
Eur. Phys. J. C (2016) 76:290
DOI 10.1140/epjc/s10052-016-4137-2

Regular Article - Theoretical Physics

Note on a new parametrization for testing the Kerr metric

M. Ghasemi-Nodehi1, Cosimo Bambi1,2,a

1 Department of Physics, Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China
2 Theoretical Astrophysics, Eberhard-Karls Universität Tübingen, 72076 Tübingen, Germany

Received: 3 February 2016 / Accepted: 10 May 2016 / Published online: 23 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We propose a new parametrization for testing the
Kerr nature of astrophysical black hole candidates. The com-
mon approaches focus on the attempt to constrain possible
deviations from the Kerr solution described by new terms
in the metric. Here we adopt a different perspective. The
mass and the spin of a black hole make the spacetime curved
and we want to check whether they do it with the strength
predicted by general relativity. As an example, we apply our
parametrization to the black hole shadow, an observation that
may be possible in a not too distant future.

1 Introduction

General relativity has been tested in weak gravitational fields
by experiments in the Solar System and observations of
binary pulsars [1]. The interest has recently shifted to test-
ing the theory in more extreme conditions. In this context,
an important line of research is devoted to verifying the
Kerr nature of astrophysical black hole candidates [2–10].
In the framework of general relativity, the spacetime geome-
try around astrophysical black holes should be well described
by the Kerr solution. Any observation of deviation from the
Kerr metric should thus be interpreted as evidence of new
physics.

If we want to test the Schwarzschild metric in the weak
field regime, we can write the most general static, spherically
symmetric, and asymptotically flat metric with an expan-
sion in M/r , where M is the mass of the central object
and r is some radial coordinate. The approach is tradition-
ally formulated in isotropic coordinates and the line element
reads

a e-mail: bambi@fudan.edu.cn

ds2 = −
(

1 − 2M

r
+ β

2M2

r2 + · · ·
)

dt2

+
(

1 + γ
2M

r
+ · · ·

) (
dx2 + dy2 + dz2

)
. (1)

For M = 0, we have a flat spacetime. The term −2M/r in gtt
is to recover the correct Newtonian limit. Since there are not
other natural constraints, the coefficients in front of higher
orders terms are a priori unknown and parameterized by β

and γ , which must be measured by observations. Current
observations require [11,12]

|β − 1| < 2.3 × 10−4, |γ − 1| < 2.3 × 10−5. (2)

When we write the Schwarzschild solution in isotropic coor-
dinates, we find that β = γ = 1. Current observations thus
confirm the Schwarzschild metric in the weak field regime at
the level of precision accessible with the available facilities.

In the case of tests in the strong field regime, there are some
complications. In particular, it is not possible to perform an
expansion in M/r , because this is not a small parameter any
more. This fact leads to have an arbitrary number of possi-
ble deviations from the Kerr metric and it is impossible to
perform a completely model-independent analysis as in the
case of weak field tests in the Solar System. The common
approach employed in the past few years is to adopt as met-
ric an ansatz with a number of “deformation parameters”.
This metric reduces to the Kerr solution if all the deforma-
tion parameters vanish. Deviations from the Kerr geometry
appear in the case of non-vanishing deformation parameters.
Like the β and γ parameters in Eq. (1), the deformation
parameters are supposed to be constants to be measured by
observations. The latter can confirm the Kerr nature of black
hole candidates by constraining the values of the deforma-
tion parameters. There are several proposals in the literature,
each of these with its advantages and disadvantages [13–19].

In this paper, we explore a slightly different approach. In
the metrics proposed in [13–19], the Kerr solution is recov-
ered when all the deformation parameters vanish. The defor-
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mation parameters introduce thus some additional terms,
which should describe the spacetime geometry around black
holes in alternative theories of gravity. The spirit of the
parametrization proposed here is to check how the mass and
the spin angular momentum make the spacetime curved. In
general relativity, we exactly know how the mass and the spin
angular momentum of a black hole deform the geometry of
the spacetime. Geodesic motion is completely determined
by the Kerr metric. Observations can thus confirm the pre-
dictions of general relativity if the mass and the spin terms
are exactly where they are and with the correct coefficient
as they appear in the Kerr metric. We introduce 11 “Kerr
parameters”, which are all equal to 1 in the Kerr metric. If
these parameters are larger or smaller than 1, the mass and
the spin deform the spacetime geometry more or less than
what it is predicted by general relativity. We would like to
stress that, strictly speaking, our proposal is simply a dif-
ferent parametrization to test the Kerr metric. However, the
spirit is different because we try to verify the Kerr solution
rather than the possible presence of new terms.

