3 research outputs found

    λ‹€μƒμœ λ™ 및 고체 파편물의 수λ ₯학적 거동 해석을 μœ„ν•œ GPU 기반의 SPH-DEM 연계해석 μ½”λ“œ 개발

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ μ—λ„ˆμ§€μ‹œμŠ€ν…œκ³΅ν•™λΆ€, 2020. 8. κΉ€μ‘μˆ˜.In the late phase severe accident of LWR, the massive corium releases out of the reactor pressure vessel (RPV) and falls to the coolant if the In-Vessel Retention (IVR) strategy fails. The melt jet can be fragmented into debris particles based on the assumption that the ex-vessel pool is sufficiently deep. It is known that there are various three-phase flow issues associated with the fragmented debris particles under the influence of phase change of cavity coolant. In such cases, the vapor phase forms a sharp and dynamic interface with the liquid phase while the transient relocation behavior of debris particles is the main concern. Thus, coupling Lagrangian-based multi-phase CFD techniques and Discrete Element Method (DEM) can be an effective approach in terms of numerical modeling of such behaviors. In this respect, an integrated numerical code for incompressible 3-phase flow has been developed in this study by two-way phase coupling of multi-phase Smoothed Particle Hydrodynamics (SPH) and DEM model. Smoothed Particle Hydrodynamics (SPH) is one of the best-known meshless CFD methods in which the fluid system is represented as the finite number of Lagrangian particles. The SPH code developed in this study proposes a new density estimation model and improves the surface tension model for accurate simulation of incompressible two-phase flow behavior. The demonstration of its applicability has been performed through several V&V simulations including multi-phase dam-break and sloshing simulations. Discrete Element Method (DEM) is a direct simulation method for a rigid body that can analyze the translation, rotation, and collision behavior of solid particles in detail. The soft-sphere collision model with Hertz-Mindlin contact force equations is adopted for developed DEM code in this study. To precisely estimate the wall boundary interactions of bed-formed debris particles, a versatile wall boundary model is newly proposed in this study