1 research outputs found

    ์˜ฌ ๋””์ง€ํ„ธ ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ๋ฅผ ์ ์šฉํ•œ ๊ณ ์† ๊ด‘ ์ˆ˜์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 8. ์ •๋•๊ท .This thesis presents a 22- to 26.5-Gb/s optical receiver with an all-digital clock and data recovery (ADCDR) fabricated in a 65-nm CMOS process. The receiver consists of an optical front-end and a half-rate bang-bang clock and data recovery circuit. The optical front-end achieves low power consumption by using inverter-based amplifiers and realizes sufficient bandwidth by applying several bandwidth extension techniques. In addition, in order to minimize additional jitter at the front-end, not only magnitude and bandwidth but also phase delay responses are considered. The ADCDR employs an LC quadrature digitally-controlled oscillator (LC-QDCO) to achieve a high phase noise figure-of-merit at tens of gigahertz. The recovered clock jitter is 1.28 psrms and the measured jitter tolerance exceeds the tolerance mask specified in IEEE 802.3ba. The receiver sensitivity is 106 and 184 ฮผApk-pk for a bit error rate of 10โˆ’12 at data rates of 25 and 26.5 Gb/s, respectively. The entire receiver chip occupies an active die area of 0.75 mm2 and consumes 254 mW at a data rate of 26.5 Gb/s. The energy efficiencies of the front-end and entire receiver at 26.5 Gb/s are 1.35 and 9.58 pJ/bit, respectively.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 DESIGN OF OPTICAL FRONT-END 7 2.1 OVERVIEW 7 2.2 BACKGROUND ON OPTICAL FRONT-END 9 2.2.1 PHOTODIODE 9 2.2.2 TRANSIMPEDANCE AMPLIFIER 11 2.2.3 POST AMPLIFIER 17 2.2.4 SHUNT INDUCTIVE PEAKING 25 2.3 CIRCUIT IMPLEMENTATION 29 2.3.1 OVERALL ARCHITECTURE 29 2.3.2 TRANSIMPEDANCE AMPLIFIER 31 2.3.3 POST AMPLIFIER 34 2.4 NOISE ANALYSIS 43 2.4.1 PHOTODIODE 43 2.4.2 OPTICAL FRONT-END 44 2.4.3 SENSITIVITY 46 CHAPTER 3 DESIGN OF ADCDR FOR OPTICAL RECEIVER 48 3.1 OVERVIEW 48 3.2 BACKGROUND ON PLL-BASED ADCDR 51 3.2.1 PHASE DETECTOR 51 3.2.2 DIGITAL LOOP FILTER 54 3.2.3 DIGITALLY-CONTROLLED OSCILLATOR 56 3.2.4 ANALYSIS OF BANG-BANG ADCDR 67 3.3 CIRCUIT IMPLEMENTATION 70 3.3.1 OVERALL ARCHITECTURE 70 3.3.2 PHASE DETECTION LOGIC 75 3.3.3 DIGITAL LOOP FILTER 77 3.3.4 LC QUADRATURE DCO 78 CHAPTER 4 EXPERIMENTAL RESULTS 82 CHAPTER 5 CONCLUSION 90 BIBLIOGRAPHY 92 ์ดˆ๋ก 101Docto
    corecore