1 research outputs found

    ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ฐ”์ด์˜คํŒจ๋‹ ํด๋ก  ์ฆํญ ํŒจํ„ด ๋ถ„์„์„ ํ†ตํ•œ ํ•ญ์› ๊ฒฐํ•ฉ ๋ฐ˜์‘์„ฑ ์˜ˆ์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ, 2021.8. ์ •์ค€ํ˜ธ.Background: Monoclonal antibodies (mAbs) are produced by B cells and specifically binds to target antigens. Technical advances in molecular and cellular cloning made it possible to purify recombinant mAbs in a large scale, enhancing the multiple research area and potential for their clinical application. Since the importance of therapeutic mAbs is increasing, mAbs have become the predominant drug classes for various diseases over the past decades. During that time, immense technological advances have made the discovery and development of mAb therapeutics more efficient. Owing to advances in high-throughput methodology in genomic sequencing, phenotype screening, and computational data analysis, it is conceivable to generate the panel of antibodies with annotated characteristics without experiments. Thesis objective: This thesis aims to develop the next-generation antibody discovery methods utilizing high-throughput antibody repertoire sequencing and bioinformatics analysis. I developed novel methods for construction of in vitro display antibody library, and machine learning based antibody discovery. In chapter 3, I described a new method for generating immunoglobulin (Ig) gene repertoire, which minimizes the amplification bias originated from a large number of primers targeting diverse Ig germline genes. Universal primer-based amplification method was employed in generating Ig gene repertoire then validated by high-throughput antibody repertoire sequencing, in the aspect of clonal diversity and immune repertoire reproducibility. A result of this research work is published in โ€˜Journal of Immunological Methods (2021). doi: 10.1016/j.jim.2021. 113089โ€™. In chapter 4, I described a novel machine learning based antibody discovery method. In conventional colony screening approach, it is impossible to identify antigen specific binders having low clonal abundance, or hindered by non-specific phage particles having antigen reactivity on p8 coat protein. To overcome the limitations, I applied the supervised learning algorithm on high-throughput sequencing data annotated with binding property and clonal frequency through bio-panning. NGS analysis was performed to generate large number of antibody sequences annotated with itsโ€™ clonal frequency at each selection round of the bio-panning. By using random forest (RF) algorithm, antigen reactive binders were predicted and validated with in vitro screening experiment. A result of this research work is published in โ€˜Experimental & Molecular Medicine (2017). doi:0.1038/emm.2017.22โ€™ and โ€˜Biomolecule (2020). doi:10.3390/biom10030421โ€™. Conclusion: By combining conventional antibody discovery techniques and high-throughput antibody repertoire sequencing, it was able to make advances in multiple attributes of the previous methodology. Multi-cycle amplification