that also covers the sliding and rolling behavior of solid particles. The inter-particle collision behavior and sliding & rolling motion of particles are well proven in several V&V cases. The numerical code system for incompressible 3-phase flow is newly developed by two-way phase coupling of the above two models (SPH-DEM). The unresolved coupling approach between two methods was adopted for the analysis of the overall behavior of particulate solid debris. The fundamental validation of the phase coupled model was performed for both single-particle behavior and particulate granular flow such as dam-breaking motion of particle-fluid. The SPH-DEM coupled code in this study has been parallelized based on Graphical Process Unit (GPU) in order to overcome the inherent efficiency problem of the Lagrangian-based numerical method. Parallel mapping and reduction are applied for solving discretized summation equations of each SPH particle, solving contact force equations for each DEM particle, and also for solving coupling equations between SPH and DEM particles. The efficiency of code parallelization was evaluated through the scalability analysis based on the benchmark calculation. Finally, the simulation of the vapor-driven leveling behavior of spherical solids was performed as a case study to demonstrate the applicability of the developed code. The time-variant surface shape of solid particles was compared with the benchmark experiments both qualitatively and quantitatively. The effect of gas flow rate on the tendency of leveling behavior also has been analyzed. The developed numerical system in this study is expected to be a good alternative for the simulation of such phenomena that were difficult to handle with traditional numerical methods since the numerical schemes used in the code have a high potential for simulation of complicated physics with highly deformable geometry. In addition, this validated code system can contribute to hydrodynamic modeling studies for severe accident technology by performing numerical experiments on conditions that hard to be conducted on a laboratory scale.