1 research outputs found

    Cortical Orchestra Conducted by Purpose and Function

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ ν˜‘λ™κ³Όμ • λ‡Œκ³Όν•™μ „κ³΅,2020. 2. μ •μ²œκΈ°.촉각과 μžκΈ°μˆ˜μš©κ°κ°μ€ 우리의 생쑴 및 μΌμƒμƒν™œμ— μ ˆλŒ€μ μΈ 영ν–₯을 λ―ΈμΉ˜λŠ” μ€‘μš”ν•œ 감각 κΈ°λŠ₯이닀. λ§μ΄ˆμ‹ κ²½κ³„μ—μ„œ 이 두 가지 κΈ°λŠ₯듀에 ν•„μš”ν•œ 정보λ₯Ό μˆ˜μ§‘ν•˜κ³  μ „λ‹¬ν•˜λŠ” 기계적 수용기 및 κ·Έ ꡬ심성 신경듀에 λŒ€ν•œ μ‹ ν˜Έ 전달 λ©”μ»€λ‹ˆμ¦˜ 및 κ·Έ νŠΉμ§•λ“€μ€ μƒλŒ€μ μœΌλ‘œ 잘 μ•Œλ €μ Έ μžˆλŠ” νŽΈμ΄λ‹€. κ·ΈλŸ¬λ‚˜, 촉각과 μžκΈ°μˆ˜μš©κ°κ°μ„ ν˜•μ„±ν•˜κΈ° μœ„ν•œ 인간 λ‡Œμ˜ ν”Όμ§ˆμ—μ„œμ˜ 정보 처리 λ©”μ»€λ‹ˆμ¦˜μ— λŒ€ν•˜μ—¬ μš°λ¦¬κ°€ ν˜„μž¬ μ•Œκ³  μžˆλŠ” λ°”λŠ” 극히 일뢀뢄이닀. 이 λ…Όλ¬Έμ—μ„œ μ œμ‹œν•˜λŠ” 일련의 연ꡬ듀은 인간 λ‡Œ ν”Όμ§ˆ λ‹¨κ³„μ—μ„œ 촉각과 자기수용감각의 지각적 μ²˜λ¦¬κ³Όμ •μ— λŒ€ν•œ κ±°μ‹œμ  신경계 μ •λ³΄μ²˜λ¦¬ λ©”μ»€λ‹ˆμ¦˜μ„ 닀룬닀. 첫 번째 μ—°κ΅¬μ—μ„œλŠ” λ‡Œν”Όμ§ˆλ‡ŒνŒŒλ₯Ό μ΄μš©ν•˜μ—¬ 인간 일차 및 이차 체성감각 ν”Όμ§ˆμ—μ„œ 인곡적인 자극과 μΌμƒμƒν™œμ—μ„œ μ ‘ν•  수 μžˆλŠ” μžκ·Ήμ„ ν¬ν•¨ν•˜λŠ” λ‹€μ–‘ν•œ 진동촉감각 및 질감 μžκ·Ήμ— λŒ€ν•œ κ±°μ‹œμ  신경계 μ •λ³΄μ²˜λ¦¬ νŠΉμ„±μ„ λ°ν˜”λ‹€. 이 μ—°κ΅¬μ—μ„œλŠ” 일차 및 이차 체성감각 ν”Όμ§ˆμ˜ 촉감각 주파수 특이적인 ν•˜μ΄-감마 μ˜μ—­ μ‹ κ²½ν™œλ™μ΄ 자극 μ£ΌνŒŒμˆ˜μ— 따라 각각 μƒμ΄ν•œ μ‹œκ°„μ  λ‹€μ΄λ‚˜λ―ΉμŠ€λ₯Ό 가지고 λ³€ν™”ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. λ˜ν•œ, μ΄λŸ¬ν•œ ν•˜μ΄-감마 ν™œλ™μ€ μ„±κΈ΄ 질감과 λ―Έμ„Έν•œ μž…μžκ°μ„ 가진 μžμ—°μŠ€λŸ¬μš΄ 질감 μžκ·Ήμ— λŒ€ν•΄μ„œλ„ μ§„λ™μ΄‰κ°κ°μ˜ κ²½μš°μ™€ μœ μ‚¬ν•œ νŒ¨ν„΄μ„ λ³΄μ˜€λ‹€. μ΄λŸ¬ν•œ 결과듀은 μΈκ°„μ˜ 진동촉감각이 맀우 λ‹¨μˆœν•œ ν˜•νƒœμ— μžκ·ΉμΌμ§€λΌλ„ λŒ€λ‡Œ 체성감각 μ‹œμŠ€ν…œμ— μžˆμ–΄ κ±°μ‹œμ μΈ 닀쀑 μ˜μ—­μ—μ„œμ˜ 계측적 μ •λ³΄μ²˜λ¦¬λ₯Ό λ™λ°˜ν•œλ‹€λŠ” 점을 μ‹œμ‚¬ν•œλ‹€. 두 번째 μ—°κ΅¬μ—μ„œλŠ” μΈκ°„μ˜ μ›€μ§μž„κ³Ό κ΄€λ ¨λœ 두정엽 μ˜μ—­μ—μ„œμ˜ ν•˜μ΄-감마 λ‡Œν™œμ„±μ΄ 자기수용감각과 같은 λ§μ΄ˆμ‹ κ²½κ³„λ‘œλΆ€ν„°μ˜ 체성감각 ν”Όλ“œλ°±μ„ 주둜 λ°˜μ˜ν•˜λŠ”μ§€, μ•„λ‹ˆλ©΄ μ›€μ§μž„ μ€€λΉ„ 및 μ œμ–΄λ₯Ό μœ„ν•œ ν”Όμ§ˆ κ°„ μ‹ κ²½ ν”„λ‘œμ„ΈμŠ€μ— λŒ€ν•œ ν™œλ™μ„ λ°˜μ˜ν•˜λŠ”μ§€λ₯Ό μ‘°μ‚¬ν•˜μ˜€λ‹€. 연ꡬ κ²°κ³Ό, 자발적 μš΄λ™ 쀑 λŒ€λ‡Œ μš΄λ™κ°κ°λ Ήμ—μ„œμ˜ ν•˜μ΄-감마 ν™œλ™μ€ 일차 μ²΄μ„±κ°κ°ν”Όμ§ˆμ΄ 일차 μš΄λ™ν”Όμ§ˆλ³΄λ‹€ 더 지배적인 κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ˜ν•œ 이 μ—°κ΅¬μ—μ„œλŠ”, μ›€μ§μž„κ³Ό κ΄€λ ¨λœ 일차 μ²΄μ„±κ°κ°ν”Όμ§ˆμ—μ„œμ˜ ν•˜μ΄-감마 λ‡Œν™œλ™μ€ λ§μ΄ˆμ‹ κ²½κ³„λ‘œλΆ€ν„°μ˜ 자기수용감각과 촉각에 λŒ€ν•œ 신경계 μ •λ³΄μ²˜λ¦¬λ₯Ό 주둜 λ°˜μ˜ν•˜λŠ” 것을 λ°ν˜”λ‹€. μ΄λŸ¬ν•œ 연ꡬ듀을 λ°”νƒ•μœΌλ‘œ, λ§ˆμ§€λ§‰ μ—°κ΅¬μ—μ„œλŠ” 인간 λŒ€λ‡Œμ—μ„œμ˜ 체성감각 지각 ν”„λ‘œμ„ΈμŠ€μ— λŒ€ν•œ κ±°μ‹œμ  ν”Όμ§ˆ κ°„ λ„€νŠΈμ›Œν¬λ₯Ό 규λͺ…ν•˜κ³ μž ν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄, 51λͺ…μ˜ λ‡Œμ „μ¦ ν™˜μžμ—κ²Œμ„œ 