18 research outputs found

    5์„ธ๋Œ€ ํ†ต์‹ ์„ ์œ„ํ•œ Zn ์น˜ํ™˜๋œ W-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ์™€ ์นด๋ณด๋‹ ์ฒ ์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2021.8. ์œ ์ƒ์ž„.5์„ธ๋Œ€ (5G) ๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ๋ฌด์„  ํ†ต์‹ ์„ ์œ„ํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ์ „์ž ๊ธฐ๊ธฐ๋“ค์ด ์‚ฌ์šฉ๋˜์–ด ์˜ค๊ณ  ์žˆ๋‹ค. ์ด์™€ ๋™์‹œ์— ์ธ๊ฐ„๊ณผ ๋™๋ฌผ์— ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚ค๊ณ , ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ „์ž ๊ธฐ๊ธฐ์—๋„ ์˜ค์ž‘๋™์„ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ „์ž๊ธฐํŒŒ ๊ฐ„์„ญ(EMI)์ด ํฐ ๋ฌธ์ œ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ EMI ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋งŽ์€ ๊ทธ๋ฃน์—์„œ ๋ฌด๊ฒŒ๊ฐ€ ๊ฐ€๋ณ๊ณ , ๋‚ฎ์€ ๋ถ€ํ”ผ ๋ถ„์œจ, ๋„“์€ ๋Œ€์—ญํญ, ์šฐ์ˆ˜ํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ๊ณ ํŠน์„ฑ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ์žฌ๋ฃŒ(MAM)์˜ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ๋‹ค. ํ•œํŽธ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์€ ์ฃผ๋กœ ๋ณต์†Œ ์œ ์ „์œจ (ฮตr = ฮตสน โˆ’ jฮตสนสน)๊ณผ ๋ณต์†Œ ํˆฌ์ž์œจ (ฮผr = ฮผสน โˆ’ jฮผสนสน)์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋ฉฐ, ํก์ˆ˜์ฒด์˜ ๋‘๊ป˜๋Š” ๊ตด์ ˆ๋ฅ ์— ๋ฐ˜๋น„๋ก€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์—ฐ๊ตฌ์ž๋“ค์€ ์‹ค์ œ ์‘์šฉ์„ ์œ„ํ•ด ์œ ์ „์œจ๊ณผ ํˆฌ์ž์œจ์˜ ๊ฐ’์„ ๊ฐœ์„ ์‹œํ‚ค๋Š” ๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ์žฌ๋ฃŒ ์ค‘์—์„œ ์Šคํ”ผ๋„ฌ ํŽ˜๋ผ์ดํŠธ์™€ M-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋Š” ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์žฌ๋ฃŒ์ด๋ฉฐ, W-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ์™€ ์นด๋ณด๋‹ ์ฒ ์€ ๊ฑฐ์˜ ๋ณด๊ณ ๋˜์–ด ์žˆ์ง€ ์•Š์€ ์‹ค์ •์ด๋‹ค. ํŠนํžˆ 5์„ธ๋Œ€ ํ†ต์‹ ์—์„œ 3.5 GHz ์™€ 28 GHz๋Š” ๊ฐ€์žฅ ๋ณดํŽธ์ ์ธ ์ฃผํŒŒ์ˆ˜๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 3.5 GHz์™€ 28 GHz ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ์–‡๊ณ  ๋„“์€ ๋Œ€์—ญํญ์˜ ์ „์žํŒŒ ํก์ˆ˜์ฒด๋ฅผ ์œ„ํ•ด Zn ๊ฐ€ ์น˜ํ™˜๋œ SrW-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ (SrFe2-xZnxFe16O27; SrFe2-xZnxW, 0.0 โ‰ค x โ‰ค 2.0)์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ์‚ดํŽด๋ณด๊ณ ์ž ํ–ˆ๋‹ค. ๋˜ํ•œ 3.5 GHz์—์„œ ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์˜ ์ „์žํŒŒ ํก์ˆ˜์ฒด๋ฅผ ์œ„ํ•ด sol-gel ๋ฒ•์œผ๋กœ ํ•ฉ์„ฑํ•œ ์•Œ๋ฃจ๋ฏธ๋‚˜ ์ฝ”ํŒ…๋œ ์นด๋ณด๋‹ ์ฒ ์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ์‚ดํŽด๋ณด๊ณ ์ž ํ–ˆ๋‹ค. Zn ์ด์˜จ์„ ๋ถ€๋ถ„์ ์œผ๋กœ ์น˜ํ™˜ํ•œ ์ด์œ ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ ๋ฒˆ์งธ, ํฌํ™” ์žํ™”๊ฐ’ (Ms)์€ x = 1.0 ๊นŒ์ง€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ฑฐ์˜ ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐ˜๋ฉด ์ž๊ธฐ ์ด๋ฐฉ์„ฑ (Ha)์€ ๊ฐ์†Œํ•œ๋‹ค. ๊ทธ ์ดํ›„๋ถ€ํ„ฐ x = 2.0 ๊นŒ์ง€๋Š” ํฌํ™” ์žํ™”๊ฐ’์€ ์•„์ฃผ ํฌ๊ฒŒ ๊ฐ์†Œํ•˜๋Š” ๋ฐ˜๋ฉด์— ์ž๊ธฐ ์ด๋ฐฉ์„ฑ ๊ฐ’์€ ์•ฝ๊ฐ„ ๊ฐ์†Œํ•œ๋‹ค. ๋ณต์†Œ ํˆฌ์ž์œจ์€ Ms/Ha์— ๋น„๋ก€ ๊ด€๊ณ„์— ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณต์†Œ ํˆฌ์ž์œจ์˜ ๊ฐ’์€ x = 1.0 ๊นŒ์ง€๋Š” ์ฆ๊ฐ€ํ•  ๊ฒƒ์ด๋ผ ์˜ˆ์ƒํ–ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ, Fe2+์™€ Fe3+ ์ด์˜จ ์‚ฌ์ด์˜ ์ „์ž ๋„์•ฝ์— ๋”ฐ๋ฅธ ๋ถ„๊ทน์˜ ์ฆ๊ฐ€๋กœ ๋ณต์†Œ ์œ ์ „์œจ ๋˜ํ•œ ํ–ฅ์ƒ๋  ๊ฒƒ์ด๋ผ ์˜ˆ์ƒํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ถ€๋ถ„์ ์œผ๋กœ Zn๊ฐ€ ์น˜ํ™˜๋œ SrW-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ์˜ ๋ณต์†Œ ์œ ์ „์œจ๊ณผ ๋ณต์†Œ ํˆฌ์ž์œจ์˜ ๊ฐ’์„ ๋™์‹œ์— ์ฆ๊ฐ€์‹œํ‚ด์œผ๋กœ์จ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ๋„ ํ–ฅ์ƒ๋  ๊ฒƒ์ด๋ผ ํŒ๋‹จํ–ˆ๋‹ค. ๋ฐ˜๋ฉด์— ์นด๋ณด๋‹ ์ฒ ์€ ๋†’์€ ํฌํ™” ์žํ™”๊ฐ’๊ณผ ๋‚ฎ์€ ์ž๊ธฐ ์ด๋ฐฉ์„ฑ ๊ฐ’ ๋•Œ๋ฌธ์— ๋†’์€ ์‹ค์ˆ˜๋ถ€ ํˆฌ์ž์œจ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋†’์€ ์™€์ „๋ฅ˜ ์†์‹ค ๋•Œ๋ฌธ์— ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์˜ ์ „์žํŒŒ ํก์ˆ˜์ฒด๋ฅผ ์–ป๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ sol-gel ๋ฒ•์„ ํ†ตํ•œ ์นด๋ณด๋‹ ์ฒ ๊ณผ ๋น„์ •์งˆ ์•Œ๋ฃจ๋ฏธ๋‚˜์˜ core-shell ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค์–ด ์คŒ์œผ๋กœ์จ ์ž…์ž ๊ฐ„ ์™€์ „๋ฅ˜ ์†์‹ค์„ ํšจ๊ณผ์ ์œผ๋กœ ์–ต์ œํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์•Œ๋ฃจ๋ฏธ๋‚˜ ์ ˆ์—ฐ ์ฝ”ํŒ… ์ธต์€ ๋น„์ž์„ฑ ๋ฌผ์งˆ๋กœ์„œ ์ž๊ธฐ์  ํŠน์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ ํŠนํžˆ ํˆฌ์ž์œจ์˜ ํ—ˆ์ˆ˜๋ถ€๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์—ญํ• ์„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์•Œ๋ฃจ๋ฏธ๋‚˜ ์ฝ”ํŒ… ๋‘๊ป˜๋ฅผ ์„ฌ์„ธํ•˜๊ฒŒ ์กฐ์ ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณต์†Œ ์œ ์ „์œจ์„ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋น„์ •์งˆ ์•Œ๋ฃจ๋ฏธ๋‚˜ ๋˜๋Š” ฮฑ-์•Œ๋ฃจ๋ฏธ๋‚˜์™€ ๊ฐ™์€ ์œ ์ „ ๋ฌผ์งˆ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ์„ž์–ด์ฃผ์—ˆ๋‹ค. ๋ณตํ•ฉ์ฒด ์ƒ˜ํ”Œ์˜ ์ „์žํŒŒ ํก์ˆ˜ ํŠน์„ฑ ์ธก์ •์„ ์œ„ํ•ด์„œ ์‹œํŽธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ณผ์ •์„ ํ†ตํ•ด ์ค€๋น„ํ•˜์˜€๋‹ค. ๊ฐ ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ ๋˜๋Š” ์นด๋ณด๋‹ ์ฒ  ๋ถ„๋ง์€ ์—ํญ์‹œ ๋ ˆ์ง„๊ณผ ํ•จ๊ป˜ ์„ž์–ด์ฃผ์—ˆ๊ณ , ์ง์‚ฌ๊ฐํ˜• ๋˜๋Š” toroidal ํ˜•ํƒœ๋กœ ์ผ์ถ• ์„ฑํ˜•ํ•œ ๋‹ค์Œ 175 หšC ์—์„œ 1์‹œ๊ฐ„ ๋™์•ˆ ๊ฒฝํ™”ํ•˜์˜€๋‹ค. ๋ณต์†Œ ์œ ์ „์œจ๊ณผ ๋ณต์†Œ ํˆฌ์ž์œจ ์ธก์ •์„ ์œ„ํ•ด์„œ VNA (Agilent PNA N5525A) ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ณต์†Œ ์œ ์ „์œจ๊ณผ ๋ณต์†Œ ํˆฌ์ž์œจ์€Nicolson and Ross ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ•ด ๊ณ„์‚ฐ๋œ S-๋ณ€์ˆ˜๋“ค์„ ํ†ตํ•ด ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค. SrFe2-xZnxW (0.0 โ‰ค x โ‰ค 2.0) ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ Ku (0.5-18 GHz)์™€ Ka (26.5-40 GHz)์˜ ์˜์—ญ์—์„œ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋ฐ˜๋ฉด ์•Œ๋ฃจ๋ฏธ๋‚˜ ์ฝ”ํŒ…๋œ ์นด๋ณด๋‹ ์ฒ ์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์€ Ku-band์—์„œ๋งŒ ์‚ดํŽด๋ณด์•˜๋‹ค. ์˜ˆ์ƒํ•œ ๊ฒƒ๊ณผ ๊ฐ™์ด ์ฆ๊ฐ€ํ•œ ๋ณต์†Œ ์œ ์ „์œจ ๊ทธ๋ฆฌ๊ณ  ๋ณต์†Œ ํˆฌ์ž์œจ ๋•๋ถ„์— Zn ์น˜ํ™˜๋œ SrW-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋Š” ๋„“์€ ๋Œ€์—ญํญ์„ ๊ฐ€์ง€๋ฉฐ ์šฐ์ˆ˜ํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ๋ณด์˜€๋‹ค. ํŠนํžˆ 90% ๋ถ€ํ”ผ ๋ถ„์œจ์—์„œ 2.8 mm ๋‘๊ป˜์˜ SrFe1.5 Zn0.5W (x = 0.5) ๋ณตํ•ฉ์ฒด๋Š” -10 dB ์ดํ•˜์—์„œ0.43 GHz (3.38-3.81 GHz)์˜ ๋Œ€์—ญํญ๊ณผ 3.6 GHz์—์„œ -46 dB์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋ƒ„์œผ๋กœ์จ 3.5 GHz์—์„œ 5์„ธ๋Œ€ ํ†ต์‹  ํ™œ์šฉ์„ ์œ„ํ•œ ์ ์ ˆํ•œ ํก์ˆ˜์ฒด์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. Ka-band์—์„œ๋Š” 30% ๋ถ€ํ”ผ ๋ถ„์œจ์—์„œ 0.64 mm ๋‘๊ป˜์˜ SrFe1.75 Zn0.25W (x = 0.25) ๋ณตํ•ฉ์ฒด๋Š” -10 dB ์ดํ•˜์—์„œ5.16 GHz (26.50-31.66 GHz)์˜ ๋Œ€์—ญํญ, -20 dB ์ดํ•˜์—์„œ๋Š” 2.48 GHz (26.50-28.98 GHz) ๋Œ€์—ญํญ๊ณผ 28 GHz์—์„œ -68.4 dB์˜ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋ƒ„์œผ๋กœ์จ 28 GHz์—์„œ 5์„ธ๋Œ€ ํ†ต์‹  ํ™œ์šฉ์„ ์œ„ํ•œ ์šฐ์ˆ˜ํ•œ ํก์ˆ˜์ฒด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ•œํŽธ ์•Œ๋ฃจ๋ฏธ๋‚˜๊ฐ€ ์ฝ”ํŒ…๋œ ์นด๋ณด๋‹ ์ฒ ๊ณผ 5wt.%์˜ ๋น„์ •์งˆ ์•Œ๋ฃจ๋ฏธ๋‚˜ ๋ถ„๋ง์„ ์„ž์€ ๋ณตํ•ฉ์ฒด๋Š” 4.36 mm์˜ ๋‘๊ป˜๋ฅผ ๊ฐ€์งˆ ๋•Œ -20 dB ์ดํ•˜์—์„œ0.51 GHz (3.25-3.76 GHz)์˜ ๋Œ€์—ญํญ๊ณผ -28.9 dB ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์„ ๋ณด์ž„์œผ๋กœ์จ 3.5 GHz์—์„œ 5์„ธ๋Œ€ ํ†ต์‹  ํ™œ์šฉ์„ ์œ„ํ•œ ์ ์ ˆํ•œ ํก์ˆ˜์ฒด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, Zn ๋ถ€๋ถ„ ์น˜ํ™˜๋œ SrW-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋Š” ๋‘๊ป˜๊ฐ€ ์–‡๊ณ  ๋„“์€ ๋Œ€์—ญํญ์„ ๊ฐ€์ง์œผ๋กœ์จ 3.5 GHz์™€ 28 GHz ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ5์„ธ๋Œ€ ํ†ต์‹  ์‘์šฉ์— ์ ํ•ฉํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ์žฌ๋ฃŒ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ 3.5 GHz์—์„œ ์นด๋ณด๋‹ ์ฒ ์ด ์šฐ์ˆ˜ํ•œ ์ „์žํŒŒ ํก์ˆ˜ ํŠน์„ฑ๊ณผ ๋„“์€ ๋Œ€์—ญํญ์„ ๊ฐ€์ง€๊ธฐ ์œ„ํ•ด์„  ์นด๋ณด๋‹ ์ฒ  ๋ถ„๋ง์˜ ํ‘œ๋ฉด์— ๋น„์ •์งˆ ์•Œ๋ฃจ๋ฏธ๋‚˜์˜ ๋‚˜๋…ธ ์ฝ”ํŒ…์„ ํ•˜์—ฌ ์™€์ „๋ฅ˜๋ฅผ ์–ต์ œํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋งˆ์ดํฌ๋กœํŒŒ ํก์ˆ˜ ํŠน์„ฑ์˜ ๊ฐœ์„ ์„ ์œ„ํ•ด์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์ด ์š”๊ตฌ๋  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ํ•˜๋‚˜, Zn ๋ถ€๋ถ„ ์น˜ํ™˜๋œ SrW-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ ๋ณตํ•ฉ์ฒด์˜ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด์„œ๋Š” Zn ์น˜ํ™˜์˜ ์–‘๊ณผ ํ•„๋Ÿฌ์˜ ๋ถ€ํ”ผ ๋ถ„์œจ, ํด๋ฆฌ๋จธ ๋งคํŠธ๋ฆญ์Šค์˜ ์ข…๋ฅ˜์™€ ์–‘ ๊ทธ๋ฆฌ๊ณ  ์‹œํŽธ ์ œ์กฐ ๋ฐฉ๋ฒ•์„ ๋ฐ”๊ฟ”๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” Fe2+ ์ž๋ฆฌ์— Co2+, Ni2+, Mn2+, Mg2+ ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค๋ฅธ ์•ˆ์ •ํ•œ 2๊ฐ€ ์ด์˜จ์„ ๋ถ€๋ถ„์ ์œผ๋กœ ์น˜ํ™˜ํ•จ์œผ๋กœ์จ ๋‹ค๋ฅธ ํ˜•ํƒœ์˜ W-ํƒ€์ž… ํ—ฅ์‚ฌํŽ˜๋ผ์ดํŠธ๋ฅผ ํ•ฉ์„ฑํ•ด๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.With the development of the fifth-generation (5G) technology, microwave electronic devices for wireless telecommunication have been used. Simultaneously, electromagnetic interference (EMI) has been a challenging problem as it can human or animal health and also cause a serious malfunction in electronic devices. To solve the EMI problem, many research groups have tried to develop highly efficient thin broadband microwave absorbing materials (MAM) with lightweight of low filler loading. Meanwhile, since the microwave absorption properties of MAMs are mainly determined by the relative complex permittivity (ฮตr=ฮตโ€ฒโˆ’jฮตโ€ณ) and permeability (ฮผr=ฮผโ€ฒโˆ’jฮผโ€ณ), and their thickness values are inversely proportional to their refractive indices, researchers have focused on the improvement of their real and imaginary parts of ฮตr and ฮผr for real applications. Among various MAMs, while both spinel ferrites and M-type hexaferrites have been most widely used for real applications, W-type hexaferrites and carbonyl iron have been rarely reported. In particular, 3.5 and 28 GHz are regarded as the frequencies for 5G communication. Thus, in this study, the microwave absorption properties of the partially Zn-substituted W-type hexaferrites (SrFe2-xZnxFe16O27; SrFe2-xZnxW, 0.0 โ‰ค x โ‰ค 2.0) were carefully investigated to develop thin broadband microwave absorbers at two different frequencies of 3.5 and 28 GHz. In addition, the Al2O3-coated carbonyl irons prepared by the sol-gel method were investigated to develop high performance microwave absorbers at 3.5 GHz. The reason for the selection of partial Zn substitution is as follows. First, according to our previous study on Zn-substituted SrW-type hexaferrites, with increasing x up to 1.0 in SrFe2-xZnxW, the saturation magnetization (Ms) is almost linearly increased while the magnetic anisotropy field (Ha) is abruptly decreased. With