1 research outputs found

    λͺ¨λΈ 곡정 뢈일치 μƒν™©μ—μ„œ ν™”ν•™ 생물 κ³΅μ •μ˜ 데이터 기반 μ΅œμ ν™”λ₯Ό μœ„ν•œ κ°œμ„ ν•­ 적응법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 화학생물곡학뢀, 2018. 2. 이쒅민.κ°œμ„ ν•­ 적응법은 데이터 기반 μ΅œμ ν™” κΈ°λ²•μ˜ μΌμ’…μœΌλ‘œ λͺ¨λΈ 곡정 뢈일치 μ‘°κ±΄μ—μ„œλ„ μˆ˜λ ΄ν•˜λŠ” 값이 κ³΅μ •μ˜ 졜적 ν•„μš” 쑰건을 λ§Œμ‘±ν•œλ‹€λŠ” νŠΉμ§•μ΄ μžˆλ‹€. 이 ν•™μœ„ 논문은 κ°œμ„ ν•­ μ μ‘λ²•μ˜ ν™”ν•™ 및 생물 곡정에 λŒ€ν•œ 적용 κ³Όμ •μ—μ„œ λ°œμƒν•˜λŠ” 3 가지 λ¬Έμ œμ μ— λŒ€ν•œ 해결책을 μ œμ‹œν•œλ‹€. 첫 번째, 반볡적으둜 λ°œμƒν•˜λŠ” 큰 μ™Έλž€μ— μ˜ν•œ μ΅œμ μ„± μƒμ‹€μ˜ λ¬Έμ œλŠ” κ³Όκ±° μ™Έλž€ 정보λ₯Ό μ΄μš©ν•˜μ—¬ μ•ž λ¨Ήμž„ κ²°μ •κΈ°λ₯Ό λ””μžμΈ ν•¨μœΌλ‘œμ¨ λΉ λ₯΄κ²Œ μ™Έλž€μ— λŒ€μ²˜ν•  수 μžˆλ‹€. μ΄λŸ¬ν•œ μ•ž λ¨Ήμž„ κ²°μ •κΈ°λŠ” μ΅œμ‹  기법인 심측 신경망 기법을 μ‚¬μš©ν•˜μ—¬ κ΅¬μ„±ν•˜μ˜€λ‹€. 두 번째, fed-batch reactor κ³΅μ •μ˜ 동적 μ΅œμ ν™” λ¬Έμ œμ™€ 같이 μ‘°μž‘ λ³€μˆ˜μ˜ μˆ˜κ°€ λ§Žμ€ μƒν™©μ—μ„œ λͺ©μ  ν•¨μˆ˜μ™€ μ œμ•½ 쑰건의 μ‹€ν—˜μ  ꡬ배λ₯Ό 효과적으둜 μΆ”μ •ν•˜κΈ° μœ„ν•˜μ—¬ νšŒκ·€ 뢄석 방법을 μ μš©ν•˜λŠ” 방법을 μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•˜μ—¬ multiple linear regression (MLR), principle component analysis (PCA), partial least squares (PLS)와 같은 λ‹€μ–‘ν•œ νšŒκ·€ 뢄석 방법이 μ μš©λ˜μ—ˆκ³ , 보수적인 좔정을 μœ„ν•œ moving average μ—…λ°μ΄νŠΈ 방법도 μ œμ•ˆλ˜μ–΄ μˆ˜λ ΄ν–ˆμ„ λ•Œμ˜ κ³΅μ •μ˜ 졜적 ν•„μš” 쑰건 λ§Œμ‘±μ΄λΌλŠ” νŠΉμ„±μ„ μœ μ§€ν•¨μ„ 증λͺ…ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μ—…λ°μ΄νŠΈμ—μ„œ λ°œμƒν•  수 μžˆλŠ” infeasible solutionκ³Ό 곡정 λ…Έμ΄μ¦ˆλ₯Ό 효과적으둜 μ²˜λ¦¬ν•  수 μžˆλŠ” μƒˆλ‘œμš΄ ν˜•νƒœμ˜ κ°œμ„ ν•­ 적응법을 μ œμ•ˆν•˜μ˜€λ‹€. λ˜ν•œ μ œμ•ˆλœ μƒˆλ‘œμš΄ ꡬ쑰의 κ°œμ„ ν•­ 적응법이 κ°–λŠ” λ…Έμ΄μ¦ˆμ— λŒ€ν•œ 강건성과 μˆ˜λ ΄μ„±, 그리고 μˆ˜λ ΄ν–ˆμ„ λ•Œμ˜ 졜적 ν•„μš”μ‘°κ±΄μ΄ λ§Œμ‘±ν•¨μ„ 증λͺ…ν•˜μ˜€λ‹€.1. Introduction 26 1.1 Background and motivation 26 1.2 Literature review 28 1.2.1 Real time optimization 28 1.2.2 Optimality loss by model-plant mismatch 32 1.2.3 Methods to overcome the model-plant mismatch 33 1.3 Major contributions of this thesis 42 1.4 Outline of this thesis 44 2. Data-driven optimization via modifier adaptation 45 2.1 Introduction 45 2.2 Satisfaction of necessary conditions of optimality 47 3. Three issues of modifier adaptation 50 3.1 Issue 1: Frequent and large disturbance 50 3.1.1 Design of feedforward decision maker using machine learning and historical disturbance data 50 3.1.2 Illustrative example 70 3.1.3 Run-to-run optimization of bioprocess 82 3.1.4 Concluding remarks 88 3.2 Issue 2: Experimental gradient estimation under noisy and multivariate condition 89 3.2.1 Importance of gradient estimation for the modifier adaptation 89 3.2.2 Motivational example: Run-to-run optimization of bioreactor 91 3.2.3 Conventional experimental gradient estimation 96 3.2.4 Regression based gradient estimation and its application to modifier adaptation 99 3.2.5 Concluding remarks 129 3.3 Issue 3: A novel structure of modifier adaptation for robustness 130 3.3.1 Feasibility and structural robustness 130 3.3.2 Proposition of new structural modifier adaptation 135 3.3.3 Illustrative example 149 3.3.4 Concluding remarks 155 4. Conclusions and future works 156 4.1 Conclusions 156 4.2 Future works 157Docto
    corecore