κ°€μ••κ²½μˆ˜λ‘œ μ€‘λŒ€μ‚¬κ³  ν›„κΈ° κ³Όμ •μ—μ„œ ν•΅μ—°λ£Œ 용육물 λ…Έλ‚΄ μ–΅λ₯˜ μ „λž΅μ˜ μ‹€νŒ¨λ‘œ 용육 ν•΅μ—°λ£Œκ°€ 용기 λ°”κΉ₯μͺ½ 침수 κ³΅λ™μœΌλ‘œ 재배치되면, κ³΅λ™μ˜ κΉŠμ΄λ‚˜ 제트의 속도 λ“±μ˜ 쑰건에 따라 ν•΅μ—°λ£Œ νŒŒνŽΈν™”κ°€ λ°œμƒν•  수 μžˆλ‹€. μ΄λŸ¬ν•œ ν•΅μ—°λ£Œ νŒŒνŽΈλ¬Όμ—μ„œ λ°œμƒν•˜λŠ” 뢕괴열에 μ˜ν•΄ λƒ‰κ°μž¬μ˜ 상변화가 이루어지면, μ΄μƒμœ λ™ μžμ—°λŒ€λ₯˜μ™€ 고체 파편물이 κ³΅μ‘΄ν•˜λŠ” 3μƒμœ λ™ μ‹œμŠ€ν…œμ΄ λœλ‹€. ν•΅μ—°λ£Œ 용육물의 제트 νŒŒμ‡„, ν•˜κ°• 및 퇴적, 평탄화 λ“± 일련의 κ³Όμ •μ—μ„œ λ‹€μ–‘ν•œ ν˜•νƒœμ˜ 파편물 3상 냉각 거동이 λ°œμƒν•  수 있으며, ν•΅μ—°λ£Œ 파편물의 뢕괴열이 μΆ©λΆ„νžˆ μ œκ±°λ˜μ§€ λͺ»ν•˜λ©΄ 파편물의 응집 및 재용육이 λ°œμƒν•  수 μžˆλ‹€. μ€‘λŒ€μ‚¬κ³  μ™„ν™”μ˜ κ΄€μ μ—μ„œ μ΄λŸ¬ν•œ 3상 냉각 거동에 λŒ€ν•œ μƒμ„Έν•œ 이해가 ν•„μš”ν•˜μ§€λ§Œ, μ΄μƒμœ λ™ μžμ—°λŒ€λ₯˜, μ΄μƒμœ λ™ 열전달, κ³ ν™”, 용육, λΉ„λ“±, μœ λ™-μž…μž μƒν˜Έμž‘μš© 등을 ν¬ν•¨ν•˜λŠ” 거동 자체의 λ³΅μž‘μ„±μœΌλ‘œ 인해 κ΄€λ ¨ ν˜„μƒλ“€μ˜ 예츑 및 ν‰κ°€λŠ” 큰 λΆˆν™•μ‹€μ„±μ„ λ‚΄ν¬ν•˜κ³  μžˆλ‹€. 전톡적인 ν•΅μ—°λ£Œ νŒŒνŽΈλ¬Όμ„ ν¬ν•¨ν•œ 3상 거동 해석은 λ‹€λ₯Έ μ€‘λŒ€μ‚¬κ³  해석과 λ§ˆμ°¬κ°€μ§€λ‘œ κ²½ν—˜μ  방법둠에 μ˜μ‘΄ν•œ 보수적인 μ ‘κ·Ό λ°©λ²•μ΄λ‚˜ 고체 μž…μžμ™€ 이상 유체λ₯Ό λͺ¨λ‘ μ—°μ†μ²΄λ‘œ κ°€μ •ν•˜λŠ” λ‹€μœ μ²΄ λͺ¨λΈμ„ 기반으둜 μ΄λ£¨μ–΄μ‘Œλ‹€. μ΅œκ·Όμ—λŠ” μ΄λŸ¬ν•œ 방법둠듀이 κ°€μ§€λŠ” 본질적인 ν•œκ³„λ₯Ό κ·Ήλ³΅ν•˜κ³ μž 고체 μž…μžλ“€ μ‚¬μ΄μ˜ μΆ©λŒμ΄λ‚˜ νšŒμ „μ„ λ³„κ°œλ‘œ λ‹€λ£¨λŠ” μ΄μ‚°μš”μ†Œλ²•(Discrete Element Method, DEM)κ³Ό 격자 기반의 μ˜€μΌλŸ¬λ¦¬μ•ˆ μ „μ‚°μœ μ²΄ν•΄μ„(CFD) 기법을 μ—°κ³„ν•˜λŠ” ν˜•νƒœλ‘œ μ„œλ‘œ κ°„μ˜ μƒν˜Έμž‘μš©μ„ ν•΄μ„ν•˜λŠ” 연ꡬ듀이 많이 이루어지고 μžˆλ‹€. ν•œνŽΈ, μ΅œκ·Όμ—λŠ” ν•˜λ“œμ›¨μ–΄ 및 μ†Œν”„νŠΈμ›¨μ–΄μ˜ μ„±λŠ₯이 λΉ„μ•½μ μœΌλ‘œ μ’‹μ•„μ§€λ©΄μ„œ 격자(Grid)에 κΈ°λ°˜ν•˜μ§€ μ•Šκ³  질점 ν•˜λ‚˜ν•˜λ‚˜μ˜ μ›€μ§μž„μ„ λ”°λΌκ°€λ©΄μ„œ μœ λ™μ— λŒ€ν•œ 지배방정식을 ν•΄μ„ν•˜λŠ” λΌκ·Έλž‘μ§€μ•ˆ 유체 ν•΄μ„κΈ°λ²•μ˜ μ‘μš©μ΄ λŠ˜μ–΄λ‚˜κ³  μžˆλ‹€. λΌκ·Έλž‘μ§€μ•ˆ 해석 κΈ°λ²•μ—μ„œλŠ” λ‹€μƒμœ λ™ 해석 μ‹œμ— 앑체와 기체 두 상을 μ™„μ „νžˆ λ³„κ°œμ˜ μ˜μ—­μœΌλ‘œ ν•΄μƒν•˜μ—¬ 지배방정식을 ν’€κΈ° λ•Œλ¬Έμ— 계면 마찰λ ₯μ΄λ‚˜ ν•­λ ₯, μ–‘λ ₯ 등에 λŒ€ν•œ λ³„λ„μ˜ 상관식 없이 제 1 원리 기반으둜 μœ λ™μ„ 해석할 수 μžˆμ–΄, μ΄μƒμœ λ™μ— λŒ€ν•œ 보닀 근본적인 해석이 κ°€λŠ₯ν•˜λ‹€. ν•΅μ—°λ£Œ 파편물의 생성 및 3상 냉각 거동과 κ΄€λ ¨λœ ν˜„μƒλ“€μ€ λŒ€λΆ€λΆ„ 기체 μƒμ˜ μƒμ„±μ΄λ‚˜ μ΄μƒμœ λ™ μžμ—°λŒ€λ₯˜μ— 영ν–₯을 λ°›λŠ” ν˜„μƒλ“€λ‘œ 앑체 기체 μ‚¬μ΄μ˜ μΈν„°νŽ˜μ΄μŠ€κ°€ λ³΅μž‘ν•˜κ³  역동적인 κ²½ν–₯이 있기 λ•Œλ¬Έμ—, 앑체-기체 λ‹€μƒμœ λ™μ— 효과적인 λΌκ·Έλž‘μ§€μ•ˆ 기반의 μœ μ²΄ν•΄μ„ 기법과 강체 μ΄μ‚°μš”μ†Œλ²•(DEM)을 μ—°κ³„ν•˜λ©΄ 효과적인 3상 μœ λ™ 해석 체계λ₯Ό ꡬ좕할 수 μžˆλ‹€. ν•˜μ§€λ§Œ, ν•΅μ—°λ£Œ νŒŒνŽΈλ¬Όμ„ ν¬ν•¨ν•œ 3상 냉각 거동과 κ΄€λ ¨ν•˜μ—¬ λΌκ·Έλž‘μ§€μ•ˆ μž…μž 기반 μœ μ²΄ν•΄μ„ 기법을 ν™œμš©ν•œ μ—°κ΅¬λŠ” μ„Έκ³„μ μœΌλ‘œλ„ 아직 μˆ˜ν–‰λœ λ°”κ°€ μ—†λ‹€. μ΄λŸ¬ν•œ ν•„μš”μ„±μ— 따라, λ³Έ μ—°κ΅¬μ—μ„œλŠ” λŒ€ν‘œμ μΈ μž…μž 기반의 μœ μ²΄ν•΄μ„ 방법둠 쀑 ν•˜λ‚˜μΈ μ™„ν™”μž…μžμœ μ²΄λ™μ—­ν•™(Smoothed Particle Hydrodynamics, SPH) 기법과 κ°•μ²΄μ˜ 좩돌, 병진, νšŒμ „ μš΄λ™μ„ μ§μ ‘μ μœΌλ‘œ λ‹€λ£¨λŠ” μ΄μ‚°μš”μ†Œλ²•(DEM)의 연계λ₯Ό 톡해 고체 μž…μžλ₯Ό ν¬ν•¨ν•œ 3상 μœ λ™ 해석을 μœ„ν•œ λΌκ·Έλž‘μ§€μ•ˆ 해석 체계λ₯Ό κ΅¬μΆ•ν•˜μ˜€λ‹€. 고체 μž…μžμ™€ 유체 μ‚¬μ΄μ˜ μ—°κ³„λŠ” mm μ΄ν•˜μ˜ μŠ€μΌ€μΌμ„ κ°€μ§€λŠ” ν•΅μ—°λ£Œ 파편물의 ν˜•μƒμ  νŠΉμ„±μ„ κ³ λ €ν•˜μ—¬ 두 상 μ‚¬μ΄μ˜ 겹침을 ν—ˆμš©ν•˜μ—¬ μš΄λ™λŸ‰ κ΅ν™˜μ„ λͺ¨λΈλ§ν•˜λŠ” 비해상(unresolved) λ°©μ‹μœΌλ‘œ μ΄λ£¨μ–΄μ‘Œλ‹€. λ˜ν•œ, SPH 유체 λͺ¨λΈ, DEM 강체 λͺ¨λΈ, SPH-DEM 연계 λͺ¨λΈ 각각에 λŒ€ν•œ 검증을 λ‹€μ–‘ν•œ μŠ€μΌ€μΌμ—μ„œ λ‹€μ–‘ν•œ μ‹€ν—˜ μ—°κ΅¬λ“€κ³Όμ˜ 비ꡐλ₯Ό 톡해 μˆ˜ν–‰ν•˜μ˜€λ‹€. ν•œνŽΈ, μ™„ν™”μž…μžμœ μ²΄λ™μ—­ν•™(SPH) 기법과 μ΄μ‚°μš”μ†Œλ²•(DEM) λͺ¨λΈμ€ λΌκ·Έλž‘μ§€μ•ˆ 해석 κΈ°λ²•μ˜ νŠΉμ„±μƒ 컴퓨터 μ„±λŠ₯의 비약적인 λ°œμ „μ—λ„ λΆˆκ΅¬ν•˜κ³  μ˜€μΌλŸ¬λ¦¬μ•ˆ 해석 기법에 λΉ„ν•΄ 계산 효율 및 μ‹œκ°„μ— λŒ€ν•œ μƒλŒ€μ μΈ μ œμ•½μ΄ μ‘΄μž¬ν•œλ‹€. 특히 앑체-기체의 μ΄μƒμœ λ™ 해석을 λ‹€λ£° 경우 기체 μƒμ˜ 밀도가 μž‘κΈ° λ•Œλ¬Έμ— λΌκ·Έλž‘μ§€μ•ˆ μœ μ²΄ν•΄μ„ κΈ°λ²•μ—μ„œλŠ” 더 μž‘μ€ μ‹œκ°„ 간격이 μš”κ΅¬λœλ‹€. 이에 λ³Έ μ—°κ΅¬μ—μ„œλŠ” κ·Έλž˜ν”½ 처리 μž₯치 (Graphics Processing Unit, GPU)λ₯Ό ν™œμš©ν•˜μ—¬ SPH 해석, DEM 해석, SPH-DEM 연계 해석이 λͺ¨λ‘ 각 λΌκ·Έλž‘μ§€μ•ˆ μ§ˆμ μ— λŒ€ν•΄ λ™μ‹œμ— μˆ˜ν–‰λ  수 μžˆλ„λ‘ GPU 기반의 μ—°κ³„μ½”λ“œ 병렬화 및 가속화λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ κ°œλ°œν•œ λΌκ·Έλž‘μ§€μ•ˆ 기반의 3μƒμœ λ™ 해석 μ²΄κ³„μ˜ μœ μš©μ„± μž…μ¦μ„ μœ„ν•΄ μ›μžλ‘œ μ€‘λŒ€μ‚¬κ³  ν›„κΈ° κ³Όμ •μ—μ„œ λ°œμƒν•  수 μžˆλŠ” ν•΅μ—°λ£Œ 파편물 μΈ΅(debris bed)의 평탄화(self-leveling) 거동에 λŒ€ν•œ 검증 해석을 μˆ˜ν–‰ν•˜μ˜€λ‹€. μ‹œκ°„μ— λ”°λ₯Έ 파편물 μΈ΅ ν‘œλ©΄μ˜ ν˜•μƒ λ³€ν™”λ₯Ό 타 κΈ°κ΄€μ—μ„œ μˆ˜ν–‰λœ κΈ°μ²΄μ£Όμž… μ‹€ν—˜κ³Ό λΉ„κ΅ν•˜λŠ” ν˜•νƒœλ‘œ 검증이 μ΄λ£¨μ–΄μ‘Œλ‹€. 