further increase of x up to 2.0, the Ms value is largely decreased while the Ha value is slightly decreased. Therefore, the real parts of ฮผr are expected to continuously increase up to x =1.0 since they are proportional to the ratio of Ms/Ha. Second, higher real and imaginary parts of the ฮตr value is expected due to an increased electric conductivity through electron hopping between Fe2+ and Fe3+ ions. Therefore, the partial substitution of Zn2+ for the Fe2+ site of SrW-type hexaferrite is expected to increase the real and imaginary parts of both ฮตr and ฮผr values, leading to an improvement in the microwave absorption properties. On the other hand, since the carbonyl iron has very high Ms with very low Ha, it is possible to obtain high real parts of ฮผr. However, an excessive eddy current loss hindered to achieve high performance microwave absorber. To overcome this problem, we synthesized a core-shell of carbonyl iron-amorphous alumina by the sol-gel method since the inter-particular current path can be effectively. As the alumina insulation coating layer acts as a non-magnetic material which deteriorates their magnetic properties, especially the real part of ฮผr, its thickness was carefully controlled. Also, the dielectric materials such as amorphous alumina and ฮฑ-alumina were mixed additionally to control the complex permittivity. In order to evaluate the microwave absorption properties of composite samples, our specimens were prepared by the following procedures; At first, each hexaferrite filler or carbonyl iron was mixed with the epoxy-resin matrix, and then each powder mixture was pressed into a thin rectangular plate or a toroidal shape, respectively, and subsequently hardened at 175 หšC for 1 h in air. The measurements of complex permittivity and permeability were carried out for our specimens using the VNA (Agilent PNA N5525A). Their complex permittivity and permeability values were calculated from S-parameters by using a transmission and reflection method based on the algorithm developed by Nicolson and Ross. The microwave absorption properties of SrFe2-xZnxW (0.0 โ‰ค x โ‰ค 2.0) hexaferrite-epoxy resin composites were investigated in both Ku (0.5โ€“18 GHz) and Ka (26.5-40 GHz) bands. For Al2O3-coated carbonyl iron-epoxy resin composites, their microwave absorption properties were studied only in the Ku-band. As expected, owing to the increased real and imaginary parts ฮตr and ฮผr, the partially Zn-substituted SrW-type hexaferrite composites exhibited lower RL values with wider bandwidth. Especially, a 2.8 mm-thick SrFe1.5Zn0.5W (x = 0.5) composite with Vf of 90% exhibited the most appropriate for 5G application at 3.5 GHz in the Ku-band, having the RL value of โˆ’46 dB at 3.6 GHz with the bandwidth of 0.43 GHz (3.38-3.81 GHz) below โˆ’10 dB. In the Ka-band, a 0.64 mm-thick SrFe1.75Zn0.25W (x = 0.25) composite with the Vf of 30% exhibited the most appropriate for 5G application at 28 GHz, having the RL value of โˆ’68.4 dB at 28 GHz with the bandwidths of 5.16 GHz (26.50-31.66 GHz) and 2.48 GHz (26.50-28.98 GHz) below โˆ’10 and โˆ’20 dB, respectively. Meanwhile, Al2O3-coated carbonyl iron composite with amorphous alumina of 5wt.% exhibited the highest performance having the RL value of โˆ’28.9 dB at 3.5 GHz with a thickness of 4.36 mm and the bandwidth of 0.51 GHz (3.25-3.76 GHz) below โˆ’20 dB. In conclusion, partially Zn-substituted SrW-type hexaferrites are appropriate as the filler of MAM for 5G application near 3.5 and 28 GHz since thin broadband microwave absorbers can be fabricated with epoxy resin. Nano-coating of amorphous alumina on the surface of carbonyl iron is essential for the improvement of microwave absorption properties of carbonyl iron by greatly reducing the eddy current loss, leading to higher performance broadband microwave absorbers at 3.5 GHz. Further improvement of microwave absorption properties is expected by the following approaches. One is to fully optimize the processing parameters of partially Zn-substituted SrW-type hexaferrite composites, including the amount of Zn substituent x, its Vf, the kind and amount of polymer matrix, and the fabrication processing of specimen. Another may be to make other SrW-type hexaferrite fillers by the partial substitution of other stable divalent ions such as Co2+, Ni2+, Mn2+, Mg2+, and etc. for the Fe2+ sites.Chapter 1. General introduction 1 Chapter 2. General background 12 2.1 Theory of microwave absorption 12 2.2 Hexaferrites - 16 Chapter 3. Microwave absorption properties of Zn-substituted W-type hexaferrites in the Ku-band (0.5-18 GHz) 31 3.1 Introduction 31 3.2 Experimental 32 3.3 Results and discussion 34 3.4 Summary 44 Chapter 4. Microwave absorption properties of Zn-substituted W-type hexaferrites in the Ka- band (26.5-40 GHz) 66 4.1 Introduction 66 4.2 Experimental 68 4.3 Results and discussion 69 4.4 Summary 82 Chapter 5. Microwave absorption properties of Al2O3-coated carbonyl iron in the Ku-band (0.5- 18 GHz) 107 5.1 Introduction 107 5.2 Experimental 109 5.3 Results and discussion 110 5.4 Summary 114 Chapter 6. Overall conclusion 130 Abstract in Korean 133๋ฐ•

    -ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ ‘๊ทผ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๊ธฐ์ˆ ๊ฒฝ์˜ยท๊ฒฝ์ œยท์ •์ฑ…์ „๊ณต, 2022.2. ์ด์ •๋™.๋ชจ๋“ˆ์„ฑ(modularity)์€ โ€˜near-decomposabilityโ€™, โ€˜loose couplingโ€™ ๋“ฑ์˜ ๊ฐœ๋…์œผ๋กœ๋ถ€ํ„ฐ ์œ ๋ž˜ํ•˜์—ฌ ๊ธฐ์ˆ ์ , ์กฐ์ง์  ์‹œ์Šคํ…œ ๋“ฑ์˜ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ์„ค๊ณ„์›์น™ ์ค‘ ํ•˜๋‚˜๋กœ ์ž๋ฆฌ์žก์•˜์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ ๋Œ€์ƒ์ด ๋˜์–ด์™”๋‹ค. ์‚ฐ์—…๊ณ„์—์„œ ์ „์ž์‚ฐ์—…๊ณผ ๊ฐ™์ด ๋ชจ๋“ˆ์„ฑ์ด ๋†’์€ ์‚ฐ์—…์—์„œ๋Š” ๊ธฐ์ˆ ํ˜์‹ ์˜ ์†๋„๊ฐ€ ๋น ๋ฅด๊ณ , ๋ชจ๋“ˆ์„ฑ์ด ๋‚ฎ์€ ์ž๋™์ฐจ ์‚ฐ์—…์—์„œ๋Š” ํ˜์‹ ์˜ ์†๋„๊ฐ€ ๋Š๋ฆฌ๋‹ค๋Š” ์ด์•ผ๊ธฐ๋ฅผ ํ”ํžˆ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ด๋Ÿฌํ•œ ์‚ฐ์—…๊ณ„์˜ ์ง๊ด€์  ๊ด€์ฐฐ์„ ์ง„ํ™”์  ๊ด€์ ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจํ˜•์„ ํ†ตํ•ด ํ‘œํ˜„ํ•˜๊ณ  ํ™•์ธํ•ด๋ณด๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Ma and Nakamori(2005)์˜ ๊ธฐ์ˆ ํ˜์‹ ์— ๋Œ€ํ•œ ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ์ œํ’ˆ์˜ ๋ชจ๋“ˆ์„ฑ์„ ์ œํ’ˆ์˜ ์„ค๊ณ„ ๊ตฌ์„ฑ์š”์†Œ๋“ค ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ํŠน์„ฑ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๊ธฐ์ˆ ์ง„ํ™”์  ๊ด€์ ์—์„œ ์ œํ’ˆ ์•„ํ‚คํ…์ฒ˜์˜ ๋ชจ๋“ˆ์„ฑ ์ •๋„๊ฐ€ ๊ธฐ์ˆ ํ˜์‹ ์˜ ์†๋„ ๋ฐ ์„ฑ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ ์ฐฐํ•ด๋ณด์•˜๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ๋†’์€ ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ์„ ๊ฐ€์ง„ ์‚ฐ์—…์ผ์ˆ˜๋ก ๋” ๋น ๋ฅธ ๊ธฐ์ˆ ํ˜์‹  ์†๋„๋ฅผ ๋ณด์ด์ง€๋งŒ, ๋ชจ๋“ˆ์„ฑ์ด ๋„ˆ๋ฌด ๋†’์€ ์‚ฐ์—…์—์„œ๋Š” ์ œํ’ˆ ์„ฑ๋Šฅ๋ฉด์—์„œ ๊ฐ€๋Šฅ์„ฑ์˜ ๊ณต๊ฐ„์ด ์ œํ•œ๋˜์–ด ๋†’์€ ์„ฑ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜์ง€ ๋ชปํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ๊ณผ ๊ธฐ์ˆ ํ˜์‹  ์‚ฌ์ด ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™”๋œ ๊ฒฐ๋ก ๊ณผ ํ•จ๊ป˜ ํ•™๋ฌธ์ , ์ •์ฑ…์ , ๊ฒฝ์˜์  ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜์˜€๋‹ค.Modularity originated from concepts such as 'near-decompossibility' and 'loose coupling' and has become one of the important design principles of complex systems such as technical and organizational systems, and has been studied in various fields. In the industry, it is common to say that technological innovation is fast in highly modular industries such as the electronics industry, and that innovation is slow in automobile industries with low modularity. The purpose of this study is to express and confirm these intuitive observations of the industry through a simulation model from an evolutionary point of view. In this study, Ma and Nakamori (2005)'s Agent-based model for technological innovation was used to define product modularity as a characteristic representing the relationship between product design components, and to examine the effect of the degree of modularity of product architecture on the speed and performance of technological innovation. The simulation shows that industries with high product modularity show a faster pace of technological innovation, but industries with too much modularity do not achieve high performance due to limited possibility space in terms of product performance. Through the results of this study, academic, policy, and management implications were derived along with generalized conclusions on the relationship between product modularity and technological innovation.๋ชฉ ์ฐจ ์ดˆ ๋ก iii ๋ชฉ ์ฐจ iv ํ‘œ ๋ชฉ์ฐจ vi ๊ทธ๋ฆผ ๋ชฉ์ฐจ vii 1. ์„œ๋ก  1 2. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ 5 2.1 ๋ชจ๋“ˆ์„ฑ์˜ ๊ฐœ๋… 5 2.2 ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ๊ณผ ๊ธฐ์ˆ ํ˜์‹  8 2.3 ์ œํ’ˆ์ง„ํ™” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 13 3. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก  16 3.1 ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจํ˜• 16 3.1.1 ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ์„œ์˜ ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ๋ชจํ˜• 16 3.1.2 Ma and Nakamori(2005)์˜ ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ๋ชจํ˜• 18 3.2 ์ œํ’ˆ ์•„ํ‚คํ…์ฒ˜์˜ ๋ชจ๋“ˆ์„ฑ 25 4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 28 4.1 ๋ชจํ˜• ํƒ€๋‹น์„ฑ ๊ฒ€์ฆ 29 4.2 ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ์— ๋”ฐ๋ฅธ ๊ธฐ์ˆ ํ˜์‹  ์†๋„ ๋ฐ ์„ฑ๊ณผ ์ฐจ์ด 37 4.3 ๊ฐ•๊ฑด์„ฑ ๋ถ„์„ 46 5. ๊ฒฐ๋ก  57 5.1 ์š”์•ฝ ๋ฐ ์‹œ์‚ฌ์  57 5.2 ํ•œ๊ณ„์  ๋ฐ ํ–ฅํ›„์—ฐ๊ตฌ 59 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 61 Abstract 69์„