체성감각을 μœ λ°œν–ˆλ˜ λ‡Œν”Όμ§ˆμ „κΈ°μžκ·Ή 데이터와 46λͺ…μ˜ ν™˜μžμ—κ²Œμ„œ 촉감각 자극 및 μš΄λ™ μˆ˜ν–‰ 쀑에 μΈ‘μ •ν•œ λ‡Œν”Όμ§ˆλ‡ŒνŒŒ ν•˜μ΄-감마 맀핑 데이터λ₯Ό μ’…ν•©μ μœΌλ‘œ λΆ„μ„ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, 체성감각 지각 ν”„λ‘œμ„ΈμŠ€λŠ” λŒ€λ‡Œμ—μ„œ 넓은 μ˜μ—­μ— 걸쳐 λΆ„ν¬ν•˜λŠ” 체성감각 κ΄€λ ¨ λ„€νŠΈμ›Œν¬μ˜ μ‹ κ²½ ν™œμ„±μ„ μˆ˜λ°˜ν•œλ‹€λŠ” 것을 μ•Œμ•„λƒˆλ‹€. λ˜ν•œ, λ‡Œν”Όμ§ˆμ „κΈ°μžκ·Ήμ„ ν†΅ν•œ λŒ€λ‡Œ 지도와 ν•˜μ΄-감마 맀핑을 ν†΅ν•œ λŒ€λ‡Œ μ§€λ„λŠ” μ„œλ‘œ μƒλ‹Ήν•œ μœ μ‚¬μ„±μ„ λ³΄μ˜€λ‹€. ν₯λ―Έλ‘­κ²Œλ„, λ‡Œν”Όμ§ˆμ „κΈ°μžκ·Ήκ³Ό ν•˜μ΄-감마 ν™œλ™μ„ μ’…ν•©ν•œ λ‡Œμ§€λ„λ“€λ‘œλΆ€ν„° 체성감각 κ΄€λ ¨ λ‡Œ μ˜μ—­μ˜ 곡간적 뢄포가 체성감각 κΈ°λŠ₯에 따라 μ„œλ‘œ λ‹¬λžκ³ , 그에 ν•΄λ‹Ήν•˜λŠ” 각 μ˜μ—­λ“€μ€ μ„œλ‘œ λšœλ ·ν•˜κ²Œ λ‹€λ₯Έ μ‹œκ°„μ  λ‹€μ΄λ‚˜λ―ΉμŠ€λ₯Ό 가지고 순차적으둜 ν™œμ„±ν™”λ˜μ—ˆλ‹€. μ΄λŸ¬ν•œ 결과듀은 체성감각에 λŒ€ν•œ κ±°μ‹œμ  신경계 ν”„λ‘œμ„ΈμŠ€κ°€ κ·Έ 지각적 κΈ°λŠ₯에 따라 뚜렷이 λ‹€λ₯Έ 계측적 λ„€νŠΈμ›Œν¬λ₯Ό κ°€μ§„λ‹€λŠ” 점을 μ‹œμ‚¬ν•œλ‹€. 더 λ‚˜μ•„κ°€, λ³Έ μ—°κ΅¬μ—μ„œμ˜ 결과듀은 체성감각 μ‹œμŠ€ν…œμ˜ 지각-행동 κ΄€λ ¨ μ‹ κ²½ν™œλ™ 흐름에 κ΄€ν•œ 이둠적인 가섀에 λŒ€ν•˜μ—¬ 섀득λ ₯ μžˆλŠ” 증거λ₯Ό μ œμ‹œν•˜κ³  μžˆλ‹€.Tactile and proprioceptive perceptions are crucial for our daily life as well as survival. At the peripheral level, the transduction mechanisms and characteristics of mechanoreceptive afferents containing information required for these functions, have been well identified. However, our knowledge about the cortical processing mechanism for them in human is limited. The present series of studies addressed the macroscopic neural mechanism for perceptual processing of tactile and proprioceptive perception in human cortex. In the first study, I investigated the macroscopic neural characteristics for various vibrotactile and texture stimuli including artificial and naturalistic ones in human primary and secondary somatosensory cortices (S1 and S2, respectively) using electrocorticography (ECoG). I found robust tactile frequency-specific high-gamma (HG, 50–140 Hz) activities in both S1 and S2 with different temporal dynamics depending on the stimulus frequency. Furthermore, similar HG patterns of S1 and S2 were found in naturalistic stimulus conditions such as coarse/fine textures. These results suggest that human vibrotactile sensation involves macroscopic multi-regional hierarchical processing in the somatosensory system, even during the simplified stimulation. In the second study, I tested whether the movement-related HG activities in parietal region mainly