19 research outputs found

    ์ดˆ๊ณ ์ž์žฅ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์˜ B1+ ๋ถˆ๊ท ์ผ์„ฑ ์™„ํ™”๋ฅผ ์œ„ํ•œ ์ „์ž๊ธฐ ํผํ…์…œ ๊ธฐ๋ฐ˜์˜ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๋ชจ๋“œ ์„ฑํ˜• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•๋‚จ๊ทœ.Magnetic resonance imaging (MRI) is one of the most popular diagnostic imaging tools with its safety and applicability. By increasing the strength of operating B0, MRI has improved image quality, and recent research has enabled the imaging modality to increase the operating B0 fields over 7T, which is in the ultra-high-field (UHF) range. UHF MRI has various advantages, including the enhancement of the signal-to-noise ratio (SNR), spectral and spatial resolutions, and contrast. Especially, UHF MRI has an irreplaceable strength in precise scanning of the brain tissue to examine various neurological disorders. Nonetheless, the increase of the operating magnetic field causes the severe issue of RF B1+ field inhomogeneity, which is detrimental to homogeneous retrieval of the intensity, SNR, and contrast in MR image. To tackle the critical issue of inhomogeneity, a multitude of approaches for shimming the B1+ inhomogeneity have been proposed. Among them, RF passive shimming by pad structure filled with dielectric materials has proven its validity as a safe and well-compatible solution applicable to clinical applications. While successful in controlling the field distribution, most of the past efforts utilizing the local enhancement of B1+ in the vicinity of the pad structures, especially those in contact with the body, often resulted in deterioration of the global B1+ homogeneity over the ROI. Therefore, a study on a scheme for achieving the global homogeneity of B1+ is required. In this dissertation, we propose the notion of the mode shaping based on the evanescent coupling of the electromagnetic potentials to address the issue of B1+ field homogeneity. Treating the human head as a resonator, we apply an auxiliary potential well evanescent coupled to the head potential, to investigate the effects of the auxiliary potential configuration on the mode shaping and the resultant field homogenization. From the analysis and optimization, we obtain a robust mode shaping pad solution to achieve 2D global homogenization of axial B1+ field for the phantom of various geometry and the realistic voxel model of heterogeneous materials, which is applicable to the conventional 2D MRI scanning. Furthermore, extending the mode shaping approach with symmetry breaking, we propose the mode shaping solutions for 3D global homogenization of B1+ field. For the practical assessment of the feasibility of the mode shaping solutions, the SAR and robustness analysis of the solutions are also conducted. We believe that this study will expand the capability of the RF passive shimming in UHF MRI by providing an unconventional viewpoint and systematic guideline for the mitigation of B1+ inhomogeneity.์ž๊ธฐ ๊ณต๋ช… ์˜์ƒ๋ฒ•์€ ์•ˆ์ •์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ€์žฅ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ด์šฉ๋˜๊ณ  ์žˆ๋Š” ์˜์ƒ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ž๊ธฐ ๊ณต๋ช… ์˜์ƒ๋ฒ•์€ ๋™์ž‘ ์ • ์ž๊ธฐ์žฅ์„ ๋†’์ž„์œผ๋กœ์จ ์˜์ƒ์˜ ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ตœ๊ทผ์—๋Š” 7T ์ด์ƒ์˜ ์ดˆ๊ณ ์ž์žฅ ์ž๊ธฐ ๊ณต๋ช… ์˜์ƒ๋ฒ•์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ดˆ๊ณ ์ž์žฅ ์ž๊ธฐ ๊ณต๋ช… ์˜์ƒ๋ฒ•์€ ์‹ ํ˜ธ ๋Œ€๋น„ ์žก์Œ๋„, ๊ณต๊ฐ„ ์‹œ๊ฐ„ ํ•ด์ƒ๋„, ๋Œ€์กฐ๋„ ๋“ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ, ์ด๋ฅผ ํ†ตํ•ด ํŠนํžˆ ๋‡Œ ์ •๋ฐ€ ์˜์ƒ ์ดฌ์˜์— ๋Œ€์ฒด ๋ถˆ๊ฐ€ํ•œ ๊ฐ•์ ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ • ์ž๊ธฐ์žฅ์˜ ์ฆ๊ฐ€๋Š” ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ B1+ ํ•„๋“œ์˜ ๋ถˆ๊ท ์ผ์„ฑ์„ ์•ผ๊ธฐํ•˜๋ฉฐ, ์ด๋Š” ๋‹ค์‹œ ์ด๋ฏธ์ง€ ํ€„๋ฆฌํ‹ฐ๋ฅผ ๋–จ์–ด๋œจ๋ฆฌ๋Š” ๋“ฑ ์›์น˜ ์•Š๋Š” ์˜ํ–ฅ์œผ๋กœ ์ด์–ด์ง„๋‹ค. B1+ ํ•„๋“œ ๋ถˆ๊ท ์ผ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์ด ์‹œ๋„๋˜์—ˆ์œผ๋ฉฐ, ์ด ์ค‘์—์„œ๋„ ์œ ์ „์ฒด ๋ฌผ์งˆ๋กœ ์ฑ„์šด ๊ตฌ์กฐ๋ฌผ์ธ ํŒจ๋“œ๋ฅผ ์ด์šฉํ•œ ์ˆ˜๋™ ๋ณด์ • ์ ‘๊ทผ์€ ๊ธฐ์กด ์‹œ์Šคํ…œ์— ํ˜ธํ™˜์ด ๋˜๊ณ  ์•ˆ์ •์„ฑ์„ ์ธ์ •๋ฐ›์•„ ์ž„์ƒ์—์„œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ์•Œ๋ ค์ ธ ์žˆ๋Š” ๋Œ€ํ‘œ์ ์ธ ์ „๋žต์ด๋‹ค. ํ•„๋“œ ํŒจํ„ด์„ ๋ฐ”๊พธ์–ด์ฃผ๋Š” ํšจ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ๊ด€์‹ฌ ์˜์—ญ์— ๋ถ™์—ฌ ์ฃผ๋ณ€๋ถ€์˜ ๋ถˆ๊ท ์ผ์„ฑ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์™„ํ™”ํ•˜๋Š” ์ด ๋ฐฉ๋ฒ•์€ ์ตœ๊ทผ ๊ณ  ์œ ์ „์ฒด ๋ฌผ์งˆ์˜ ํ™œ์šฉ๊ณผ ๋”๋ถˆ์–ด ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ์ง€๋งŒ, ๊ด€์‹ฌ ๋ถ€๋ถ„ ์˜์—ญ ์ „์ฒด์— ๋Œ€ํ•ด์„œ๋Š” ์•…์˜ํ–ฅ์„ ์ˆ˜๋ฐ˜ํ•˜๋ฏ€๋กœ ๊ด‘์—ญ ๊ท ์ผํ™”๋ฅผ ์œ„ํ•œ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š”, B1+ ํ•„๋“œ์˜ ๊ด‘์—ญ ๊ท ์ผํ™”๋ฅผ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ํผํ…์…œ์˜ ์—๋ฐ”๋„ค์„ผํŠธ ์ปคํ”Œ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ชจ๋“œ ์„ฑํ˜• ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์ธ์ฒด๋ฅผ ๊ณต์ง„๊ธฐ๋กœ ๋ณด๊ณ  ๊ทธ๊ฒƒ๊ณผ ์—๋ฐ”๋„ค์„ผํŠธ ๊ฒฐํ•ฉ์„ ํ•˜๋Š” ๋ณด์กฐ ํผํ…์…œ์„ ์ ์šฉํ•จ์œผ๋กœ์จ ๋ชจ๋“œ ์„ฑํ˜• ๋Šฅ๋ ฅ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๊ทธ๊ฒƒ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ์Šค์บ๋‹ํ•˜๋ ค๋Š” ๋Œ€์ƒ์˜ ํ˜•ํƒœ๋‚˜ ๋ฌผ์งˆ ๋ถ„ํฌ์— ๊ฐ•๊ฑดํ•œ ์ถ•์„ฑ B1+ ํ•„๋“œ์˜ ๊ด‘์—ญ ๊ท ์ผํ™”๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ํ•ด๋‹น ๊ฐœ๋…์„ ํ™•์žฅํ•˜์—ฌ ์‚ผ์ฐจ์› ๊ด‘์—ญ ๊ท ์ผํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ๋“œ ์„ฑํ˜•๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด, ์ด๋Ÿฌํ•œ ๋ชจ๋“œ ์„ฑํ˜•๋ฒ•์˜ ์‹ค์ œ์  ์ ์šฉ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด SAR์™€ ๊ฐ•๊ฑด์„ฑ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ดˆ๊ณ ์ž์žฅ ์ž๊ธฐ ๊ณต๋ช… ์˜์ƒ๋ฒ•์˜ B1+ ๋ถˆ๊ท ์ผ์„ฑ ์™„ํ™”์— ๋Œ€ํ•œ ์ƒ‰๋‹ค๋ฅธ ์‹œ๊ฐ๊ณผ ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ ๊ท ์ผํ™”์—์˜ ์ˆ˜๋™ ๋ณด์ • ๋ฐฉ๋ฒ•์˜ ์—ญํ• ์„ ํ™•์žฅํ•˜๋Š” ์ง€์นจ์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Abstract i Table of Contents iv List of Tables viii List of Figures ix Chapter 1. Introduction 1 1.1 Ultra-high-field magnetic resonance imaging: promising scheme for clinical imaging 2 1.2 Inhomogeneity problem in UHF MRI: Motivation 5 1.3 Dissertation overview 7 Chapter 2. Theory and method for the B1+ shimming 9 2.1 Electromagnetics in the UHF MRI 10 2.1.1 Principal physics of MRI system in view of electromagnetics 10 2.1.2 Issue of RF B1+ field inhomogeneity in UHF MRI 14 2.2 B1 shimming in UHF MRI 17 2.2.1 Current approaches and achievements for B1+ shimming 17 2.2.2 Background and motivation of our strategy for B1 shimming: mode shaping pad 21 2.3 Optical mode shaping based on evanescent coupling for mitigation of B1+ inhomogeneity 23 2.3.1 UHF MRI systems as an optical waveguide 23 2.3.2 Mode shaping via evanescent coupling in optics 24 2.3.3 Evanescent coupling of electromagnetic potentials in UHF MRI 26 2.4 Conclusion 29 Chapter 3. Hybrid mode shaping with auxiliary EM potential for global 2D homogenization 30 3.1 Mode shaping for 2D MRI scanning 31 3.2 Concept of hybrid mode shaping with auxiliary EM potential 34 3.3 Optimization process 38 3.4 Effect of the phantom and pad geometry and other material parameters of the pad 47 3.5 Effect of the inhomogeneous distribution of materials: human voxel model 52 3.6 Effect of the mode shaping potential pad on the SAR distributions 56 3.7 Robustness and stability of the mode shaping solution 59 3.8 Conclusion 61 Chapter 4. Hybrid mode shaping with auxiliary EM potential for global 3D homogenization 63 4.1 Mode shaping for 3D MRI scanning 64 4.2 Hat pad potential for lower-order mode excitation 66 4.3 Asymmetric shifted pad potential 72 4.4 Effect of the shifted potential pad on the SAR distribution 79 4.5 Robustness of the mode shaping with asymmetric potential pad 81 4.6 Conclusion 83 Chapter 5. Conclusion 84 Appendix A. Supplements for Chapter 3 86 A.1 Material and geometry for the MIDA voxel model 86 A.2 Excitation with realistic TEM coils 91 Appendix B. Supplements for Chapter 4 93 B.1 Cylinder can solution for the global homogenization 93 Appendix C 97 Bibliography 98 Abstract in Korean 109Docto