In order to illustrate advantages and disadvantages of our
proposal, we apply our parametrization to the black hole
shadow, a kind of observation that may be possible in a not
too distant future. Now we can understand which parts of the
Kerr metric can be tested by observations and which parts
cannot be verified because do not leave any observational
signature.

In the following, we will employ natural units in which
GN = c = 1 and adopt a metric with signature (− + ++).

2 Parameterization of the Kerr metric

In Boyer–Lindquist coordinates, the line element of the Kerr
metric reads

ds2 = −
(

1 − 2Mr

r2 + a2 cos2 θ

)
dt2− 4Mar sin2 θ

r2+a2 cos2 θ
dtdφ

+ r2 + a2 cos2 θ

r2 − 2Mr + a2 dr2 +
(
r2 + a2 cos2 θ

)
dθ2

+
(
r2 + a2 + 2Ma2r sin2 θ

r2 + a2 cos2 θ

)
sin2 θdφ2, (3)

where M is the black hole mass and a is the black hole spin
parameter. |a| ≤ M is the condition for the existence of the
event horizon. For |a| > M , there is no horizon and the Kerr
metric describes the spacetime with a naked singularity.

For M = a = 0, Eq. (3) reduces to the line element of
the flat spacetime in spherical coordinates. Since we want to
test how each M and a term appearing in Eq. (3) deforms
the spacetime geometry, we rewrite Eq. (3) by introducing
11 parameters bi as follows:

ds2 = −
(

1 − 2b1Mr

r2 + b2a2 cos2 θ

)
dt2

− 4b3Mar sin2 θ

r2 + b4a2 cos2 θ
dtdφ

+ r2 + b5a2 cos2 θ

r2 − 2b6Mr+b7a2 dr2+
(
r2+b8a

2 cos2 θ
)

dθ2

+
(
r2 + b9a

2 + 2b10Ma2r sin2 θ

r2 + b11a2 cos2 θ

)
sin2 θdφ2. (4)

In the case of the Kerr metric, bi = 1 for all i . If one of
these coefficients were larger (smaller) than 1, the interpre-
tation would be that the associated mass or spin term distorts
the spacetime geometry more (less) than what predicted by
general relativity. It is worth noting that our 11 parameters
are not 11 new independent quantities. The asymptotic mass
that can be measured, for instance, by studying the Newto-
nian orbital motion of a body around the black hole is b1M .
In the same way, the asymptotic specific angular momentum
is b3a (if b1 = 1).

Spacetime curvature is associated with the Riemann ten-
sor. If the Riemann tensor vanishes in a coordinate system, it
vanishes in any coordinate system and the spacetime is flat.
The metric is instead a quantity strongly related to the coordi-
nate system, which is arbitrary. The expressions of curvature
invariants (e.g. the Kretschmann scalar K = Rμνρσ Rμνρσ )
of the metric in (4) are extremely long and do not provide
any particular insight, so they are not reported here. In order
to motivate our parametrization to test whether the mass and
the spin make the spacetime curved as predicted by general
relativity, we can simply note that, if we indicate with KKerr

the Kretschmann scalar of the Kerr metric, for our metric
with {bi } we have

K = KKerr +
11∑
i=1

K(1)
i Xi (bi − 1) + · · · , (5)

where Xi = M , a, Ma, a2 or Ma2 depending on i . Equa-
tion (5) is the expansion of the Kretschmann scalar around
bi = 1. If some bi �= 1, the mass and/or the spin deform the
spacetime in a different way.