뢄석 κ²°κ³Ό, λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ SPH-DEM 연계해석 μ½”λ“œκ°€ 고체 μž…μž 상을 ν¬ν•¨ν•œ 수λ ₯학적 3상 거동을 μ •λŸ‰μ μœΌλ‘œ, μ •μ„±μ μœΌλ‘œ 잘 ν•΄μ„ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ λΌκ·Έλž‘μ§€μ•ˆ 기반의 SPH-DEM 3μƒμœ λ™ 해석 μ²΄κ³„λŠ” μ›μžλ‘œ μ€‘λŒ€μ‚¬κ³ μ˜ 해석적 κ΄€μ μ—μ„œ 기쑴의 μˆ˜μΉ˜ν•΄μ„ 기법듀이 닀루기 μ–΄λ €μ› λ˜ ν˜„μƒλ“€μ— λŒ€ν•œ λŒ€μ•ˆ λ˜λŠ” μƒν˜Έ λ³΄μ™„μ˜ 역할을 ν•  수 μžˆλ‹€. λ˜ν•œ, λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ μ½”λ“œλŠ” 제 1원리 기반의 물리 법칙을 기반으둜 μœ λ™ 및 κ°•μ²΄μ˜ 거동을 ν•΄μ„ν•˜κΈ° λ•Œλ¬Έμ— μ‹€ν—˜μœΌλ‘œ κ΅¬ν˜„ν•˜κΈ° μ–΄λ €μš΄ μ‘°κ±΄μ΄λ‚˜ μŠ€μΌ€μΌμ— λŒ€ν•œ 수치적 μž¬ν˜„μ΄ κ°€λŠ₯ν•˜κ³ , 이λ₯Ό λ°”νƒ•μœΌλ‘œ 기쑴의 μŠ€μΌ€μΌλ§ 법칙을 κ²€μ¦ν•˜κ±°λ‚˜ μ‹€ν—˜ κ²°κ³Όκ°€ μ—†λŠ” μ˜μ—­μ—μ„œ 수치 데이터λ₯Ό μƒμ„±ν•˜μ—¬ 기쑴의 상관식을 κ°œμ„ ν•˜λŠ”λ° ν™œμš©ν•  수 μžˆλ‹€. μ΄λŸ¬ν•œ μ μ—μ„œ λ³Έ μ—°κ΅¬λŠ” μ›μžλ‘œ μ€‘λŒ€μ‚¬κ³ μ˜ ν•΄μ„μ΄λ‚˜ μ•ˆμ „μ„± 평가와 κ΄€λ ¨ν•˜μ—¬ λΆˆν™•μ‹€μ„±μ„ μ €κ°ν•˜λŠ”λ° κΈ°μ—¬ν•œλ‹€.Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Previous Studies 3 1.2.1 Numerical Studies on Particulate Debris Bed 3 1.2.2 SPH-DEM Phase Coupling 4 1.3 Objectives and Scope 5 Chapter 2 Fluid Phase: Smoothed Particle Hydrodynamics 8 2.1 Smoothed Particle Hydrodynamics (SPH) 9 2.1.1 SPH Particle Approximation 9 2.1.2 SPH Particle Approximation of Derivatives 10 2.1.3 Kernel Function 11 2.1.4 Accuracy of SPH Approximation 12 2.1.5 Governing Equations for Incompressible Flow 14 2.2 Multi-phase SPH Governing Equations 16 2.2.1 Treatment of Multi-Phase Flow 16 2.2.2 Normalized Density Model 18 2.2.3 Continuum Surface Force (CSF) Model 19 2.3 Implementation of SPH Model 21 2.3.1 Algorithm of SPH Code 21 2.3.2 Nearest Neighboring Particles Searching (NNPS) 22 2.3.3 Time Integration 23 2.4 V&V Simulations 24 2.4.1 Rayleigh-Taylor Instability 25 2.4.2 Bubble Terminal Velocity 25 2.4.3 Dam-Break Simulation 25 2.4.4 Centralized Sloshing Simulation 26 Chapter 3 Solid Phase: Discrete Element Method 45 3.1 Discrete Element Method (DEM) 46 3.2 DEM Contact Force 47 3.2.1 Soft-sphere Contact Model 47 3.2.2 Contact Force Model 48 3.2.3 Hertz-Mindlin Contact Force Model 49 3.3 Wall Boundary Conditions 52 3.3.1 Versatile Wall Boundary Model 52 3.3.2 Particle Collision with the Wall 54 3.3.3 Sliding and Rolling on the Wall Boundary 56 3.4 DEM Implementation Algorithm 57 3.4.1 Contact Detection 58 3.4.2 Estimation of Relative Velocity 59 3.4.3 Calculation of Contact Force 60 3.4.4 Wall Boundary Conditions and Time Integration 60 