    The effect of Value based Climate Change Messages on elementary school students eco-friendly behavior intention

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฌ๋ฒ”๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ํ™˜๊ฒฝ๊ต์œก์ „๊ณต,2020. 2. ์ด์€์ฃผ.ํ˜„์žฌ ์šฐ๋ฆฌ๊ฐ€ ์‚ด๊ณ  ์žˆ๋Š” ์ด ์‹œ์ ์€ ์ธ๋ฅ˜์˜ ์—ญ์‚ฌ์—์„œ ๊ฐ€์žฅ ํ™”๋ คํ•˜๊ณ  ์ตœ๊ณ ์˜ ๋ฐœ์ „์„ ์ด๋ฃฌ ์‹œ๊ธฐ์ด๋‹ค. ์ถ”์œ„์™€ ๊ตถ์ฃผ๋ฆผ ๋“ฑ ๋Š์ž„์—†๋Š” ์œ„ํ˜‘์˜ ํ•œ๋ณตํŒ์— ์„œ์žˆ๋˜ ํƒœ์ดˆ์˜ ์ธ๊ฐ„์€ ์ง€๊ธˆ์˜ ๊ณผํ•™๊ธฐ์ˆ ๋กœ ๋ฌด์žฅํ•˜๊ณ , ์‚ฐ์—…ํ™”๋ฅผ ๊ฑฐ์ณ ์˜ค๋ฉฐ ์ง€๊ตฌ ์ƒํƒœ๊ณ„์— ๊นŠ์€ ๋ฐœ์ž๊ตญ์„ ๋‚จ๊ธธ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๋” ๋งŽ์ด ์ƒ์‚ฐํ•˜๊ณ  ๋Š์ž„์—†์ด ์†Œ๋น„ํ•˜๋ฉฐ ์†Œ๋ฉธ๋˜์ง€ ์•Š๋Š” ์“ฐ๋ ˆ๊ธฐ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ์‚ถ์˜ ๊ตฌ์กฐ๊ฐ€ ํ™”๋ คํ•จ๊ณผ ๋ฐœ์ „์ด๋ผ๋Š” ํฌ์žฅ์ง€ ์†์— ์ˆจ์–ด์žˆ๋‹ค. ์•„์ด๋Ÿฌ๋‹ˆํ•˜๊ฒŒ๋„ ์š•๋ง์˜ ํญ์ฃผ๊ธฐ๊ด€์ฐจ๋ฅผ ๋ฉˆ์ถ”๋ ค๋Š” ๋…ธ๋ ฅ ์—ญ์‹œ ์ธ๊ฐ„์—๊ฒŒ์„œ ์‹œ์ž‘๋˜์—ˆ๋‹ค. ์ง€๊ตฌ์˜ ์ง€์†๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์˜๊ตฌ์‹ฌ๊ณผ ๋ถˆ์•ˆํ•จ์ด ์Šค์Šค๋กœ๋ฅผ ๋Œ์•„๋ณด๊ฒŒ ํ•œ ๊ฒƒ์ด๋‹ค. 1977๋…„ ํŠธ๋นŒ๋ฆฌ์‹œ ์„ ์–ธ์„ ๊ณ„๊ธฐ๋กœ ์‹œ์ž‘๋œ ํ™˜๊ฒฝ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์‹ฌ์€ 1987๋…„ ๋ถ€๋ฃฌํŠธ๋ž€ํŠธ์—์„œ ์šฐ๋ฆฌ ๊ณต๋™์˜ ๋ฏธ๋ž˜๋ผ๋Š” ๋ณด๊ณ ์„œ๋ฅผ ์ฑ„ํƒํ•˜๋ฉด์„œ ์ง€์†๊ฐ€๋Šฅ๋ฐœ์ „์œผ๋กœ ํ™•๋Œ€๋˜์—ˆ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ ์—ญ์‹œ 1992๋…„ ์ œ 6์ฐจ ๊ต์œก๊ณผ์ •์—์„œ ํ™˜๊ฒฝ ๊ต๊ณผ๋ฅผ ๋…๋ฆฝ๋œ ๊ณผ๋ชฉ์œผ๋กœ ์„ค์ •ํ•จ์œผ๋กœ์จ ์ด์— ๋ถ€์‘ํ•ด์™”๋‹ค. ์ด๋Ÿฌํ•œ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ธฐํ›„๋ณ€ํ™”์™€ ๋ฏธ์„ธ๋จผ์ง€, ์ƒ๋ฌผ๋‹ค์–‘์„ฑ ๊ฐ์†Œ ๋“ฑ ํ’€์–ด์•ผ ํ•  ํ™˜๊ฒฝ ๋ฌธ์ œ๋Š” ์Œ“์—ฌ๋งŒ ๊ฐ€๊ณ  ์šฐ๋ฆฌ์˜ ํ™˜๊ฒฝ์ธ์‹๊ณผ ์‹ค์ฒœ์€ ๊ทธ ์•…ํ™”๋˜๋Š” ์†๋„๋ฅผ ๋”ฐ๋ผ๊ฐ€์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ง€์ ์ด ์žˆ๋‹ค. ๊ฒฐ๊ตญ ์ตœ๊ทผ์˜ ํ™˜๊ฒฝ๋ฌธ์ œ๋Š” ์ง€๊ตฌ์œ„ํ—˜ํ•œ๊ณ„์„ ์„ ์œ„ํ˜‘ํ•˜๋Š” ์ˆ˜์ค€๊นŒ์ง€ ์ด๋ฅด๋ €๋‹ค. ์™œ ๊ทธ๋Ÿฐ๊ฐ€ ์‚ดํŽด๋ณด๋‹ˆ, 2014๋…„ ํ™˜๊ฒฝ๋ถ€์—์„œ ๋ฐœํ‘œํ•œ ํ™˜๊ฒฝ๋ณด์ „์— ๊ด€ํ•œ ๊ตญ๋ฏผ์˜์‹ ์กฐ์‚ฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด 90%๊ฐ€ ๋„˜๋Š” ๊ตญ๋ฏผ๋“ค์€ ํ™˜๊ฒฝ์˜ค์—ผ์„ ์‹ฌ๊ฐํ•˜๊ฒŒ ์ธ์‹ํ•˜๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ™˜๊ฒฝ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์œ„ํ•œ ๋…ธ๋ ฅ์— ๋Œ€ํ•ด์„œ๋Š” ๋…ธ๋ ฅํ•˜์ง€ ์•Š๋Š”๋‹ค ๋Š” ์˜๊ฒฌ์ด 70%๋กœ ๋งค์šฐ ๋†’์•˜๋‹ค. ์ด์ฒ˜๋Ÿผ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ํ™˜๊ฒฝ์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•ด ๊ณต๊ฐํ•˜๊ณ  ํ™˜๊ฒฝ์„ ๋ณด์กดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ์นœํ™˜๊ฒฝ์ ์ธ ํ–‰๋™์„ ์‹ค์ฒœํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์•Ž๊ณผ ํ–‰๋™์˜ ๊ฐ„๊ทน์ด ๋ฐœ์ƒํ•˜๋Š” ์ด์œ ๋กœ๋Š” ์‚ฌ๋žŒ๋“ค์€ ์ž์‹ ์—๊ฒŒ ์ค‘์š”ํ•œ ์–ด๋–ค ๊ฒƒ์„ ํฌ๊ธฐํ•ด์•ผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์ธ์‹์ด ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์นœํ™˜๊ฒฝํ–‰๋™์„ ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์นœํ™˜๊ฒฝํ–‰๋™์„ ํ•˜๋ ค๋ฉด ๊ฐœ์ธ์ด ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ๊ฒƒ๋“ค์„ ์–ด๋Š ์ •๋„ ํฌ๊ธฐํ•ด์•ผ ํ•˜๋Š”๋ฐ ์ด๊ฒƒ๋“ค์ด ์ค‘์š”ํ•˜๊ฒŒ ์ง€๊ฐ๋ ์ˆ˜๋ก ํ™˜๊ฒฝํ–‰๋™์˜ ์‹ค์ฒœ์€ ์–ด๋ ค์›Œ ์งˆ ์ˆ˜๋ฐ–์— ์—†๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ ‡๊ฒŒ ๊ฐœ์ธ์ด ์†Œ์ค‘ํžˆ ์—ฌ๊ธฐ๋Š” ๊ฒƒ, ์ฆ‰ ๊ฐ€์น˜๊ฐ€ ์นœํ™˜๊ฒฝํ–‰๋™์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์ด๋‹ค. ๋ฐ˜๋Œ€๋กœ ์ƒ๊ฐํ•˜๋ฉด ํ™˜๊ฒฝ๋ณดํ˜ธ๋ฅผ ํ†ตํ•ด ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ๋“ค์— ํฐ ๊ฐ€์น˜๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค๋ฉด ํ™˜๊ฒฝํ–‰๋™์˜ ์‹ค์ฒœ์€ ๋ณด๋‹ค ์ ๊ทน์ ์œผ๋กœ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ๊ด€์‹ฌ๊ณผ ์—ผ๋ ค, ํ™˜๊ฒฝํ–‰๋™์˜ ์‹ค์ฒœ์€ ๊ฐœ์ธ์ด ๋ฌด์—‡์— ๊ฐ€์น˜๋ฅผ ๋‘๊ณ  ์žˆ๋Š๋ƒ์— ๋”ฐ๋ผ ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์ด๋‹ค. ์‚ฌ๋žŒ๋“ค์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ฐ€์น˜๋Š” ๊ทธ๋“ค์˜ ํ–‰๋™์— ์‹ค์ œ ์˜ํ–ฅ์„ ์ค€๋‹ค. ๋ฏธ๊ตญ์˜ ๊ฒฝ์šฐ ๋‹ค์ˆ˜๊ฐ€ ์‚ด์•„์žˆ๋Š” ๋ชจ๋“  ๊ฒƒ์— ๋Œ€ํ•œ ์ƒ๋ช…๊ถŒ๋ณด๋‹ค๋Š” ์ž๊ธฐ ์ž์‹ ์— ์ดˆ์ ์„, ๋ผํ‹ด ์•„๋ฉ”๋ฆฌ์นด์—์„œ๋Š” ๋ฐ˜๋Œ€๋กœ ์ž๊ธฐ ์ž์‹ ๋ณด๋‹ค๋Š” ๋ชจ๋“  ์‚ด์•„์žˆ๋Š” ์ƒ๋ช…์— ๋™๊ธฐํ™” ๋˜์–ด ์นœํ™˜๊ฒฝํ–‰๋™์„ ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์–ด๋ฆฐ ์•„์ด๋ฅผ ๊ฐ€์ง„ ๋ถ€๋ชจ๋“ค์€ ์•„์ด๋“ค์ด๋‚˜ ๊ณต๋™์ฒด์— ๋Œ€ํ•œ ์‚ฌํšŒ-์ดํƒ€์  ๊ด€์‹ฌ์œผ๋กœ ์ธํ•ด ๋™๊ธฐ๋ถ€์—ฌ ๋˜์–ด ํ–‰๋™ํ•˜์˜€๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ์ดˆ๋“ฑํ•™์ƒ๋“ค์—๊ฒŒ๋Š” ์–ด๋–ค ์ ์— ๊ด€์‹ฌ๊ณผ ์ดˆ์ ์ด ์žˆ์–ด ์นœํ™˜๊ฒฝํ–‰๋™์„ ํ•˜๋Š”์ง€๊ฐ€ ๊ถ๊ธˆํ•˜์˜€๊ณ  ์ด๋ฅผ ์œ„ํ•ด ์ดˆ๋“ฑํ•™์ƒ๋“ค์ด ๊ฐ€์žฅ ํฐ ํ™˜๊ฒฝ๋ฌธ์ œ๋กœ ์ƒ๊ฐํ•˜๋Š” ๊ธฐํ›„๋ณ€ํ™”๋ฅผ ์†Œ์žฌ๋กœ ํ™œ์šฉํ•˜์˜€๋‹ค. ๊ฐ€์น˜๊ฐ€ ๋“ค์–ด๊ฐ„ ๊ธฐํ›„๋ณ€ํ™” ๋ฉ”์‹œ์ง€๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์นœํ™˜๊ฒฝํ–‰๋™์˜๋„์— ๊ฐ€์žฅ ์˜ํ–ฅ์„ ๋งŽ์ด ์ฃผ๋Š” ๊ฒƒ์ด ์–ด๋Š ๊ฒƒ์ธ์ง€๋ฅผ ๋ฐํžˆ๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ •ํ•ด ์—ฐ๊ตฌ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๊ฐ€์น˜๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฉ”์‹œ์ง€๊ฐ€ ๊ฐ๊ด€์  ์‚ฌ์‹ค๋กœ ์ด๋ค„์ง„ ๊ฐ€์น˜๊ฐ€ ๋“ค์–ด๊ฐ€์ง€ ์•Š์€ ๋ฉ”์‹œ์ง€๋ณด๋‹ค ์ดˆ๋“ฑํ•™์ƒ์˜ ์นœํ™˜๊ฒฝํ–‰๋™์˜๋„๋ฅผ ๋†’์ด๋Š”๋ฐ ๋” ํšจ๊ณผ์ ์ด๋ผ๋Š” ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. ๋˜ํ•œ ์ดˆ๋“ฑํ•™์ƒํ•œํ…Œ๋Š” ์ž๊ธฐ์ค‘์‹ฌ์˜ ๊ฐ€์น˜์™€ ์ƒํƒœ์ค‘์‹ฌ์˜ ๊ฐ€์น˜๊ฐ€ ํƒ€์ธ ์ค‘์‹ฌ์˜ ๊ฐ€์น˜๋ณด๋‹ค ์นœํ™˜๊ฒฝํ–‰๋™์˜๋„์— ๋” ํฐ ์˜ํ–ฅ์„ ์ค€๋‹ค๋Š” ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ๋ฐํž ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ ๋™์•ˆ์—๋Š” ํ™˜๊ฒฝ๊ต์œก์„ ์ง„ํ–‰ํ•  ๋•Œ ์ˆ˜์šฉ์ž์ธ ํ•™์ƒ์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ฐ€์น˜๋‚˜ ํŠน์„ฑ์€ ๋งŽ์ด ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ดˆ๋“ฑํ•™์ƒ๋“ค์ด ์–ด๋–ค ํ™˜๊ฒฝ๊ฐ€์น˜์— ๋” ๋งŽ์ด ๋ฐ˜์‘ํ•˜๋Š”์ง€๋ฅผ ๋ฐํ˜”๊ณ  ์ด์— ๋”ฐ๋ผ ๊ฐ™์€ ๊ต์ˆ˜ํ•™์Šต ์ž๋ฃŒ๋„ ๋‹ค๋ฅด๊ฒŒ ํ•ด์„๋˜๊ณ  ํ™˜๊ฒฝํ–‰๋™์˜๋„๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•„๋ณด์•˜๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค.This time we live in is the most splendid and greatest development in human history. Standing in the midst of constant threats such as cold and hunger, the early humans are now armed with technology and industrialization, leaving a deep footprint in the earth's ecosystem. The structure of life, which produces more, consumes more, and produces immortal waste, lurks in the wrapping paper of glamour and development. Ironically, the effort to stop the runaway train of desire also began in humans. Doubts and uneasiness about the sustainability of the Earth have led us to reflect on ourselves. The interest in environmental education, which began with the 1977 Tbilisi Declaration, expanded to sustainable development when Burundt adopted the report "Our Common Future" in 1987 . Korea has also responded by setting the environment subject as an independent subject in the sixth curriculum in 1992. Despite these efforts, some point out that environmental issues such as climate change, fine dust and reduced biodiversity are piling up and our environmental awareness and practice cannot keep up with the worsening pace. In the end, the latest environmental problems have reached a level that threatens the global risk limit. Looking at the results of the 2014 "People's Consciousness Survey on Environmental Conservation" released by the Ministry of Environment, more than 90 percent of the people said they were "not trying" to solve environmental problems, even though they were seriously aware of environmental pollution. So many people to sympathize with the importance