It is worth noting that b1, b3, and b6 are already con-
strained by observations. In the case of b1 and b6, this can
easily be seen by rewriting the line element in Eq. (1) in
Schwarzschild-like coordinates

ds2 = −
[

1 − 2M

r
+ (β − γ )

2M2

r2 + · · ·
]

dt2

+
(

1 + γ
2M

r
+ · · ·

)
dr2 + r2dθ2

+r2 sin2 θdφ2. (6)
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b1 = 1 in order to recover the Newtonian limit. b6 ≈ 1 with
a precision of 10−5 to satisfy the Solar System constraints
in Eq. (2). The Lense–Thirring effect has been confirmed
with a precision of 10 % from the study of Earth-orbiting
satellites [20,21]. This implies b3 ≈ 1 at the level of 10 %.
The other 8 parameters (b2, b4, b5, b7, b8, b9, b10, b11) are
currently not constrained by observations.

3 Black hole shadow

The “shadow” of a black hole is a dark region over a brighter
background appearing in the direct image of an accreting
black hole. If the accretion flow is an optically thin emitting
medium surrounding the compact object, the boundary of the
shadow corresponds to the photon capture sphere as seen by a
distant observer [22]. In the case of a geometrically thin and
optically thick accretion disk, the boundary of the shadow
corresponds to the apparent image of the inner edge of the
disk [23,24].

In the past years, there have been a significant work to
calculate the shadows of black holes in general relativity and
in alternative theories of gravity [25–36]. Most studies have
focused on the calculation of the apparent shape of the photon
capture sphere, namely the case of black holes surrounded
by optically thin emitting medium. The interest on this topic
is in part motivated by the possibility of detecting in the
future the shadow of SgrA∗, the supermassive black hole
candidate at the center of the Galaxy, with sub-mm very long
baseline interferometry (VLBI) facilities [37]. At sub-mm
wavelength, the medium around SgrA∗ should become opti-
cally thin, the interstellar scattering should be significantly
reduced, and interferometric techniques at sub-mm wave-
length should be able to reach a resolution comparable to the
gravitational radius of this object.

As suggested by its name, the photon capture sphere is
a 2-surface in the 3-space defining the boundary between
the photons that, arriving from a certain point at infinity, are
captured by the black hole or scattered back to infinity. If a
photon enters the photon capture sphere, eventually it is lost
because it is swallowed by the black hole. If a photon does
not enter the photon capture sphere, eventually it goes back to
infinity.

We calculate the boundary of the photon capture sphere
as seen by a distant observer as we have done in Ref. [38].
We consider the image plane of the distant observer with
Cartesian coordinates (X,Y ). We fire photons from a certain
grid of the image plane. The photon initial conditions are
completely determined by the position of the photon in the
grid, because the photon 3-momentum must be perpendicular
to the image plane. If the photon has Cartesian coordinates
(X0,Y0), the initial conditions with respect to the Boyer–
Lindquist coordinates are [24]

t0 = 0,

r0 =
√
X2

0 + Y 2
0 + D2,

θ0 = arccos
Y0 sin i + D cos i√
X2

0 + Y 2
0 + D2

,

φ0 = arctan
X0

D sin i − Y0 cos i
. (7)

and the 4-momentum of the photon is

kr0 = − D√
X2

0 + Y 2
0 + D2

|k0|,

kθ
0 =

cos i − DY0 sin i+D cos i
X2

0+Y 2
0 +D2√

X2
0 + (D sin i − Y0 cos i)2

|k0|,

kφ
0 = X0 sin i

X2
0 + (D sin i − Y0 cos i)2

|k0|,

kt0 =
√(

kr0
)2 + r2

0

(
kθ

0

)2 + r2
0 sin2 θ0(k

φ
0 )2, (8)

where D is the radial coordinate of the distant observer and i
is the angle between the black hole spin and the line of sight
of the distant observer. In our calculations, D = 106 M ,
which is far enough to assume that the background geometry
is flat. kt0 is thus obtained from the condition gμνkμkν = 0
with the metric tensor of a flat spacetime.

