2 research outputs found

    물체 μˆ˜μ†‘μ„ μœ„ν•œ ν˜‘μ—… λ‘œλ΄‡μ˜ 행동 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2016. 2. 이범희.This dissertation presents two cooperative object transportation techniques according to the characteristics of objects: passive and active. The passive object is a typical object, which cannot communicate with and detect other robots. The active object, however, has abilities to communicate with robots and can measure the distance from other robots using proximity sensors. Typical areas of research in cooperative object transportation include grasping, pushing, and caging techniques, but these require precise grasping behaviors, iterative motion correction according to the object pose, and the real-time acquisition of the object shape, respectively. For solving these problems, we propose two new object transportation techniques by considering the properties of objects. First, this dissertation presents a multi-agent behavior to cooperatively transport an active object using a sound signal and interactive communication. We first developed a sound localization method, which estimates the sound source from an active object by using three microphone sensors. Next, since the active object cannot be recalled by only a single robot, the robots organized a heterogeneous team by themselves with a pusher, a puller, and a supervisor. This self-organized team succeeded in moving the active object to a goal using the cooperation of its neighboring robots and interactive communication between the object and robots. Second, this dissertation presents a new cooperative passive object transportation technique using cyclic shift motion. The proposed technique does not need to consider the shape or the pose of objects, and equipped tools are also unnecessary for object transportation. Multiple robots create a parallel row formation using a virtual electric dipole field and then push multiple objects into the formation. This parallel row is extended to the goal using cyclic motion by the robots. The above processes are decentralized and activated based on the finite state machine of each robot. Simulations and practical experiments are presented to verify the proposed techniques.Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Related Work 4 1.2.1 The Categories of Object Transportation Techniques 4 1.2.2 Sound Localization Techniques for Active Object Transportation 7 1.3 Contributions 8 1.4 Organization 10 Chapter 2 Object Transportation Problem 11 2.1 Passive Object versus Active Object 11 2.2 Problem Formulation 13 2.3 Assumptions 13 Chapter 3 Active Object Transportation using a Sound Signal and Interactive Communication 15 3.1 Overview of Active Object Transportation 16 3.2 Sound Vector Generation using Triple Microphones 17 3.2.1 Sound Isocontour Generation using ILD 18 3.2.2 Sound Circle Generation using Inverse-square Law 21 3.2.3 Sound Vector Generation 22 3.3 Cooperative Control Method using Interactive Communication 25 3.3.1 Role Assignment of Multi-robot Team 25 3.3.2 Position Assignment of Multi-robot Team 26 3.3.3 Transportation Process of an Active Object 29 Chapter 4 Passive Object Transportation using Cyclic Shift Motion 33 4.1 Overview of Passive Object Transportation 34 4.2 Multi-robot Team Organization 35 4.3 Row Formation Generation using Multiple Robots 37 4.3.1 Cyclic Shift Motion 37 4.3.2 Path Generation using Virtual Electric Dipole Field 39 4.3.3 Path Following using Bang-bang Controller 42 4.4 Multi-object Transportation by a Decentralized Multi-robot Team 45 4.4.1 Information Acquisition Methods for Finite State Machine 45 4.4.2 Finite State Machines (FSMs) 48 4.4.2.1 The FSM of Guider Robots 49 4.4.2.2 The FSM of a Pusher Robot 52 4.4.2.3 The FSM of a Leader Robot 54 4.4.3 Object Transportation Process 55 4.4.4 Formation Constraints for Curved Transportation Path 57 Chapter 5 Simulation Results 61 5.1 Simulation Environment 61 5.2 Simulation Result of Passive Object Transportation 63 5.3 Comparison Results with Other Passive Object Transportation Techniques 69 5.3.1 Simulation Result of Leader-Follower Technique 70 5.3.2 Simulation Result of Caging Technique 72 Chapter 6 Practical Experiments 77 6.1 Experimental Environment 77 6.2 Experimental Results of Active Object Transportation 81 6.2.1 Experimental Result of the SV Estimation 81 6.2.2 Experimental Result of Active Object Transportation 82 6.3 Experimental Results of Passive Object Transportation 86 6.3.1 Small-object Transportation with Straight Path 86 6.3.2 Small-object Transportation with Curved Path 91 6.3.3 Large-object Transportation 93 6.4 Comparison Result with Caging Technique 95 Chapter 7 Discussion 96 Chapter 8 Conclusions 99 Appendix A: The Approaching Phase of Passive Object Transportation 101 A.1 Approaching Phase 101 A.2 Experimental Result of Approaching Phase 107 Appendix B: Object Transportation in a Static Environment 109 B.1 Overview 109 B.2 Object Transportation Problem in a Static Environment 111 B.3 Multi-object Transportation using Hybrid System 112 B.4 New Finite State Machines 113 B.4.1 The States of Guider Robots 114 B.4.2 The States of a Pusher Robot 115 B.4.3 The States of a Leader Robot 116 B.5 Simulation Results 118 B.5.1 Simulation Result: An Obstacle 118 B.5.2 Simulation Result: Two Obstacles 120 B.6 Practical Experiment 122 Bibliography 124Docto

    Cooperative fault robot rescue using sound signal detection

    No full text
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μ „κΈ°. 컴퓨터곡학뢀, 2011.2. 이범희.Maste
    corecore