of the environment and knew how to behave in order to preserve the environment but in reality, environmentally friendly. can not implement the action. The reason for this gap in behavior and knowledge is that people don't act environmentally friendly despite their environmental awareness because they have to give up something important to them . Environment-friendly behavior requires a certain degree of abandonment of what an individual considers important, and the more important they are perceived, the more difficult it is to implement environmental behavior. This is what individuals cherish: value affects eco-friendly behavior,". Conversely, if you put a great value on what can be gained from environmental protection, then the practice of environmental behavior could be more active. Therefore, environmental concerns, and practice of environmental behavior are greatly influenced by what individuals value . The values people have a real impact on their behavior. In the U.S. many people focused on themselves rather than on their own right to all living things, while in Latin America, they were synchronizing with all living rights rather than themselves and acting eco-friendly. And parents with young children were motivated by social and altruistic interest in children and communities. Then, I wondered what interests and focus are on in elementary school students, so I used climate change, which is considered the biggest environmental issue for elementary school students. A study was conducted with the aim of developing valuable climate change messages to reveal which ones would have the most impact on eco-friendly behavior. As a result, it was concluded that the message of value was more effective in increasing the eco-friendly behavior of elementary school students than the message of no value based on objective facts. In addition, the study found that the values of self-centeredness and ecological focus affect the eco-friendly behavior more than those of others. In the meantime, the values and characteristics of the acceptor students have not been taken into account in the course of environmental education. Therefore, this study is meaningful in that it found that elementary school students reacted more to certain environmental values and thus found that the same teaching materials were interpreted differently and the environmental behavior was different.์ œ 1 ์žฅ ์„œ๋ก  1 1์ ˆ. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 1 2์ ˆ. ์—ฐ๊ตฌ ๋ชฉ์  ๋ฐ ์—ฐ๊ตฌ ๋ฌธ์ œ 3 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 5 1์ ˆ. ํ™˜๊ฒฝ๊ฐ€์น˜์ง€ํ–ฅ 5 1. ํ™˜๊ฒฝ๊ฐ€์น˜์ง€ํ–ฅ ๊ฐœ๋… 5 2. ํ™˜๊ฒฝ๊ฐ€์น˜์ง€ํ–ฅ๊ณผ ํ™˜๊ฒฝํ–‰๋™ 7 2์ ˆ. ๊ธฐํ›„๋ณ€ํ™”์™€ ๋ฉ”์‹œ์ง€ ํ”„๋ ˆ์ด๋ฐ 9 1. ๊ธฐํ›„๋ณ€ํ™” 9 2. ๊ธฐํ›„๋ณ€ํ™” ๋ฉ”์‹œ์ง€ ํ”„๋ ˆ์ด๋ฐ 9 3์ ˆ. ์นœํ™˜๊ฒฝํ–‰๋™์˜๋„ 12 1. ์นœํ™˜๊ฒฝํ–‰๋™ 12 2. ์นœํ™˜๊ฒฝํ–‰๋™์˜๋„ 12 ์ œ 3 ์žฅ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• ๋ฐ ์„ค๊ณ„ 14 1์ ˆ. ์—ฐ๊ตฌ์˜ ์ ˆ์ฐจ 14 1. ์—ฐ๊ตฌ์˜ ํ๋ฆ„ 14 2. ๊ฐ€์„ค์„ค์ • 16 2์ ˆ. ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ ๋ฐ ํ‘œ์ง‘ 17 3์ ˆ. ์‹คํ—˜๊ณผ์ • ๋ฐ ๋ฐฉ๋ฒ• 18 1. ์‹คํ—˜๊ธฐ๊ฐ„ 18 2. ์‹คํ—˜์„ค๊ณ„ ๋ฐ ๋ฐฉ๋ฒ• 18 3. ๋ฉ”์‹œ์ง€ ์กฐ์ž‘ 19 4. ์กฐ์ž‘์ ๊ฒ€ 21 4์ ˆ. ๊ฒ€์‚ฌ๋„๊ตฌ 22 1. ์ธก์ •๋„๊ตฌ ๊ฐœ๋ฐœ 22 2. ์ธก์ •๋„๊ตฌ ๋ถ„์„ 23 5์ ˆ. ์ž๋ฃŒ์ฒ˜๋ฆฌ 26 1. ์ž๋ฃŒ ์ˆ˜์ง‘ 26 2. ์ž๋ฃŒ ๋ถ„์„ 26 ์ œ 4 ์žฅ ์—ฐ๊ตฌ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 28 1์ ˆ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 28 1. ์กฐ์‚ฌ๋Œ€์ƒ์ž์˜ ์ผ๋ฐ˜์ ์ธ ํŠน์„ฑ 28 2. ๊ฐ€์„ค์˜ ๊ฒ€์ฆ 29 2์ ˆ. ๋…ผ์˜ ๋ฐ ์‹œ์‚ฌ์  45 ์ œ 5 ์žฅ ๊ฒฐ๋ก  47 1์ ˆ. ๊ฒฐ๋ก  47 2์ ˆ. ์ œ์–ธ๊ณผ ํ•œ๊ณ„ 49 ์ฐธ๊ณ ๋ฌธํ—Œ 51 ๋ถ€๋ก 56 Abstract 68Maste