    (A) study on acoustic waves in micro-channel

    No full text
    Maste

    Purification and characterization of a cysteine proteinase from adults of neodiplostomum seoulense

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต :์˜ํ•™๊ณผ ๊ธฐ์ƒ์ถฉํ•™ ์ „๊ณต,1999.Docto

    -ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ ‘๊ทผ๋ฒ•

    Get PDF
    ๋ชจ๋“ˆ์„ฑ(modularity)์€ โ€˜near-decomposabilityโ€™, โ€˜loose couplingโ€™ ๋“ฑ์˜ ๊ฐœ๋…์œผ๋กœ๋ถ€ํ„ฐ ์œ ๋ž˜ํ•˜์—ฌ ๊ธฐ์ˆ ์ , ์กฐ์ง์  ์‹œ์Šคํ…œ ๋“ฑ์˜ ๋ณต์žกํ•œ ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ์„ค๊ณ„์›์น™ ์ค‘ ํ•˜๋‚˜๋กœ ์ž๋ฆฌ์žก์•˜์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ ๋Œ€์ƒ์ด ๋˜์–ด์™”๋‹ค. ์‚ฐ์—…๊ณ„์—์„œ ์ „์ž์‚ฐ์—…๊ณผ ๊ฐ™์ด ๋ชจ๋“ˆ์„ฑ์ด ๋†’์€ ์‚ฐ์—…์—์„œ๋Š” ๊ธฐ์ˆ ํ˜์‹ ์˜ ์†๋„๊ฐ€ ๋น ๋ฅด๊ณ , ๋ชจ๋“ˆ์„ฑ์ด ๋‚ฎ์€ ์ž๋™์ฐจ ์‚ฐ์—…์—์„œ๋Š” ํ˜์‹ ์˜ ์†๋„๊ฐ€ ๋Š๋ฆฌ๋‹ค๋Š” ์ด์•ผ๊ธฐ๋ฅผ ํ”ํžˆ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ด๋Ÿฌํ•œ ์‚ฐ์—…๊ณ„์˜ ์ง๊ด€์  ๊ด€์ฐฐ์„ ์ง„ํ™”์  ๊ด€์ ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจํ˜•์„ ํ†ตํ•ด ํ‘œํ˜„ํ•˜๊ณ  ํ™•์ธํ•ด๋ณด๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Ma and Nakamori(2005)์˜ ๊ธฐ์ˆ ํ˜์‹ ์— ๋Œ€ํ•œ ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ์ œํ’ˆ์˜ ๋ชจ๋“ˆ์„ฑ์„ ์ œํ’ˆ์˜ ์„ค๊ณ„ ๊ตฌ์„ฑ์š”์†Œ๋“ค ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ํŠน์„ฑ์œผ๋กœ ์ •์˜ํ•˜๊ณ , ๊ธฐ์ˆ ์ง„ํ™”์  ๊ด€์ ์—์„œ ์ œํ’ˆ ์•„ํ‚คํ…์ฒ˜์˜ ๋ชจ๋“ˆ์„ฑ ์ •๋„๊ฐ€ ๊ธฐ์ˆ ํ˜์‹ ์˜ ์†๋„ ๋ฐ ์„ฑ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ณ ์ฐฐํ•ด๋ณด์•˜๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ๋†’์€ ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ์„ ๊ฐ€์ง„ ์‚ฐ์—…์ผ์ˆ˜๋ก ๋” ๋น ๋ฅธ ๊ธฐ์ˆ ํ˜์‹  ์†๋„๋ฅผ ๋ณด์ด์ง€๋งŒ, ๋ชจ๋“ˆ์„ฑ์ด ๋„ˆ๋ฌด ๋†’์€ ์‚ฐ์—…์—์„œ๋Š” ์ œํ’ˆ ์„ฑ๋Šฅ๋ฉด์—์„œ ๊ฐ€๋Šฅ์„ฑ์˜ ๊ณต๊ฐ„์ด ์ œํ•œ๋˜์–ด ๋†’์€ ์„ฑ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•˜์ง€ ๋ชปํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ๊ณผ ๊ธฐ์ˆ ํ˜์‹  ์‚ฌ์ด ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™”๋œ ๊ฒฐ๋ก ๊ณผ ํ•จ๊ป˜ ํ•™๋ฌธ์ , ์ •์ฑ…์ , ๊ฒฝ์˜์  ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜์˜€๋‹ค.Modularity originated from concepts such as 'near-decompossibility' and 'loose coupling' and has become one of the important design principles of complex systems such as technical and organizational systems, and has been studied in various fields. In the industry, it is common to say that technological innovation is fast in highly modular industries such as the electronics industry, and that innovation is slow in automobile industries with low modularity. The purpose of this study is to express and confirm these intuitive observations of the industry through a simulation model from an evolutionary point of view. In this study, Ma and Nakamori (2005)'s Agent-based model for technological innovation was used to define product modularity as a characteristic representing the relationship between product design components, and to examine the effect of the degree of modularity of product architecture on the speed and performance of technological innovation. The simulation shows that industries with high product modularity show a faster pace of technological innovation, but industries with too much modularity do not achieve high performance due to limited possibility space in terms of product performance. Through the results of this study, academic, policy, and management implications were derived along with generalized conclusions on the relationship between product modularity and technological innovation.๋ชฉ ์ฐจ ์ดˆ ๋ก iii ๋ชฉ ์ฐจ iv ํ‘œ ๋ชฉ์ฐจ vi ๊ทธ๋ฆผ ๋ชฉ์ฐจ vii 1. ์„œ๋ก  1 2. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ 5 2.1 ๋ชจ๋“ˆ์„ฑ์˜ ๊ฐœ๋… 5 2.2 ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ๊ณผ ๊ธฐ์ˆ ํ˜์‹  8 2.3 ์ œํ’ˆ์ง„ํ™” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 13 3. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก  16 3.1 ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจํ˜• 16 3.1.1 ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ์„œ์˜ ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ๋ชจํ˜• 16 3.1.2 Ma and Nakamori(2005)์˜ ํ–‰์œ„์ž๊ธฐ๋ฐ˜ ๋ชจํ˜• 18 3.2 ์ œํ’ˆ ์•„ํ‚คํ…์ฒ˜์˜ ๋ชจ๋“ˆ์„ฑ 25 4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 28 4.1 ๋ชจํ˜• ํƒ€๋‹น์„ฑ ๊ฒ€์ฆ 29 4.2 ์ œํ’ˆ ๋ชจ๋“ˆ์„ฑ์— ๋”ฐ๋ฅธ ๊ธฐ์ˆ ํ˜์‹  ์†๋„ ๋ฐ ์„ฑ๊ณผ ์ฐจ์ด 37 4.3 ๊ฐ•๊ฑด์„ฑ ๋ถ„์„ 46 5. ๊ฒฐ๋ก  57 5.1 ์š”์•ฝ ๋ฐ ์‹œ์‚ฌ์  57 5.2 ํ•œ๊ณ„์  ๋ฐ ํ–ฅํ›„์—ฐ๊ตฌ 59 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 61 Abstract 69์„

    ์šฐ๋ฆฌ๋‚˜๋ผ์—์„œ ๋ถ„๋ฆฌ๋œ ์ด์งˆ์•„๋ฉ”๋ฐ”์˜ ๋ณ‘์›์„ฑ๊ณผ ํ•ญ์›์„ฑ ๋ถ„์„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๊ธฐ์ƒ์ถฉํ•™์ „๊ณต,1995.Maste

    ์ค‘์•™ ์ธ๋„์–‘ ํ•ด๋ น 8ยฐS ํ•˜๋ถ€ ํ•ด์–‘์ง€๊ฐ์—์„œ ์‚ฐ์ถœํ•˜๋Š” ๋งˆ๊ทธ๋งˆ ๊ธฐ์› ํ™ฉํ™”๋ฌผ์˜ ์‚ฐ์ƒ๊ณผ ์ƒ์„ฑ๊ธฐ์ž‘