with Ig germline gene specific primers showed the high level of repertoire distortion, but could be improved by employing universal primer-based amplification method. RF model generates the large number of antigen reactive antibody sequences having various clonal enrichment pattern. This result offers the new insight in interpreting clonal enrichment process, frequency of antigen specific binder does not increase gradually but depends on the multiple selection rounds. Supervised learning-based method also provides the more diverse antigen specific clonotypes than conventional antibody discovery methods.์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ: ๋‹จ์ผ ํด๋ก  ํ•ญ์ฒด (monoclonal antibody, mAb) ๋Š” B ์„ธํฌ์—์„œ ์ƒ์‚ฐ๋˜์–ด ํ‘œ์  ํ•ญ์›์— ํŠน์ด์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๋Š” ํด๋ฆฌํŽฉํƒ€์ด๋“œ ๋ณตํ•ฉ์ฒด ์ด๋‹ค. ๋ถ„์ž ๋ฐ ์„ธํฌ ํด๋กœ๋‹ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์žฌ์กฐํ•ฉ ๋‹จ์ผ ํด๋ก  ํ•ญ์ฒด๋ฅผ ๋Œ€์šฉ๋Ÿ‰์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š”๊ฒƒ์ด ๊ฐ€๋Šฅํ•ด์กŒ์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ ๋ฐ ์ž„์ƒ ๋ถ„์•ผ์—์„œ์˜ ํ™œ์šฉ์ด ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์น˜๋ฃŒ์šฉ ํ•ญ์ฒด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋ฐœ๊ตดํ•˜๊ณ  ๊ฐœ๋ฐœํ•˜๋Š” ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ๋น„์•ฝ์ ์ธ ๋ฐœ์ „์ด ์ด๋ฃจ์–ด์กŒ๋‹ค. ์œ ์ „์ž ์„œ์—ด ๋ถ„์„, ํ‘œํ˜„ํ˜• ์Šคํฌ๋ฆฌ๋‹, ์ปดํ“จํŒ… ๊ธฐ๋ฐ˜ ๋ถ„์„๋ฒ• ๋ถ„์•ผ์—์„œ ์ด๋ฃจ์–ด์ง„ ๊ณ ์ง‘์  ๋ฐฉ๋ฒ•๋ก  (high-throughput methodology) ์˜ ๋ฐœ์ „๊ณผ ์ด์˜ ์‘์šฉ์„ ํ†ตํ•ด, ๋น„์‹คํ—˜์  ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ํ•ญ์› ๋ฐ˜์‘์„ฑ ํ•ญ์ฒด ํŒจ๋„์„ ์ƒ์‚ฐํ•˜๋Š”๊ฒƒ์ด ๊ฐ€๋Šฅํ•ด์กŒ๋‹ค. ์—ฐ๊ตฌ์˜ ๋ชฉํ‘œ: ๋ณธ ๋ฐ•์‚ฌ ํ•™์œ„ ๋…ผ๋ฌธ์€ ๊ณ ์ง‘์  ํ•ญ์ฒด ๋ ˆํผํ† ์–ด ์‹œํ€€์‹ฑ (high-throughput antibody repertoire sequencing) ๊ณผ ์ƒ๋ฌผ์ •๋ณดํ•™ (bioinformatics) ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์‹ ๊ทœํ•œ (novel) ์ฐจ์„ธ๋Œ€ ํ•ญ์ฒด ๋ฐœ๊ตด๋ฒ• (next-generation antibody discovery method) ์„ ๊ฐœ๋ฐœํ•˜๋Š”๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด in vitro display ํ•ญ์ฒด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•œ ์‹ ๊ทœ ํ”„๋กœํ† ์ฝœ ๋ฐ ๊ธฐ๊ณ„ ํ•™์Šต์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ํ•ญ์ฒด ๋ฐœ๊ตด๋ฒ•์„ ๊ฐœ๋ฐœ ํ•˜์˜€๋‹ค. Chapter 3: ํ•ญ์ฒด ๋ ˆํผํ† ์–ด๋ฅผ ์ฆํญํ•˜๋Š” ๊ณผ์ •์—์„œ, ๋‹ค์ˆ˜์˜ ์ƒ์‹์„ธํฌ ๋ฉด์—ญ ๊ธ€๋กœ๋ถˆ๋ฆฐ ์œ ์ „์ž (germline immunoglobulin gene) ํŠน์ด์  ํ”„๋ผ์ด๋จธ ์‚ฌ์šฉ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ฆํญ ํŽธ์ฐจ (amplification bias) ๋ฅผ ์ตœ์†Œํ™” ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ์œ ๋‹ˆ๋ฒ„์…œ (universal) ํ”„๋ผ์ด๋จธ๋ฅผ ์‚ฌ์šฉํ•œ ๋‹ค์ค‘ ์‚ฌ์ดํด ์ฆํญ (multi-cycle amplification) ๋ฒ•์ด ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ๊ณ ์ง‘์  ํ•ญ์ฒด ๋ ˆํผํ† ์–ด ์‹œํ€€์‹ฑ์„ ํ†ตํ•ด, ํด๋ก  ๋‹ค์–‘์„ฑ (clonal diversity) ๋ฐ ๋ฉด์—ญ ๋ ˆํผํ† ์–ด ์žฌ๊ตฌ์„ฑ๋„ (immune repertoire reproducibility) ๋ฅผ ์ƒ๋ฌผ์ •๋ณดํ•™์  ๊ธฐ๋ฒ•์œผ๋กœ ์ธก์ •ํ•˜์—ฌ ์‹ ๊ทœ ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ์˜ ํ•™์ˆ ์ง€์— ์ถœํŒ ๋˜์—ˆ๋‹ค: Journal of Immunological Methods (2021). doi: 10.1016/j.jim.2021. 