate correlating results are obtained. Here 
the conversion of the nitrophenyl ester to 4-nitrophenol 
shows, that also the product formation is inversely pro-
portional to the flow rate. When the flow rate is reduced 
to its half, the formed product is doubled in the same 
time (Fig. 5a). For continuous hydrolysis it can therefore 
be said, that the higher the residence time of the sub-
strate in the enzyme loaded capillary, the more product is 
formed continuously. Similar results are obtained for the 
continuous hydrolysis of protein substrates. The enzyme 
loading capacity is determined with 0.3  µg per mg of 
capillary. The average weight of a capillary is 550 mg, so 
165  µg of Alcalase can be immobilized on the specific 
surface of a capillary. The enzyme activity is measured 
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Fig. 2 Proteolytic batch digestion of casein by different proteases. a Non-reduced SDS-PAGE 12% Tris gel stained with Coomassie Brilliant Blue 
R-250, molecular mass standard Prestained Protein Marker (250 kDa), b HPLC analysis performed on reversed phase C18 column

Fig. 3 Casein digestion with Alcalase over time. a Non-reduced SDS-PAGE 12% Tris gel stained with Coomassie Brilliant Blue R-250, molecular mass 
standard Prestained Protein Marker (250 kDa), b HPLC analysis performed on reversed phase C18 column, using HPLC peptide standard mixture
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with the described method and shows a residual enzyme 
activity of 43%.

When continuously digesting food proteins such as 
casein, lupin and sunflower protein, the formation and 
intensity of most peptide peaks is flow rate dependent 
or more specifically it is dependent on its residence time 
(Fig. 4). A significant and visible peptide fingerprint for-
mation was observed at a flow rate of 200  µL/min and 
lower. Reducing the flow rate further increases peak for-
mation and significantly intensifies the peaks (a–d). Some 
peaks are decreasing at slower flow rates (e).

In the peptide formation, specific peaks increased in 
their peak height (a–d) while others decreased or showed 
a negative correlation (e–f). In particular, peak f is 
formed at flow rates of 400 µL/min, but is less intense at 
lower flow rates. Peak e is predominantly occuring at flow 
rates of 200 µL/min (Fig. 5b).

For a comparison of batch- and continuous proteoly-
sis, the residence time in the continuous reactor can be 
directly compared with the same batch processing time. 
Thus, the fingerprint formed with a continuous flow 

rate of 33 µL/min, providing a residence time of 30 min, 
can be directly compared with a 30 min batch digestion 
(Fig.  6). As can be seen, the peptide fingerprint shows 
various similarities although in general more short pep-
tide peaks with lengths of two and three amino acids are 
found in the batch digestion. The similarities in the pep-
tide pattern in the area of the four- and five-chain pep-
tides are larger than for two to three-chain short-chained 
peptides. In this way, each flow rate dependent peptide 
fingerprint resembles a defined proteolysis time in batch 
processing and, most important, the consistency of the 
produced peptide fingerprint is stationary over time. This 
enables the production of specific peptide fingerprints in 
the developed continuous reactor system.

Discussion
This work enables a flow rate dependent and defined 
production of protein hydrolysates using immobilized 
enzymes. A continuous reactor system with a ceramic 
capillary module was developed and tested with various 
combinations of enzymes and model protein substrates. 

Fig. 4 Flow rate dependent protein hydrolysis of various food proteins. Increasing peak intensities with lower flow rates (a–d), peaks intensified at 
specific flow rates (e) and peaks decreasing with lower flow rates (f )



Page 7 of 9Sewczyk et al. AMB Expr  (2018) 8:18 

In comparison of batch and continuous hydrolysis, more 
dipeptides are formed in the batch hydrolysis, but simi-
larities in peptide size are found in the range of tri- and 
octapeptides. As described by Guisán et al. (1997) immo-
bilized enzymes underlie a steric hindrance. Since the 
enzymes were successfully immobilized with APTES 
linkers, other silanes with longer spacer arms and surface 
modifications could be an option for further improve-
ment of the enzyme activity. Also, the module can be 
easily adapted to its purpose by variation of pore size, 

capillary length or number. Especially, the number of 
capillaries can be increased to 30 or more capillaries in a 
multi capillary module for scaling up and thus increasing 
the protein feeds flow rate. Pretreating the protein feed 
solution as described in the method section, was feasi-
ble for the use in a microporous reactor system. Adding 
an ultrasonication pretreatment step to reduce protein 
aggregation could be helpful for less soluble proteins (Lee 
et  al. 2016). Furthermore, immobilizing other proteases 
and applying complex protein feeds, such as blood sera 

Fig. 5 Flow rate dependent product formation. a Flow rate dependent formation of nitrophenol by converting the Boc-l-alanine-4-nitrophenyl 
ester, b flow rate dependent formation of peptide peaks

Fig. 6 Comparison of batch and continuous hydrolysis. Protein hydrolysates of native and immobilized enzymes show a similar peptide fingerprint
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for continuously digesting globulins, could be also prom-
ising targets as preliminary experiments show.

Even though, the idea of a continuous protein hydroly-
sis is old and had its first peak in the early 70 s. At that 
time, protein sources such as fish and soy protein were 
used as a substrate (Adler-Nissen 1976, 1978; Cheftel 
et  al. 1971). In the 1990s, the focus was placed on the 
continuous hydrolysis of milk derived proteins (Man-
nheim and Cheryan 1990; Perea and Ugalde 1996). Until 
today no approach of continuous protein hydrolysis is 
found in industry (De Gonzalo and Dominguez de María 
2017). Most products made from protein hydrolysates are 
used for animal nutrition (Hou et al. 2017) or as a food 
supplement for infants. Initial attempts have been carried 
out to reduce the allergenic potential for infants by uti-
lizing immobilized enzymes (Pessato et al. 2016). Bioac-
tive peptides are mainly found in functional foods, most 
of which are fermented dairy products (Dullius et  al. 
2018; Hafeez et  al. 2014). Medical applications or treat-
ment approaches using bioactive peptides on a large scale 
are still rare. So far, very little is known about the flow 
rate dependent hydrolysis and their effect on the peptide 
fingerprint and its peptide composition. Therefore, the 
approach of flow rate dependent hydrolysis is particu-
larly suitable for the production of defined peptides pat-
terns. As the results demonstrate, specific peptide peaks 
are formed at a defined flow rate, respectively the pro-
teins residence time. In this case, high flow rates would 
enable a constant low degree of hydrolysis, creating mac-
romolecular peptides. As shown by Lumen (2005) even 
macromolecular peptides with more than 43 amino acids 
can have beneficial bioactive properties. By production 
of defined peptide fingerprints in the continuous reactor 
system specific peptides can be produced, isolated and 
screened for their bioactive properties. This enables the 
systematic investigation of the proteolysome of different 
proteins and its impact on the human metabolism.

For the development of large-scale processes and the 
production of specific bioactive peptides in the rela-
tively new field of therapeutic peptides, the module-
based approach of continuous reactors is also suitable 
for reducing energy-intensive process steps such as heat 
inactivation and furthermore the reduction of chemi-
cal wastes such as acids. Furthermore, the immobilized 
enzymes can be reused and the production time can be 
reduced by scaling up the process, since a flow rate of 
11 µL/min/capillary resembles a residence time of more 
than 90 min. In the future, further stability and long-term 
tests could be carried out under flow conditions.
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