The boundary of the apparent photon capture sphere is the
closed curve in the image plane of the distant observer sep-
arating the photons that are capture by the black hole from
those that approach the black hole but are eventually scat-
tered to infinity. In the case of an emitting medium surround-
ing the black hole, the radiation is emitted by this accretion
flow and detected in the plane of the distant observer. How-
ever, it is more convenient to calculate the photon trajectories
backward in time, from the point of detection to the region
around the black hole.

We have performed our calculations by changing the val-
ues of the coefficient bi and our results are shown in Figs. 1
and 2. For completeness, we have also studied the impact of
b1, b3, and b6. In all these plots, we show the case a/M = 0.8
and i = 85◦. The relatively high value of the spin parame-
ter and the high inclination angle maximize the relativistic
effects and therefore our choice represent a quite favorable
case. These figures show both the shape of the black hole
shadow (on the left in each panel) and the function R(φ),
which was introduced in Ref. [38] to characterize the shape
of the shadow (see Ref. [39] for a more sophisticated descrip-
tion). With reference to Fig. 3, R(φ) is defined as the distance
between the center of the shadow and the boundary of the
shadow at the angle φ. R(0) is R at φ = 0 and the shape of
the shadow is described by R(φ)/R(0).
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Fig. 1 Impact of the parameters b1 (top left panel), b2 (top right panel), b3 (central left panel), b4 (central right panel), b5 (bottom left panel), and
b6 (bottom right panel) on the shape of the shadow of a black hole. See the text for more details

4 Discussion

The coefficient b1 (top left panel in Fig. 1) affects the
term responsible for the Newtonian limit. If we increases

(decreases) the value of b1, we are – roughly specking – con-
sidering a black hole with a larger (smaller) mass M . This is
true for b1 > 1. For very small values of b1, the gravitational
force is weak, but the black hole horizon is still in the same
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Fig. 2 Impact of the parameters b7 (top left panel), b8 (top right panel), b9 (central left panel), b10 (central right panel), and b11 (bottom panel)
on the shape of the shadow of a black hole. See the text for more details

place because determined by the larger root of grr , namely
by the equation

r2 − 2b6Mr + b7a
2 = 0. (9)

If b1 < 1, the usual photon capture radius determined by the
photon unstable orbit may be replaced by the event horizon.

The impact of b2 on the black hole shadow is much smaller
(top right panel in Fig. 1). Only for large positive values
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φ

R(φ)

C
X

Y

Fig. 3 The function R(φ) is defined as the distance between the center
C and the boundary of the shadow at the angle φ as shown in this picture.
See the text and Ref. [38] for more details

it appreciably affects the boundary of the shadow. In other
words, an observation may provide weak constraints on this
coefficient and it is thus difficult to test the presence of the
associated term in the Kerr metric.

The role of the coefficient b3 is shown in the central left
panel in Fig. 1. Roughly speaking, as b1 is the coefficient
regulating the strength of the mass monopole moment, so b3

control the strength of the leading term of the spin dipole
moment. If b3 < 1, the spin effects decrease and the shadow
get more symmetric. For b3 > 1, the difference between orbit
with angular momentum parallel and antiparallel to the black
hole spin increases. The force experienced by photons with
angular momentum parallel to the black hole spin gets weaker
and the photon capture radius on the right side of the shadow
decreases. For very large b3 (b3 = 5 in Fig. 1), the repulsive
force of the spin is so strong that becomes dominant. The
result is that there is a very small or no capture sphere on the
right side of the shadow: even if we fire a photon, close to
the black hole the repulsive spin effect is stronger than the
attractive mass term and the photon is scattered to infinity.

b4 (central right panel in Fig. 1) and b5 (bottom left panel
in Fig. 1) have an extremely small impact on the shape of
the shadow. Even when b4 = 5 and b5 = 5, deviations are
very small. This means that the presence of such terms in
the Kerr metric can unlikely be tested with the detection of
the shadow of a black hole. It could be interesting to see if
other approaches can do it, or otherwise b4 and b5 are always
difficult to check.