113089. Chapter 4: ๊ธฐ๊ณ„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ํ•ญ์ฒด ๋ฐœ๊ตด๋ฒ• ๊ฐœ๋ฐœ์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ์ „ํ†ต์  ์ฝœ๋กœ๋‹ˆ ์Šคํฌ๋ฆฌ๋‹ (colony screening) ๋ฐฉ๋ฒ•์—์„œ๋Š”, ํด๋ก  ๋นˆ๋„ (clonal abundance) ๊ฐ€ ๋‚ฎ์€ ํด๋ก ์„ ๋ฐœ๊ตด ํ•˜๊ฑฐ๋‚˜ ์„ ํƒ์•• (selective pressure) ์ด ๋ถ€์—ฌ๋˜๋Š” ๊ณผ์ •์—์„œ, p8 ํ‘œ๋ฉด ๋‹จ๋ฐฑ์งˆ์˜ ๋น„ ํŠน์ด์  ํ•ญ์› ํŠน์ด์„ฑ์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์—†๋‹ค. ์ด๋Ÿฌํ•œ ์ œํ•œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•ญ์› ๊ฒฐํ•ฉ๋Šฅ ๋ฐ ๋ฐ”์ด์˜คํŒจ๋‹ ์—์„œ์˜ ํด๋ก  ๋นˆ๋„๊ฐ€ ์ธก์ • ๋˜์–ด์žˆ๋Š” ๊ณ ์ง‘์  ํ•ญ์ฒด ์„œ์—ด ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ (random forest, RF) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ํ•ญ์› ํŠน์ด์  ํ•ญ์ฒด ํด๋ก ์„ ์˜ˆ์ธกํ•˜์˜€์œผ๋ฉฐ, ์‹œํ—˜๊ด€ ๋‚ด ์Šคํฌ๋ฆฌ๋‹์„ ํ†ตํ•ด ํ•ญ์› ํŠน์ด์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ์˜ ํ•™์ˆ ์ง€์— ์ถœํŒ๋˜์—ˆ๋‹ค: 1) Experimental & Molecular Medicine (2017). doi:0.1038/emm.2017.22., 2) Biomolecule (2020). doi:10.3390/biom10030421. ๊ฒฐ๋ก : ์ „ํ†ต์  ํ•ญ์ฒด ๋ฐœ๊ตด ๊ธฐ์ˆ ๊ณผ ๊ณ ์ง‘์  ํ•ญ์ฒด ๋ ˆํผํ† ์–ด ์‹œํ€€์‹ฑ ๊ธฐ์ˆ ์„ ์œตํ•ฉํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ์˜ ๋‹ค์–‘ํ•œ ํ•œ๊ณ„์ ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฉด์—ญ ๊ธ€๋กœ๋ถˆ๋ฆฐ ์ƒ์‹์„ธํฌ ์œ ์ „์ž ํŠน์ด์  ํ”„๋ผ์ด๋จธ๋ฅผ ์‚ฌ์šฉํ•œ ๋‹ค์ค‘ ์‚ฌ์ดํด ์ฆํญ์€ ํด๋ก  ๋นˆ๋„ ๋ฐ ๋‹ค์–‘์„ฑ์— ์™œ๊ณก์„ ์œ ๋„ ํ•˜์˜€์œผ๋‚˜, ์œ ๋‹ˆ๋ฒ„์…œ ํ”„๋ผ์ด๋จธ๋ฅผ ์‚ฌ์šฉํ•œ ์ฆํญ๋ฒ•์„ ํ†ตํ•ด ๋†’์€ ํšจ์œจ๋กœ ๋ ˆํผํ† ์–ด ์™œ๊ณก์„ ๊ฐœ์„ ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. RF ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ํด๋ก  ์ฆํญ ํŒจํ„ด (enrichment pattern) ์„ ๊ฐ€์ง€๋Š” ํ•ญ์› ๋ฐ˜์‘์„ฑ ํ•ญ์ฒด ์„œ์—ด์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•ญ์›์— ํŠน์ด์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๋Š” ํด๋ก ์ด ๋‹จ๊ณ„์ ์œผ๋กœ ์ฆํญ๋˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์ดˆ๊ธฐ ๋ฐ ํ›„๊ธฐ์˜ ๋‹ค์ˆ˜์˜ ์„ ๋ณ„ ๋‹จ๊ณ„ (selection round) ์— ์˜์กดํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ๋ฐ”์ด์˜คํŒจ๋‹ ์—์„œ์˜ ํด๋ก  ์ฆํญ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ•ด์„์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ง€๋„ ํ•™์Šต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐœ๊ตด ๋œ ํด๋ก ๋“ค์—์„œ, ์ „ํ†ต์  ์ฝœ๋กœ๋‹ˆ ์Šคํฌ๋ฆฌ๋‹ ๋ฐฉ๋ฒ•๊ณผ ๋Œ€๋น„ํ•˜์—ฌ ๋” ๋†’์€ ์„œ์—ด ๋‹ค์–‘์„ฑ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.1. Introduction 8 1.1. Antibody and immunoglobulin repertoire 8 1.2. Antibody therapeutics 16 1.3. Methodology: antibody discovery and engineering 21 2. Thesis objective 28 3. Establishment of minimally biased phage display library construction method for antibody discovery 29 3.1. Abstract 29 3.2. Introduction 30 3.3. Results 32 3.4. Discussion 44 3.5. Methods 47 4. In silico identification of target specific antibodies by high-throughput antibody repertoire sequencing and machine learning 58 4.1. Abstract 58 4.2. Introduction 60 4.3. Results 64 4.4. Discussion 111 4.5. Methods 116 5. Future perspectives 129 6. References 135 7. Abstract in Korean 150๋ฐ•
    corecore