3.5 V&V and Simulations 61 3.5.1 Conservation of Momentum and Angular Momentum 62 3.5.2 Conservation of Energy in Elastic Collision 63 3.5.3 V&V Simulations for Wall Boundary Model 63 3.5.4 Granular Collapse of Spherical Particles 64 Chapter 4 Two-way Phase Coupling of SPH and DEM 76 4.1 Unresolved Coupling of SPH and DEM 76 4.2 Governing Equations 78 4.2.1 SPH Particles: Locally Averaged N-S Equations 78 4.2.2 DEM Particles: Coupling Forces Acting on Solid Particles 80 4.2.3 SPH Particles: Reaction Force from Momentum Exchange 82 4.3 Algorithm of SPH-DEM Coupled Model 83 4.4 V&V Simulations for SPH-DEM Coupled Model 84 4.4.1 Single DEM Particle Behavior 85 4.4.2 Pressure Drop through Packed Bed 87 4.4.3 Granular Flow in Liquid: 3D Dam-Break 89 Chapter 5 GPU Parallelization of Coupled SPH-DEM Code 103 5.1 Parallelization of Governing Equations 104 5.1.1 GPU-based Parallelization 104 5.1.2 Parallelization of SPH-DEM Governing Equations 104 5.2 Parallelization of NNPS and Contact Detection 105 5.3 Results of GPU Parallelization 107 5.3.1 Speedup in Computation Time 107 5.3.2 Parallelization Factors 107 Chapter 6 Code Application to Vapor-Driven Leveling Behavior of Spherical Debris 113 6.1 Self-Leveling Behavior of Debris Bed 114 6.1.1 Self-Leveling Issue in LWR 114 6.1.2 Self-Leveling Behavior in Terms of Debris Coolability 114 6.2 Benchmark Experiment 116 6.3 SPH-DEM Simulation Setup 118 6.3.1 Properties and Simulation Conditions 118 6.3.2 Sequence of SPH-DEM Leveling Simulation 120 6.3.3 Determination of Inclined Angle 121 6.4 Validation Results and Discussions 121 6.4.1 SPH-DEM Simulation Results 121 6.4.2 Validation Result 122 6.4.3 Effect of Gas Flow Rate 122 Chapter 7 Summary 129 7.1 Summary 129 7.2 Recommendations 131 References 134 κ΅­λ¬Έ 초둝 142Docto

    μ œμ‘°λ¬Όμ±…μž„λ²• μž…λ²•κ³Όμ •μ— λŒ€ν•œ 연ꡬ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ ν–‰μ •λŒ€ν•™μ› :ν–‰μ •ν•™κ³Ό 행정학전곡,2003.Maste

    θ‡ͺε‹•θ»Šε°δΊΊθ³ ε„Ÿθ²¬δ»»δΏιšͺ의 ε•ι‘Œι»žμ— ι—œν•œ 瑏穢 : μ˜€μŠ€νŠΈλ ˆμΌλ¦¬μ•„μ˜ θ‡ͺε‹•θ»ŠδΊ‹ζ•…ζ³•μ˜ ζ―”θΌƒζ³•ηš„ θ€ƒε―Ÿ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈε€§ε­Έζ ‘ 倧學陒 :法學科 ε•†δΊ‹ζ³•ε°ˆζ”»,1996.Maste
    corecore