represent somatosensory feedback such as proprioception from periphery or primarily indicate cortico-cortical neural processing for movement preparation and control. I found that sensorimotor HG activities are more dominant in S1 than in M1 during voluntary movement. Furthermore, the results showed that movement-related HG activities in S1 mainly represent proprioceptive and tactile feedback from periphery. Given the results of previous two studies, the final study aimed to identify the large-scale cortical networks for perceptual processing in human. To do this, I combined direct cortical stimulation (DCS) data for eliciting somatosensation and ECoG HG band (50 to 150 Hz) mapping data during tactile stimulation and movement tasks, from 51 (for DCS mapping) and 46 patients (for HG mapping) with intractable epilepsy. The results showed that somatosensory perceptual processing involves neural activation of widespread somatosensory-related network in the cortex. In addition, the spatial distributions of DCS and HG functional maps showed considerable similarity in spatial distribution between high-gamma and DCS functional maps. Interestingly, the DCS-HG combined maps showed distinct spatial distributions depending on the somatosensory functions, and each area was sequentially activated with distinct temporal dynamics. These results suggest that macroscopic neural processing for somatosensation has distinct hierarchical networks depending on the perceptual functions. In addition, the results of the present study provide evidence for the perception and action related neural streams of somatosensory system. Throughout this series of studies, I suggest that macroscopic somatosensory network and structures of our brain are intrinsically organized by perceptual function and its purpose, not by somatosensory modality or submodality itself. Just as there is a purpose for human behavior, so is our brain.PART I. INTRODUCTION 1 CHAPTER 1: Somatosensory System 1 1.1. Mechanoreceptors in the Periphery 2 1.2. Somatosensory Afferent Pathways 4 1.3. Cortico-cortical Connections among Somatosensory-related Areas 7 1.4. Somatosensory-related Cortical Regions 8 CHAPTER 2: Electrocorticography 14 2.1. Intracranial Electroencephalography 14 2.2. High-Gamma Band Activity 18 CHAPTER 3: Purpose of This Study 24 PART II. EXPERIMENTAL STUDY 26 CHAPTER 4: Apparatus Design 26 4.1. Piezoelectric