b6 (bottom right panel in Fig. 1) is already constrained at
the level of 10−5 by weak field tests in the Solar System and
we cannot probably do better with tests in the strong gravity
regime. b6 determines also the position of the horizon via
Eq. (9). If the value of b6 is larger than 1, the radius of the
event horizon may be larger than the standard photon capture

sphere and the event horizon becomes the actual photon cap-
ture sphere, as shown in the bottom right panel in Fig. 1. This
is roughly equivalent to make b1 sufficiently smaller than 1.

b7 (top left panel in Fig. 2) and b11 (bottom panel in Fig. 2)
do not seem to produce any effect on the shape of the shadow.
As in the case of b4 and b5, it would be interesting to see if
other approaches can do this job or if these terms cannot be
tested at all.

The impact of b8 (top right panel in Fig. 2), b9 (central left
panel in Fig. 2), and b10 (central right panel in Fig. 2) on the
boundary of the shadow is not large, but these coefficients
produce characteristic features that are not present in the Kerr
metric, for instance by changing the spin parameter or the
viewing angle. In particular, b8 and b9 introduce two cusps
in the function R(φ). b10 makes the shadow oblate on the
side of the photons with angular momentum parallel to the
black hole spin.

Figures 1 and 2 can be better understood if we expand the
line element in Eq. (4) in M/r :

ds2 = −
(

1 − 2b1M

r
+ 2b1b2Ma2 cos2 θ

r3 + · · ·
)

dt2

−
(

4b3Ma sin2 θ

r
− 4b3b4Ma3 sin2 θ cos2 θ

r3 + · · ·
)

dtdφ

+
(

1 + 2b6M

r
+ b5a2 cos2 θ + 4b2

6M
2 − b7a2

r2 + · · ·
)

dr2

+r2
(

1 + b8a2 cos2 θ

r2 + · · ·
)

dθ2

+
(

1 + b9a2

r2 + 2b10Ma2 sin2 θ

r3

−2b10b11Ma4 sin2 θ cos2 θ

r5
+ · · ·

)
r2 sin2 θdφ2. (10)

While the boundary of the shadow is determined by the pho-
ton orbits, where M/r is not exactly a small parameter, this
expansion provides a rough idea of the impact of each bi . In
particular, it makes evident that b4 has a smaller impact than
b3, b5 and b7 have a smaller impact than b6, and b11 is more
difficult to measure than b9 and b10.

5 Summary and conclusions

In this paper, we have proposed a new parametrization of
the Kerr metric to test if the mass and the spin of a black
hole deform the spacetime geometry as predicted by general
relativity.

The common approach to performing tests of the Kerr
metric is to consider a metric more general than the Kerr solu-
tion by introducing a number of extra terms. The latter can be
turned on and off by their deformation parameters, which are
adopted to quantify possible deviations from the Kerr geom-
etry. The Kerr metric is recovered when all the deformation
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parameters vanish. Observations should measure the value of
these deformation parameters to check whether they indeed
vanish, as requested by the Kerr solution.

Here we have started from the Kerr metric in Boyer–
Lindquist coordinates. We have introduced 11 “Kerr param-
eters” in front of any mass/spin term. These Kerr parameters
should be 1 according to general relativity and may be dif-
ferent from 1 if the associated mass or spin term deforms
the geometry in a different way. Some caution is in order
here, because for some values of these parameters the space-
time can present pathological properties (naked singularities,
closed time-like curves, etc.). In this way, we want to check
whether each mass and spin term appearing in the Kerr met-
ric make the spacetime geometry curved with the strength
predicted by general relativity.

We have applied our proposal to the case of the shadow of
a black hole. Our conclusions are as follows. The coefficient
b1 = 1 to recover the correct Newtonian limit. b3, and b6 are
already constrained by tests in weak gravitational fields and it
is unlikely that we can do better with tests in the strong gravity
regime. b2, b8, b9, and b10 leave some small signatures in the
boundary of the shadow. At least in principle, very accurate
observations may test these coefficients. b4, b5, b7, and b11

do not seem to leave any specific signature. Their impact is
small or absent, which means that even an extremely accurate
measurement of the exact shape of the shadow cannot test the
associated terms in the Kerr metric.
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