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2021. 2. ๋ฐ•์ •์šฐ.Mid-ocean ridge basalts (MORB) are suggested to experience sulfide saturation in the early stage of magma differentiation and have magmatic sulfide liquid as a liquidus phase. Previous studies regarding sulfide saturation in MORB mainly focus on sulfide segregation in upper crustal magma lenses. However, the role of lower crustal processes in sulfide saturation of MORB is poorly understood. In this thesis, I investigated petrography and geochemistry of magmatic sulfides in gabbroic plutonic rocks dredged from an oceanic core complex in the Central Indian Ridge at 8ยฐS to better understand the formation and distribution of magmatic sulfide in the lower oceanic crust. Magmatic sulfides are observed in various lower crustal lithologies, including troctolite, olivine gabbro, gabbro, oxide gabbro, and oxide gabbronorite. They mostly occur as inclusions in rims of clinopyroxene or interstitial grains between silicate minerals. The sulfide grains show a characteristic multi-phase assemblage of magmatic sulfide, which originates from fractionation and exsolution of high-temperature sulfide phases after segregation of immiscible sulfide liquid from the parental melt. The distribution of sulfide grains suggests that sulfide saturation mainly occurred during the stage of clinopyroxene rim crystallization. Rims of clinopyroxene, which host the majority of sulfide inclusions show high Mg#, elevated Na2O and TiO2 contents with elevated (Zr/Y)N ratio compared to fractional crystallization trend. Among various sulfide saturation mechanisms, โ€˜melt-rock reaction processesโ€™ can explain both compositional characteristics of host clinopyroxene and the distribution of sulfides especially in troctolite and olivine gabbro, although fractional crystallization plays a more important role in the sulfide saturation in oxide gabbro and oxide gabbronorite. The results show that sulfide melt becomes Ni-rich as a result of melt-rock reaction occurring at the expense of olivine and subsequent partitioning of Ni into sulfide melt. The bulk compositions of sulfide melt are comparable to those reported in the primitive MORB. However, the reconstructed parental melt compositions of sulfide show PGE depletion of 1-2 orders of magnitude, compared to the PGE contents reported in primitive MORB. This PGE depletion is supposed to be originated from pre-existed PGE segregation from the MORB melt before the formation of the gabbroic lower crust.์ค‘์•™ํ•ด๋ นํ˜„๋ฌด์•”(MORB)์€ ๋น„๊ต์  ๋ถ„ํ™” ์ดˆ๊ธฐ์— ํ™ฉํ™”๋ฌผ ํฌํ™”๋ฅผ ๊ฒช์œผ๋ฉฐ, ๊ทธ ๊ณผ์ •์—์„œ ์•ก์ƒ ํ™ฉํ™”๋ฌผ (Sulfide liquid)์ด ์•ˆ์ • ์ƒ์œผ๋กœ ์‚ฐ์ถœํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. MORB์˜ ํ™ฉํ™”๋ฌผ ํฌํ™”๋ฅผ ๋‹ค๋ฃจ๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋Œ€๋ถ€๋ถ„ ์ƒ๋ถ€ ํ•ด์–‘์ง€๊ฐ ๋‚ด ๋งˆ๊ทธ๋งˆ ๋ Œ์ฆˆ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํ™ฉํ™”๋ฌผ์˜ ์ •์ถœ์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ํ•˜๋ถ€ ํ•ด์–‘์ง€๊ฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ง€์งˆํ•™์  ๊ณผ์ •์ด MORB์˜ ํ™ฉํ™”๋ฌผ ํฌํ™”์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด์„œ๋Š” ์•Œ๋ ค์ง„ ๋ฐ”๊ฐ€ ์ ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค‘์•™ ์ธ๋„์–‘ ํ•ด๋ น(MCIR)์˜ ๋‚จ์œ„ 8๋„ ๋ถ€๊ทผ ํ•ด์–‘ ํ•ต ๋ณตํ•ฉ์ฒด(OCC)์—์„œ ์ฑ„์ทจํ•œ ๋ฐ˜๋ ค์•”์งˆ ์•”์„๋“ค์— ๋Œ€ํ•œ ์•”์„ํ•™์ , ์ง€ํ™”ํ•™์  ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ํ•˜๋ถ€ ํ•ด์–‘์ง€๊ฐ์—์„œ ์‚ฐ์ถœํ•˜๋Š” ๋งˆ๊ทธ๋งˆ ๊ธฐ์› ํ™ฉํ™”๋ฌผ์˜ ์ƒ์„ฑ๊ธฐ์ž‘๊ณผ ์‚ฐ์ƒ์„ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ชจ๋“  ์—ฐ๊ตฌ๋Œ€์ƒ ์•”์ƒ(ํŠธ๋กํ†จ๋ผ์ดํŠธ, ๊ฐ๋žŒ์„ ๋ฐ˜๋ ค์•”, ๋ฐ˜๋ ค์•”, ํ‹ฐํƒ„์ฒ ์„ ๋ฐ˜๋ ค์•”, ํ‹ฐํƒ„์ฒ ์„ ๋ฐ˜๋ ค์•”๋…ธ๋ผ์ดํŠธ)์—์„œ ๋งˆ๊ทธ๋งˆ ๊ธฐ์› ํ™ฉํ™”๋ฌผ์ด ๊ด€์ฐฐ๋˜์—ˆ์œผ๋ฉฐ, ์ด ํ™ฉํ™”๋ฌผ๋“ค์€ ๋Œ€๋ถ€๋ถ„์ด ๋‹จ์‚ฌํœ˜์„ ๋‚ด์˜ ํฌ์œ ๋ฌผ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๊ฑฐ๋‚˜ ๊ทœ์‚ฐ์—ผ ๊ด‘๋ฌผ ๊ฒฝ๊ณ„์—์„œ ๊ฐ„๊ทน์ƒ์œผ๋กœ ์‚ฐ์ถœํ•œ๋‹ค. ๋งˆ๊ทธ๋งˆ ๊ธฐ์› ํ™ฉํ™”๋ฌผ๋“ค์€ ์—ฌ๋Ÿฌ ๊ด‘๋ฌผ ์ƒ์ด ์–ฝํžŒ ์šฉ๋ฆฌ์กฐ์ง์„ ๋ณด์ด๋ฉฐ, ์ด๋Š” ์ด ํ™ฉํ™”๋ฌผ๋“ค์ด ๊ณ ์˜จ ์กฐ๊ฑด์—์„œ ๋ฉœํŠธ๋กœ๋ถ€ํ„ฐ ๋ถ„๋ฆฌ๋œ ๋ถˆํ˜ผํ™” ํ™ฉํ™”๋ฌผ ๋ฉœํŠธ๋กœ๋ถ€ํ„ฐ ๊ธฐ์›ํ–ˆ์Œ์„ ์ง€์‹œํ•œ๋‹ค. ํ™ฉํ™”๋ฌผ์˜ ๋ถ„ํฌ๋กœ ๋ฏธ๋ฃจ์–ด ๋ณผ ๋•Œ, ํ™ฉํ™”๋ฌผ ํฌํ™”์˜ ์ฃผ๋œ ์‹œ์ ์€ ๋‹จ์‚ฌํœ˜์„ ์—ฐ๋ณ€๋ถ€ ํ˜•์„ฑ์‹œ์  ์ดํ›„๋กœ ์ถ”์ •๋œ๋‹ค. ํ™ฉํ™”๋ฌผ์„ ํฌ์œ ํ•˜๋Š” ๋‹จ์‚ฌํœ˜์„ ์—ฐ๋ณ€๋ถ€์—์„œ๋Š” ๋ถ„๋ณ„ ์ •์ถœ ์ถ”์ด์— ๋น„ํ•˜์—ฌ ๋†’์€ Mg#, Na2O, TiO2 ํ•จ๋Ÿ‰๊ณผ, ์ฆ๊ฐ€ํ•œ (Zr/Y)N ๋น„๋กœ ๋Œ€ํ‘œ๋˜๋Š” ๋ถˆํ˜ธ์ •์„ฑ ์›์†Œ์˜ ๋ถ„๋ณ„์ž‘์šฉ์ด ๊ด€์ฐฐ๋œ๋‹ค. ์—ฌ๋Ÿฌ ํ™ฉํ™”๋ฌผ ํฌํ™” ๊ธฐ์ž‘ ์ค‘ ๋ฉœํŠธ-์•”์„ ๋ฐ˜์‘์œผ๋กœ ์ด๋Ÿฌํ•œ ๋‹จ์‚ฌํœ˜์„์˜ ํ™”ํ•™ ์กฐ์„ฑ๊ณผ ํ™ฉํ™”๋ฌผ์˜ ๋ถ„ํฌ๊ฐ€ ๊ฐ€์žฅ ์ž˜ ์„ค๋ช…๋˜๋‚˜, ๋ถ„๋ณ„์ •์ถœ์ž‘์šฉ์˜ ์˜ํ–ฅ ์—ญ์‹œ ์™„์ „ํžˆ ๋ฐฐ์ œํ•  ์ˆ˜ ์—†๋‹ค. ๋ณต์›๋œ ํ™ฉํ™”๋ฌผ ํฌ์œ ๋ฌผ ์กฐ์„ฑ๊ณผ ์‹œ๋ฃŒ ํ‘œ๋ฉด์— ๋…ธ์ถœ๋œ ํ™ฉํ™”๋ฌผ์˜ ์ด๋ฏธ์ง€ ๋ถ„์„ ๊ฒฐ๊ณผ๋Š” ๋ฉœํŠธ-์•”์„ ๋ฐ˜์‘์— ์˜ํ•ด ํ™ฉํ™”๋ฌผ ๋ฉœํŠธ์˜ ๋‹ˆ์ผˆ ํ•จ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜์˜€์Œ์„ ์•”์‹œํ•˜๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ํŠธ๋กํ†จ๋ผ์ดํŠธ์™€ ๊ฐ๋žŒ์„ ๋ฐ˜๋ ค์•”์—์„œ ๋ฐœ๊ฒฌ๋˜๋Š” ํ™ฉํ™”๋ฌผ ํฌ์œ ๋ฌผ์€ ์›์‹œ MORB (primitive MORB)์—์„œ ๊ด€์ฐฐ๋˜๋Š” ํ™ฉํ™”๋ฌผ๊ณผ ์œ ์‚ฌํ•œ ์กฐ์„ฑ์„ ๋ณด์ธ๋‹ค. ๋ฐ˜๋ฉด, ๋ถ„๋ฐฐ๊ณ„์ˆ˜์™€ ํ™ฉํ™”๋ฌผ ๋ฏธ๋Ÿ‰์›์†Œ ์กฐ์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋œ ํ™ฉํ™”๋ฌผ์˜ ๋ชจ ๋ฉœํŠธ(parental melt) ์กฐ์„ฑ์€ ์•Œ๋ ค์ง„ ์›์‹œ MORB์˜ ๋ฐฑ๊ธˆ์กฑ ์›์†Œ (PGE) ํ•จ๋Ÿ‰์— ๋น„ํ•˜์—ฌ ์•ฝ 10~100๋ฐฐ ๋‚ฎ์€ PGE ํ•จ๋Ÿ‰์„ ๋ณด์ธ๋‹ค. ์ด๋Ÿฌํ•œ PGE์˜ ๋นˆํ™” ์–‘์ƒ์€ ๋ฐ˜๋ ค์•”์งˆ ํ•˜๋ถ€ ์ง€๊ฐ์˜ ํ˜•์„ฑ ์ด์ „์— ์ด๋ฏธ MORB ๋ฉœํŠธ๋กœ๋ถ€ํ„ฐ PGE๊ฐ€ ๋ถ„๋ณ„๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.ABSTRACT List of Tables List of Figures 1. Introduction 1 2. Geological Background 2 3. Analytical Methods 4 3.1 Electron Microbe Analysis 5 3.2 LA-ICP-MS Analysis 5 3.3 Reconstruction of Bulk Sulfide Melt Inclusion Compositions 9 4. Results 15 4.1 Petrography 15 4.2 Major and Minor Element Compositions of Silicate Minerals 22 4.3 Clinopyroxene Trace Element Compositions 31 4.4 Sulfide Mineralogy, Major and Minor Element Compositions 35 4.5 Sulfide Melt Compositions 39 4.6 Sulfide Trace Element Compositions 40 5. Discussion 45 5.1 Magmatic Origin of Sulfides 45 5.2 Timing and Mechanism of Sulfide Saturation 47 5.3 The Compositional Change of Sulfides as a Result of Melt-Rock Reaction 58 5.4 The Behavior of PGE during Sulfide Saturation in the Lower Oceanic Crust 61 6. Concluding Remarks 69 References 70 ๊ตญ๋ฌธ์ดˆ๋ก 81Maste

