10 research outputs found

    Zinc oxide for electronic, photovoltaic and optoelectronic applications

    No full text
    We demonstrate that the atomic layer deposition (ALD) technique has large potential to be widely used in a production of ZnO films for applications in electronic, photovoltaic (PV) and optoelectronic devices. Low growth temperature makes the ALD-grown ZnO films suitable for construction of various semiconductor/organic material hybrid structures. This opens possibilities of construction of novel devices based on very cheap organic materials. This includes organic light emitting diodes and PV cells of the third generation, as discussed in the present work

    ZnO for Photovoltaics

    No full text
    Mimo znaczącej redukcji kosztów paneli fotowoltaicznych (PV), cena energii wytwarzanej przez baterie słoneczne ciągle jest za wysoka. Możliwe są dwie strategie rozwiązania tej sytuacji – (a) podniesienie wydajności konwersji światła w komórkach fotowoltaicznych lub/i (b) obniżenie kosztów paneli PV poprzez zastosowanie tańszych materiałów lub technologii. W referacie omówione są prace mające na celu: (a) zastąpienie zbyt drogiego ITO warstwami ZnO o przewodnictwie metalicznym, (b) uproszczenie konstrukcji komórek PV oraz (c) znalezienie alternatywnych materiałów.Despite of a large reductions of costs energy produced by solar panels is still too expensive. There are two approaches to change this situation: by (a) increase of device output and/or (b) reduction of device costs by use of cheaper alternative materials. In this article we discuss the latter approach – (a) replacement of ITO by ZnO with metallic conductivity, (b) change of device architecture, and (c) use of alternative materials

    Barriers in Miniaturization of Electronic Devices and the Ways to Overcome Them - from a Planar to 3D Device Architecture

    No full text
    We witness a new revolution in electronic industry - a new generation of integrated circuits uses as a gate isolator HfO2HfO_{2}. This high-k oxide was deposited by the atomic layer deposition technique. The atomic layer deposition, due to a high conformality of deposited films and low growth temperature, has a large potential to be widely used not only for the deposition of high-k oxides, but also of materials used in solar cells and semiconductor/organic material hybrid structures. This opens possibilities of construction of novel memory devices with 3D architecture, photovoltaic panels of the third generation and stable in time organic light emitting diodes as discussed in this work

    Photovoltaic Structures Based on Heterojunction Zno/Si

    No full text
    Warstwy tlenku cynku otrzymane metodą osadzania warstw atomowych ALD zostały użyte jako n-typu partner dla p-typu krzemu. Jako przezroczystą górną elektrodę wybrano warstwę tlenku cyku domieszkowaną glinem (tak zwana warstwa TCO – Transparent Conductive Oxide). Użyto tanich podłóż krzemowych o niezoptymalizowanej dla zastosowań fotowoltaicznych grubości. W niniejszej pracy badano proste struktury fotowoltaiczne ZnO/Si w celu redukcji kosztów produkcji energii elektrycznej pozyskiwanej za pomocą ogniw fotowoltaicznych. Zmierzona sprawność zoptymalizowanych częściowo (warstwy ZnO) ogniw fotowoltaicznych wyniosła 6%.We report on the properties of photovoltaic (PV) structures based on thin films of n-type zinc oxide grown by atomic layer deposition method on a cheap silicon substrate. Thin films of ZnO are used as n-type partner to p-type Si (110) and, when doped with Al, as a transparent electrode. PV structures with different electrical parameters and thicknesses of ZnO layers were deposited to determine the optimal performance of PV structures. The best response we obtained for the structure with ZnO layer thickness of 800 nm. The soobtained PV structures show 6% efficiency

    Structure Dependent Conductivity of Ultrathin ZnO Films

    No full text
    Zinc oxide films dedicated for hybrid organic/inorganic devices have been studied. The films were grown at low temperature (100°C, 130C and 200°C) required for deposition on thermally unstable organic substrates. ZnO layers were obtained in atomic layer deposition processes with very short purging times in order to shift a structure of the films from polycrystalline towards amorphous one. The correlation between atomic layer deposition growth parameters, a structural quality and electrical properties of ZnO films was determined