    Training Restricted Boltzmann Machines using MCMC-based Particle filter

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 2. ์ตœ์ข…ํ˜ธ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œํ•œ๋œ ํ˜•ํƒœ์˜ ๋ณผ์ธ ๋งŒ ๋จธ์‹  (Restricted Boltzmann MachineRBM) ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šต (training) ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ (algorithm) ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ์‹์„ 0 ๋˜๋Š” 1๋กœ ๊ตฌ์„ฑ๋œ ์ด์ง„ ๋ฐ์ดํ„ฐ (binary data) ์™€ ์žก์Œ์ด ๋งŽ์€ ์‹ค์ œ์ ์ธ ์‹ค์ˆ˜ ์ž๋ฃŒ (real valued data) ์— ๋Œ€ํ•œ ๋ถ„๋ฅ˜ (classification) ๋ฌธ์ œ์— ํ™œ์šฉํ•˜์—ฌ ๊ทธ ์‹ค์šฉ์„ฑ์„ ๊ฒ€์ฆํ•œ๋‹ค. ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” RBM์— ์˜ํ•ด ์ •์˜๋œ ๋ชจ๋ธ (model) ์ž…๋ ฅ ๋ถ„ํฌ (distribution) ์˜ ๊ธฐ๋Œ“๊ฐ’์„ ๊ณ„์‚ฐํ•ด์•ผ ํ•˜๋Š”๋ฐ, ๋ณ€์ˆ˜ (variable) ์˜ ๊ณต๊ฐ„ (space) ์ด ๋„ˆ๋ฌด ์ปค ์ ์ ˆํ•œ ์ƒ˜ํ”Œ (sample) ๋“ค์„ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๊ณ  ์‹œ๊ฐ„์ด ๋งŽ์ด ๊ฑธ๋ฆฐ๋‹ค. ์ด๋Ÿฐ ๋ฌธ์ œ์˜ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์œผ๋กœ Markov Chain Monte Carlo (MCMC) ๋ฅผ ํ™œ์šฉํ•ด ๋ชจ๋ธ ์ž…๋ ฅ ๋ถ„ํฌ๋ฅผ ๋Œ€ํ‘œํ•˜๋Š” ๋น„๊ต์  ์ž‘์€ ์ˆ˜์˜ ์ƒ˜ํ”Œ์„ ์–ป์–ด ๊ธฐ๋Œ“๊ฐ’์„ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ์‹์ด ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด ๋ฐฉ์‹์€ ๋ชจ๋ธ ์ž…๋ ฅ ๋ถ„ํฌ์˜ ๋ชจ๋“  ์˜์—ญ (range) ์—์„œ ์ƒ˜ํ”Œ์„ ์ถ”์ถœํ•˜์ง€ ๋ชปํ•˜๊ณ , ๋ถ„ํฌ์— ๋”ฐ๋ฅด์ง€ ์•Š๋Š” ์ƒ˜ํ”Œ๋„ ์ถ”์ถœํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์–ด ์ •ํ™•ํ•œ ๊ธฐ๋Œ“๊ฐ’์„ ๊ณ„์‚ฐํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ชจ๋ธ ์ž…๋ ฅ ๋ถ„ํฌ์—์„œ ๋‚ฎ์€ ์ค‘์š”๋„ (importance) ๋ฅผ ๊ฐ–๋Š” ์ƒ˜ํ”Œ์„ ๊ฑธ๋Ÿฌ๋‚ด๊ธฐ ์œ„ํ•ด ํŒŒํ‹ฐํด ํ•„ํ„ฐ (Particle filter) ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” Sampling importance resampling (SIR) ๋ฐฉ์‹์„ ๋ณ€ํ˜•ํ•œ ๊ฒƒ์œผ๋กœ MCMC์—์„œ ์ถ”์ถœ๋œ ์ƒ˜ํ”Œ ์ค‘ ๋ชจ๋ธ ์ž…๋ ฅ ๋ถ„ํฌ์— ์ ํ•ฉํ•œ ์ƒ˜ํ”Œ์„ importance samplingํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ํ•™์Šต์ด ์ง„ํ–‰๋˜๋Š” ๋งค ๋ฐ˜๋ณต๊ณผ์ • (iteration) ๋งˆ๋‹ค ์ •๊ทœํ™” ๋˜์ง€ ์•Š์€ ํ™•๋ฅ  (unnormalized probability) ์„ ํ†ตํ•ด ๊ฐ ์ƒ˜ํ”Œ์˜ ์ค‘์š”๋„๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์ด๋ฅผ ์ด์šฉํ•ด ๋ˆ„์  ๋ถ„ํฌํ•จ์ˆ˜ (cumulative distribution function) ๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  0๊ณผ 1์‚ฌ์ด์—์„œ ๊ท ๋“ฑํ•˜๊ฒŒ ๋ถ„ํฌ (uniformly distributed) ๋œ ์ˆซ์ž ์ค‘์—์„œ ์ถ”์ถœ๋œ ๊ฐ’๋“ค์„ ๋ˆ„์  ๋ถ„ํฌํ•จ์ˆ˜์— ์‚ฌ์ƒํ•˜์—ฌ, ํ•ด๋‹นํ•˜๋Š” ์ƒ˜ํ”Œ์„ ์ถ”์ถœํ•œ๋‹ค. ๋˜ํ•œ Gibbs sampling์˜ ํŠน์„ฑ ์ƒ ์ƒˆ๋กญ๊ฒŒ ์ถ”์ถœ๋œ ์ƒ˜ํ”Œ์€ ์ด์ „ ์ƒ˜ํ”Œ์˜ ์˜ํ–ฅ์„ ๋งŽ์ด ๋ฐ›๊ธฐ์— ์ƒ˜ํ”Œ ํ˜•ํƒœ์˜ ๋ณ€ํ™”๊ฐ€ ์ž‘๋‹ค. ๋”ฐ๋ผ์„œ ์ด์ „ ์ƒ˜ํ”Œ์ด ์žˆ์—ˆ๋˜ ์˜์—ญ์—์„œ ๋น ๋ฅด๊ฒŒ ๋ฒ—์–ด๋‚˜์ง€ ๋ชปํ•ด, ์–ด๋–ค ์˜์—ญ์—์„œ๋Š” ์ƒ˜ํ”Œ์ด ์ถ”์ถœ๋˜์ง€ ์•Š๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด MCMC์— ๋ณ‘๋ ฌ ํ…œํผ๋ง (Parallel temperingPT) ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์„œ๋กœ ๋‹ค๋ฅธ ์˜จ๋„๋ฅผ MCMC์— ์ ์šฉํ•ด Gibbs sampling์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์˜จ๋„๊ฐ€ ๋‚ฎ์€ MCMC์—์„œ ์ถ”์ถœ๋œ ์ƒ˜ํ”Œ์€ ์ด์ „ ์ƒ˜ํ”Œ์— ๊ทผ์ ‘ํ•œ ์˜์—ญ์— ๋จธ๋ฌผ๊ฒŒ ํ•˜๊ณ , ์˜จ๋„๊ฐ€ ๋†’์€ MCMC์—์„œ ์ถ”์ถœ๋œ ์ƒ˜ํ”Œ์€ ๋‹ค๋ฅธ ์˜์—ญ์„ ๋„˜๋‚˜๋“ค๊ฒŒ ํ•œ๋‹ค. PT ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋” ๋„“์€ ์˜์—ญ์—์„œ ์ƒ˜ํ”Œ์„ ์ถ”์ถœํ•œ ๋’ค, importance sampling์„ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ์ž…๋ ฅ ๋ถ„ํฌ๋ฅผ ๋Œ€ํ‘œํ•˜๋Š” ์ƒ˜ํ”Œ์„ ์–ป์–ด ๋” ์ •ํ™•ํ•˜๊ฒŒ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์—ฌ RBM์˜ ๋ชฉ์ ํ•จ์ˆ˜ ๊ฐ’์„ ๋ณด๋‹ค ํฌ๊ฒŒํ•˜๋ฉฐ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ Sparse Deep Bilief Network (SDBN) ์„ ํ™œ์šฉํ•˜์—ฌ ์žก์Œ์ด ๋งŽ์€ ์‹ค์ˆ˜ ์ž๋ฃŒ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š”๋ฐ ์ ํ•ฉํ•œ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. SDBN์€ ์•„๋ž˜์ธต์˜ ์ถœ๋ ฅ์— 1์ด ๋‚˜ํƒ€๋‚  ๊ธฐ๋Œ“๊ฐ’์„ ์ž‘์€ ์ƒ์ˆ˜๋กœ ์ œํ•œํ•˜์—ฌ, ์œ„์ธต์„ ํ•™์Šตํ•  ๋•Œ๋Š” ๋ถ„๋ฅ˜์— ๋„์›€์ด ๋˜๋Š” ํŠน์ง• (feature) ๋งŒ์œผ๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„๋‹ค. ์ค‘์š”ํ•œ ํŠน์ง•๋งŒ ํ™œ์šฉํ•จ์œผ๋กœ์จ, ์œ„์ธต์˜ RBM์€ ๊ด€๋ จ์„ฑ์ด ๋†’์€ ๋‰ด๋Ÿฐ ์‚ฌ์ด์˜ ๊ฐ€์ค‘์น˜ (weight) ๋งŒ ํŠน์ • ๊ฐ’์„ ๊ฐ–๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SDBN์˜ ํ•™์Šต ๋ฐฉ์‹์„ ํ™œ์šฉํ•˜์—ฌ Gaussian-Bernoulli Restricted Boltzmann Machine (GBRBM) ์—์„œ ๋ถ„๋ฅ˜์— ๋„์›€์ด ๋˜๋Š” ํŠน์ง•์„ ์ถœ๋ ฅํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•™์Šตํ•œ๋‹ค. ์ด ์ถœ๋ ฅ๊ฐ’์„ ํ†ตํ•ด Classification Restricted Boltzmann Machine (CRBM) ์„ ๋‹ค์–‘ํ•œ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ•™์Šตํ•˜์—ฌ Deep Boltzmann Machine (DBM) ์„ ๊ตฌ์„ฑํ•˜๊ณ , ์‹ค์ˆ˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 2 ์žฅ ๋ฐฐ๊ฒฝ ์ด๋ก ๊ณผ ๊ด€๋ จ ์—ฐ๊ตฌ 4 2.1 Restricted Boltzmann Machine (RBM) 4 2.2 ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ RBM 14 2.2.1 Classification RBM (CRBM) 14 2.2.2 Gaussian-Bernoulli RBM (GBRBM) 16 2.2.3 Sparse Deep Belief Network (SDBN) 18 2.3 RBM์˜ Log-likelihood ์ธก์ • 20 ์ œ 3 ์žฅ RBM๊ณผ DBM์˜ ์ƒˆ๋กœ์šด ํ•™์Šต ๋ฐฉ๋ฒ• 23 3.1 ํŒŒํ‹ฐํด ํ•„ํ„ฐ(Particle filter)๋ฅผ ์‚ฌ์šฉํ•œ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ 23 3.2 ์‹ค์ˆ˜ ๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ์œ„ํ•œ ํ•™์Šต ๋ฐฉ๋ฒ• 29 ์ œ 4 ์žฅ ์‹คํ—˜ ๊ฒฐ๊ณผ 32 4.1 ์ด์ง„ ๋ฐ์ดํ„ฐ 32 4.1.1 Optical Digit 36 4.1.2 20 Newsgroups 38 4.1.3 USPS 40 4.1.4 MNIST 42 4.2 ์‹ค์ˆ˜ ๋ฐ์ดํ„ฐ 44 ์ œ 5 ์žฅ ๊ฒฐ๋ก  49Maste

