5,689 research outputs found

    Note on a new parametrization for testing the Kerr metric

    Get PDF
    We propose a new parametrization for testing the Kerr nature of astrophysical black hole candidates. The common approaches focus on the attempt to constrain possible deviations from the Kerr solution described by new terms in the metric. Here we adopt a different perspective. The mass and the spin of a black hole make the spacetime curved and we want to check whether they do it with the strength predicted by general relativity. As an example, we apply our parametrization to the black hole shadow, an observation that may be possible in a not too distant future.Comment: 8 pages, 3 figure

    Entanglement entropy in long-range harmonic oscillators

    Full text link
    We study the Von Neumann and R\'enyi entanglement entropy of long-range harmonic oscillators (LRHO) by both theoretical and numerical means. We show that the entanglement entropy in massless harmonic oscillators increases logarithmically with the sub-system size as S=ceff3loglS=\frac{c_{eff}}{3}\log l. Although the entanglement entropy of LRHO's shares some similarities with the entanglement entropy at conformal critical points we show that the R\'enyi entanglement entropy presents some deviations from the expected conformal behavior. In the massive case we demonstrate that the behavior of the entanglement entropy with respect to the correlation length is also logarithmic as the short range case.Comment: Published version, 5 figure
    corecore