Vibrotactile Stimulator 26 4.2. Magnetic Vibrotactile Stimulator 29 4.3. Disc-type Texture Stimulator 33 4.4. Drum-type Texture Stimulator 36 CHAPTER 5: Vibrotactile and Texture Study 41 5.1. Introduction 42 5.2. Materials and Methods 46 5.2.1. Patients 46 5.2.2. Apparatus 47 5.2.3. Experimental Design 49 5.2.4. Data Acquisition and Preprocessing 50 5.2.5. Analysis 51 5.3. Results 54 5.3.1. Frequency-specific S1/S2 HG Activities 54 5.3.2. S1 HG Attenuation during Flutter and Vibration 62 5.3.3. Single-trial Vibration Frequency Classification 64 5.3.4. S1/S2 HG Activities during Texture Stimuli 65 5.4. Discussion 69 5.4.1. Comparison with Previous Findings 69 5.4.2. Tactile Frequency-dependent Neural Adaptation 70 5.4.3. Serial vs. Parallel Processing between S1 and S2 72 5.4.4. Conclusion of Chapter 5 73 CHAPTER 6: Somatosensory Feedback during Movement 74 6.1. Introduction 75 6.2. Materials and Methods 79 6.2.1. Subjects 79 6.2.2. Tasks 80 6.2.3. Data Acquisition and Preprocessing 82 6.2.4. S1-M1 HG Power Difference 85 6.2.5. Classification 86 6.2.6. Timing of S1 HG Activity 86 6.2.7. Correlation between HG and EMG signals 87 6.3. Results 89 6.3.1. HG Activities Are More Dominant in S1 than in M1 89 6.3.2. HG Activities in S1 Mainly Represent Somatosensory Feedback 94 6.4. Discussion 100 6.4.1. S1 HG Activity Mainly Represents Somatosensory Feedback 100 6.4.2. Further Discussion and Future Direction in BMI 102 6.4.3. Conclusion of Chapter 6 103 CHAPTER 7: Cortical Maps of Somatosensory Function 104 7.1. Introduction 106 7.2. Materials and Methods 110 7.2.1. Participants 110 7.2.2. Direct Cortical Stimulation 114 7.2.3. Classification of Verbal Feedbacks 115 7.2.4. Localization of Electrodes 115 7.2.5. Apparatus 116 7.2.6. Tasks 117 7.2.7. Data Recording and Processing 119 7.2.8. Mapping on the Brain 120 7.2.9. ROI-based Analysis 122 7.3. Results 123 7.3.1. DCS Mapping 123 7.3.2. Three and Four-dimensional HG Mapping 131 7.3.3. Neural Characteristics among Somatosensory-related Areas 144 7.4. Discussion 146 7.4.1. DCS on the Non-Primary Areas 146 7.4.2. Two Streams of Somatosensory System 148 7.4.3. Functional Role of ventral PM 151 7.4.4. Limitation and Perspective 152 7.4.5. Conclusion of Chapter 7 155 PART III. CONCLUSION 156 CHAPTER 8: Conclusion and Perspective 156 8.1. Perspective and Future Work 157 References 160 Abstract in Korean 173Docto
    corecore