    Molecular Recognition: Schiff Base Receptors for Salicylaldehyde and Barbituric Acid

    No full text
    Maste

    (The)Restoration of Korean consonant : effects of lexical information and acoustic information on the restoration of phoneme

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‹ฌ๋ฆฌํ•™๊ณผ ์ง€๊ฐ์‹ฌ๋ฆฌํ•™์ „๊ณต,2002.Docto

    ๊ฐ€์••์ˆ˜์•• ์›์ž๋ ฅ ์—ฐ๋ฃŒ๋ด‰ ํ‘œ๋ฉด์—์„œ์˜ ์‚ฐํ™”์ฒ  ํก์ฐฉ ๋ฐ ํƒˆ์ฐฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    MasterNowadays, energy is widely used in industry. Oil and coal are the main fuels that are used for energy source. However, these are unlimited and it will be depleted very soon. Alternate energy sources have been studied by many people and such energy is nuclear energy. Nuclear energy is produced from nuclear reactor. Nuclear fuels generally is UO2. The reaction in the core, where nuclear fuel is contained, will produce heat energy. Heat energy then will be changed to electricity which are used in everyday life. There are lots of compartments in the nuclear reactor. Steam generator (SG) and reactor core are the main components in nuclear reactor. Different reactors exist, such as Pressurized Water Reactors and Boiling Water Reactors. Only PWRs are used in Korea throughout country. Nuclear plants have been used for tens of years, and the power input has been increased compared to the past. It will bring higher output; in contrast, some disadvantages are found. Fuel crud is one of the adverse effects due to higher power input. Crud (Chalk Rivers Unidentified deposits) is the corrosion products that deposit on the fuel cladding surface. Bad influences of fuel crud are unexpected shift in axial power distribution (AOA phenomena), fall in neutron flux in fuel crud region, and crud acts as heat barrier preventing heat flow from cladding to coolant. In order to mitigate fuel crud deposition, chemical studies have to be conducted. Main sources of fuel crud are from the SG and primary pies. Corrosion first starts by oxidation of tubes, and some corrosion products will be released into the coolant. These corrosion products will be deposited on fuel cladding. Some major composition of fuel crud are iron, nickel, and boron. Iron and nickel come from tubes and boron comes from coolant. Boron deposition occurs during crud layer growth. Iron and nickel are also involved in this growth process, however they are normally involved in fuel crud deposition initiation. In order to understand fuel crud, initiation is important to study. Normally, iron has larger portion compared to nickel. Iron or iron oxide deposition experiments have been conducted to obtain dependence on various parameters. Among iron oxide crud deposits, hematite (Fe2O3) has been analytically studied by different researchers. Deposition rate of hematite depends on various parameters such as heat flux, particle diameter, and concentration. In this research, parametric study and obtain correlation equations are major goal

    Analysis and applications of earliest deadline zero laxity scheduling algorithm on multiprocessors

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ปดํ“จํ„ฐ๊ณตํ•™๊ณผ,2005.Docto