    Structure Dependent Conductivity of Ultrathin ZnO Films

    No full text
    Zinc oxide films dedicated for hybrid organic/inorganic devices have been studied. The films were grown at low temperature (100°C, 130C and 200°C) required for deposition on thermally unstable organic substrates. ZnO layers were obtained in atomic layer deposition processes with very short purging times in order to shift a structure of the films from polycrystalline towards amorphous one. The correlation between atomic layer deposition growth parameters, a structural quality and electrical properties of ZnO films was determined

    ZnO by ALD - Advantages of the Material Grown at Low Temperature

    No full text
    The 3D-architecture is a prospective way in miniaturization of electronic devices. However, this approach can be realized only if metal paths are placed not only at the top, but also beneath the electronic parts, which imposes drastic temperature limitations for the electronic device processing. Therefore last years a lot of investigations are focused on materials which can be grown at low temperature with electrical parameters appropriate for electronic applications. Zinc oxide grown by the atomic layer deposition method is one of the materials of choice. We obtained ZnO-ALD films at growth temperature range between 100°C and 200°C, and with controllable electrical parameters. Free carrier concentration was found to scale with deposition temperature, so it is possible to grow ZnO films with desired conductivity without any intentional doping. We used correlation of electrical and optical parameters to optimize the deposition process. Zinc oxide layers obtained in that way have free carrier concentration as low as 1016cm310^{16} cm^{-3} and high mobility (1050cm210-50 cm^{2}/(Vs)), which satisfies requirements for a material used in three-dimensional memories

    Hybrid Organic/ZnO p-n Junctions, with n-Type ZnO, Grown by Atomic Layer Deposition

    No full text
    We report on fabrication of hybrid inorganic-on-organic thin film structures with polycrystalline zinc oxide films grown by atomic layer deposition technique. ZnO films were deposited on two kinds of thin organic films, i.e. pentacene and poly(dimethylosiloxane) elastomer with a carbon nanotube content (PDMS:CNT). Surface morphology as well as electrical measurements of the films and devices were analyzed. The current density versus voltage (I-V) characteristics of ITO/pentacene/ZnO/Au structure show a low-voltage switching phenomenon typical of organic memory elements. The I-V studies of ITO/PDMS:CNT/ZnO/Au structure indicate some charging effects in the system under applied voltages

    Thin Film ZnO as Sublayer for Electric Contact for Bulk GaN with Low Electron Concentration

    No full text
    Fabrication of low resistivity ohmic contacts to N polarity gallium nitride crystal is an important issue for the construction of the vertical current flow devices like laser diodes and high brightness light emitting diodes. Gallium nitride is a challenging material because of the high metal work function required to form a barrier-free metal-semiconductor interface. In practice, all useful ohmic contacts to GaN are based on the tunneling effect. Efficient tunneling requires high doping of the material. The most challenging task is to fabricate high quality metal ohmic contacts on the substrate because the doping control is here much more difficult that in the case of epitaxial layers. In the present work we propose a method for fabricating low resistivity ohmic contacts on N-side of GaN wafers grown by hydride vapor phase epitaxy. These crystals were characterized by a n-type conductivity and the electron concentration of the order of 1017\text{}^{17} cm3\text{}^{-3}. The standard Ti/Au contact turned out to be unsatisfactory with respect to its linearity and resistance. Instead we decided to deposit high-n type ZnO layers (thickness 50 nm and 100 nm) prepared by atomic layer deposition at temperature of 200°C. The layers were highly n-type conductive with the electron concentration in the order of 1020\text{}^{20} cm3\text{}^{-3}. Afterwards, the metal contact to ZnO was formed by depositing Ti and Au. The electrical characterization of such a contact showed very good linearity and as low resistance as 1.6 × 103\text{}^{-3} Ω cm2\text{}^{2}. The results indicate advantageous properties of contacts formed by the combination of the atomic layer deposition and hydride vapor phase epitaxy technology
    corecore