    (A)Study on using pseudolite to improve the visibility

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2005.Maste

    Development of Micro-viscometer Using the Propagation of Acoustic Waves in Microchannel and the Application of Its Design Technologies

    No full text
    DoctorA novel micro-viscometer was designed and fabricated to measure the viscosity variation in minimal amounts of liquid in real-time. It was developed to evaluate the physical characteristics of liquids that are easily changeable and/or for those of which a large sample is difficult to obtain, such as with biomaterials. The micro-viscometer can detect the viscosity variation of a liquid sample of no more than 13 . It is composed of a dual chamber with four microchannels connecting each chamber, and fabricated using MEMS (Micro-Electro-Mechanical System) technology. Each chamber has a unimorphic piezoelectric diaphragm for generating and sensing sound waves. Viscosity variation is rapidly measured by detecting the output to input signal ratio on condition of continuous or tone burst single-frequency input driven to the actuator. The performance of the micro-viscometer was verified by experimentation on test samples of various viscosities. Subsequently, using the experimental results from the micro-viscometer, a study on the propagation of acoustic waves in a microchannel was undertaken, since it had not yet been proved experimentally and the micro-viscometer had the appropriate structure to execute the study. The experimental results were compared to the simulated results to confirm that the continuum based acoustic theory can be applied to explain the propagation of acoustic waves in a microchannel
    corecore