    ๊ณ ์ถ” ์œ ์ „์ฒด ํ™•์žฅ์˜ ์ง„ํ™”์  ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ˜‘๋™๊ณผ์ • ๋†์—…์ƒ๋ฌผ๊ณตํ•™์ „๊ณต, 2011.8. ์ตœ๋„์ผ.Docto

    ๊ณผ๋ƒ‰์œ ๋™๋น„๋“ฑ ์ƒํ™ฉ ์—ด๋ถ„์‚ฐ ์ฑ„๋„์˜ ์—ด์ „๋‹ฌ ํŠน์„ฑ

    No full text
    Doctorํ•ต์œตํ•ฉ๋กœ๋Š” ๋– ์˜ค๋ฅธ ๋‹ค์Œ ์„ธ๋Œ€ ์—๋„ˆ์ง€์›์œผ๋กœ์จ, ํ˜„์žฌ ์„ธ๊ณ„ ์—ฌ๋Ÿฌ ๋งŽ์€ ๋‚˜๋ผ๋“ค์ด ์ ๊ทน์ ์ธ ํˆฌ์ž๋ฅผ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ํ•ต์œตํ•ฉ๋กœ๋Š” ์‚ผ์ค‘์ˆ˜์†Œ์™€ ์ค‘์ˆ˜์†Œ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•ต์œตํ•ฉ ๋ฐ˜์‘์—์„œ ์—๋„ˆ์ง€๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ด์˜จ๋“ค์ด ํ”Œ๋ผ์ฆˆ๋งˆ ํ˜•ํƒœ๋ฅผ ๋ ๊ฒŒ ๋œ๋‹ค. ํ”Œ๋ผ์ฆˆ๋งˆ๋Š” ํ•ต์œตํ•ฉ๋กœ์˜ ํ† ์นด๋ง‰์ด๋ผ๊ณ  ํ•˜๋Š” ์žฅ์น˜ ๋‚ด๋ถ€์— ํ๋ฅด๊ฒŒ ๋œ๋‹ค. ํ”Œ๋ผ์ฆˆ๋งˆ๋Š” ์ž๊ธฐ์žฅ์— ์˜ํ•˜์—ฌ ์ง์ ‘์ ์œผ๋กœ ํ† ์นด๋ง‰ ํ•˜๋‹จ์— ์žˆ๋Š” ๋””๋ฒ„ํ„ฐ๋ผ๋Š” ์žฅ์น˜์— ๋ถ€ํ•˜๋˜๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ ์—ด์†์œผ๋กœ ํ™˜์‚ฐ์‹œ์—, ์›์ž๋ ฅ๋ณด๋‹ค 10๋ฐฐ๊ฐ€๋Ÿ‰ ๋†’์€ 10 ~ 20MW/m2 ๊ฐ€ ๋ถ€ํ•˜๋œ๋‹ค. ๋””๋ฒ„ํ„ฐ์˜ ๋ชฉ์ ์€ ๋†’์€ ์—ด์—๋„ˆ์ง€๋ฅผ ์ œ๊ฑฐํ•จ๊ณผ ๋™์‹œ์— ๋ถˆ์ˆœ๋ฌผ์„ ๊ฑธ๋Ÿฌ๋‚ด๋Š” ์žฅ์น˜๋กœ๋„ ์ด์šฉ๋œ๋‹ค. ๋””๋ฒ„ํ„ฐ์˜ ์™ธ๋ฒฝ์€ ์‚ฌ๊ฐํ˜•ํƒœ์ด๋ฉฐ, ๋‚ด๋ถ€ ์ฑ„๋„์€ ์›ํ˜• ํ˜น์€ ์‚ฌ๊ฐํ˜•ํƒœ๋ฅผ ๋ ๊ณ  ์žˆ๋‹ค. ๋””๋ฒ„ํ„ฐ์— ์—ด์†์ด ๊ฐ€์žฅ ํฌ๊ฒŒ ๋ถ€์—ฌ๋˜๋Š” ๋ถ€๋ถ„์—์„œ๋Š” ์›ํ˜•ํ˜•ํƒœ์˜ Swirl tube ๊ฐ€ ๋Œ€๋ถ€๋ถ„ ์‹๊ฐ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ด์™ธ์—๋Š” ๊ธฐ๋ณธ ์›ํ˜•ํ˜•ํƒœ์˜ ์ฑ„๋„๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ๋””๋ฒ„ํ„ฐ์˜ ํŠน์ง•์œผ๋กœ ํฌ๊ฒŒ 2๊ฐ€์ง€๊ฐ€ ์žˆ๋‹ค. ์ฒ˜์Œ์œผ๋กœ๋Š” ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์—ด์†์ด ๋งค์šฐ ํฌ๋‹ค๋Š” ๊ฒƒ์ด ์žˆ์œผ๋ฉฐ, ๋‹ค์Œ์œผ๋กœ๋Š” ์—ด์ด ๋‹จ๋ฉด์ ์œผ๋กœ ๋ถ€ํ•˜๋œ๋‹ค๋Š” ํŠน์ด์ ์ด ์žˆ๋‹ค. ๋””๋ฒ„ํ„ฐ์˜ ๊ตฌ์กฐ์ƒ ์‚ฌ๊ฐํ˜•ํƒœ์˜ ์›ํ˜•ํ˜•ํƒœ์—์„œ ๋‹จ๋ฉด์œผ๋กœ ์—ด์ด ๋ถ€ํ•˜๋  ์‹œ์— ์—ด์ €ํ•ญ ์ด๋ก ์— ์˜ํ•˜์—ฌ ์›ํ˜•์ฑ„๋„์— ์›์ฃผ๋ฐฉํ–ฅ์œผ๋กœ ์—ด์ด ๋ถ„์‚ฐ๋˜๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ๋ถ€๋ถ„์ธ ์—ด๋ถ€ํ•˜๋ฉด์˜ ์›ํ˜• ์ƒ๋‹จ๋ฉด์€ ์—ด์ด ์ง‘์ค‘๋˜๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ์—ด์†์ด ๋งค์šฐ ์ปค์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ž„๊ณ„์—ด์œ ์†์ด ๋น ๋ฅด๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๋งค์šฐ ๋†’์€ ์—ด์†์ด ๋ถ€ํ•˜๋  ์‹œ์—, ๋””๋ฒ„ํ„ฐ ์ค‘์•™ ๋ถ€๋ถ„์˜ ์˜จ๋„ ๊ธฐ์šธ๊ธฐ๊ฐ€ ๋งค์šฐ ์ปค์„œ ์—ด์‘๋ ฅ๋„ ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ํ”Œ๋ผ์ฆˆ๋งˆ์˜๊ฐ€ ๊ณผ๋„ ์ƒํƒœ๋กœ ๋””๋ฒ„ํ„ฐ์— ๋ถ€ํ•˜๋˜๋Š” ๊ฒฝ์šฐ์—๋Š” ํ”ผ๋กœ๋„๋„ ๋ˆ„์ ๋˜์–ด ์ตœ์ข…์ ์œผ๋กœ ๋””๋ฒ„ํ„ฐ๊ฐ€ ํŒŒ๊ดด๋  ์ˆ˜ ์žˆ๋‹ค. ์—ด์„ ๋ถ„์‚ฐ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์—ด๋ถ„์‚ฐ ํ™€์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ํ™€์—๋Š” ๊ณต๊ธฐ๊ฐ€ ์žˆ๋‹ค. ๊ณต๊ธฐ๋Š” ๋Œ€ํ‘œ์ ์œผ๋กœ ๋งค์šฐ ๋‚ฎ์€ ์—ด์ „๋„์œจ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์›ํ˜• ์ƒ๋‹จ๋ฉด์˜ ์—ด์„ ๋ถ„์‚ฐ์‹œํ‚จ๋‹ค. ์—ด๋ถ„์‚ฐ ํ™€์˜ ๋ชจ์–‘์œผ๋กœ๋Š” ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ๊ผญ์ง€์ ์ด ์žˆ์„ ์‹œ์— ํ•ด๋‹น ๋ถ€๋ถ„์— ์—ด์‘๋ ฅ์ด ์ง‘์ค‘๋˜๊ธฐ ๋•Œ๋ฌธ์— ์›ํ˜•๋ชจ์–‘์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ณผ๋ƒ‰์œ ๋™๋น„๋“ฑ์€ ์ƒ๋ณ€ํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ ๋†’์€ ์—ด์ „๋‹ฌ์œจ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ๊ณผ ๋™์‹œ์— ๋ƒ‰๊ฐ์ˆ˜๊ฐ€ ๋ฏธํฌํ™” ์ƒํƒœ์— ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ฑ„๋„ ๋ฒฝ๋ฉด์—์„œ ๊ธฐํฌ๊ฐ€ ์ƒ์„ฑ๋˜๋ฉด์„œ ๋น ๋ฅด๊ฒŒ ์‘์ถ•๋˜์–ด ๋ฒ„๋ฆฌ๊ธฐ ๋•Œ๋ฌธ์— ํฌํ™”์œ ๋™๋น„๋“ฑ์— ๋น„ํ•˜์—ฌ ๋†’์€ ์ž„๊ณ„์—ด์œ ์†์„ ๊ฐ€์ง„๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๊ณผ๋ƒ‰์œ ๋™๋น„๋“ฑ ์‹คํ—˜์€ ์œ ๋Ÿ‰๊ณผ ๊ณผ๋ƒ‰๋„๋ฅผ ๋ณ€์ˆ˜๋กœ ์‚ฌ์šฉํ•˜๋ฉฐ, ๋ƒ‰๊ฐ์ฑ„๋„๋กœ๋Š” ๊ธฐ๋ณธ์ฑ„๋„, 1์›ํ™€ ์ฑ„๋„, 5์›ํ™€ ์ฑ„๋„์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์‹คํ—˜๊ฒฐ๊ณผ์—์„œ ์ž„๊ณ„์—ด์œ ์†์ด ์œ ๋Ÿ‰๊ณผ ๊ณผ๋ƒ‰๋„์— ๊ด€๊ณ„์—†์ด 5์›ํ™€ ์ฑ„๋„, 1์›ํ™€ ์ฑ„๋„, ๊ธฐ๋ณธ์ฑ„๋„ ์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋ฒฝ๋ฉด์˜ ์—ด์ด ๋ถ„์‚ฐ๋˜์–ด ์˜จ๋„๊ฐ€ ๋‚ฎ์•„์ง„๋‹ค๋Š” ๊ฒƒ์„ ๋ฐ˜์ฆํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ด์— ๋Œ€ํ•œ ์—ด์ „๋„์œจ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ธฐ์กด์— ์žˆ๋Š” ๋‹จ๋ฉด์—ด์†๋ถ€ํ•˜ ์—ด์ „๋„์œจ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ๊ธฐ์กด ๋ชจ๋ธ์ด ํ•ด๋‹น ์œ ์ฒด์™€ ์ฑ„๋„๊ตฌ์กฐ ์กฐ๊ฑด์—์„œ ํฌ๊ฒŒ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์—ด๋ถ„์‚ฐ์œจ์„ ๋ณ€๊ฒฝํ•˜์—ฌ ์‹คํ—˜๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ธฐ๋ณธ์ฑ„๋„๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ, ๊ฐ„๋‹จํ•œ ๊ณ„์ˆ˜์˜ ๋ฐฐ์ˆ˜๋ฅผ ์กฐ์ •ํ•จ์œผ๋กœ์จ 5% ์ด๋‚ด์— ๋งŒ์กฑํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ 5์›ํ™€ ์ฑ„๋„๊ณผ ๊ฐ™์€๊ฒฝ์šฐ์—๋Š” ์œ„์™€ ๊ฐ™์€ ๋ฐฉ๋ฒ•๋ก ์ด ์ ์šฉ๋  ์ˆ˜ ์—†์—ˆ๋‹ค. ๊ธฐ์กด ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ๊ณ„์ˆ˜์™€ ์—ด์† ๋ฐ ๋ƒ‰๊ฐ์ˆ˜์˜ ์••๋ ฅ์— ์˜ํ•˜์—ฌ ๊ฒฐ์ •๋˜๊ฒŒ ๋œ๋‹ค. 5์›ํ™€ ์ฑ„๋„ ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด, 30๋„์™€ 60๋„, 90๋„์˜ ์˜ˆ์ธก์œจ์ด ๊ธฐ๋ณธ์ฑ„๋„๊ณผ ์ฑ„๋„์ด๋ž‘ ๋น„๊ต์‹œ์— ๋ถ„์‚ฐ๋œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๊ตฌ์กฐ์ ์œผ๋กœ ์›ํ™€์ด ์ ์šฉ๋˜์–ด ๋ณ€ํ˜•๋œ ์—ด์ €ํ•ญ์œผ๋กœ ์ธํ•˜์—ฌ ์ฑ„๋„๋ฒฝ๋ฉด์— ์ ์šฉ๋˜๋Š” ์—ด์ด ๋ถ„ํฌ๋˜๋Š” ํ˜„์ƒ์„ ๊ธฐ์กด ๋ชจ๋ธ์—์„œ ๋‚˜ํƒ€๋‚ผ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋ฅผ ๊ฐ๋„์— ๋”ฐ๋ฅธ ์˜ํ–ฅ์œผ๋กœ ๋‚˜ํƒ€๋‚ด์–ด ํ™€์ด ์ ์šฉ๋œ ๋ถ€๋ถ„๊ณผ ์•„๋‹Œ๋ถ€๋ถ„์„ ๊ธฐ์ค€์œผ๋กœ ๋ฒฝ๋ฉด ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๋‚˜๋ˆ„์–ด ์—ด์ „๋‹ฌ์˜ ์˜ˆ์ธก์„ฑ์„ ๋ณด์™„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋””๋ฒ„ํ„ฐ์˜ ์•ˆ์ „์„ฑ ํ‰๊ฐ€์‹œ์— ๋ชจ๋“  ์ง€ํ‘œ์—์„œ 5์›ํ™€ ์ฑ„๋„์ด ๊ธฐ๋ณธ์ฑ„๋„๊ณผ ๋น„๊ตํ•˜์—ฌ ํ–ฅ์ƒ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Nuclear fusion energy is the next energy generation system with high sustainability. Plasma ion is produced from the fusion reaction between tritium (3H, T) and deuterium (2H, D), resulting in helium and energy as production. Plasma is operated at very high temperature, several thousands of temperature, flowing in the tokamak of nuclear fusion reactor generates high thermal energy. Although most of the energy is produced from the first wall by the radiation, certain amount of thermal energy is also transferred to the divertor, where plasma is directly loaded. Such high heat load requires the developed cooling system to remove heat in safety aspect. On the other hand, the efficient energy conversion requires the coolant to be in boiling state, demanding the decent prediction of heat transfer inside the channel. Heat energy created by the plasma is around 10 MW/m2 in steady-state and 20 MW/m2 in transient, which is 10 ~ 20 times higher than the commercial nuclear fission reactors. Such high heat flux demands the divertor to have great mechanical strength to endure thermal stress and high cooling capacity for removal of high heat energy. The other obstacle comes from the geometrical specification; a circular cooling channel inside rectangular block absorbs the heat from the single side. This induces thermal distribution along the circular cooling channel wall since the thermal resistance is different, which is proportional to the distance heat is transferred. High temperature gradient induces thermal stress. In addition, the heat will be concentrated on the top of the channel resulting in Critical Heat Flux to occur fast, which is safety limit. The prevention of the heat concentration can be eased by thermal break concept. The key to the thermal break concept is to apply the thermal barriers in the channel. This can be achieved by controlling the thermal conductivity. Among the methodology of changing the thermal conductivity, thermal break hole is adapted in this study. Thermal break hole is simply to fabricate the air hole through the channel near the center of the channel in axial direction. Air is well known to have a very low heat transfer medium, having very low heat transfer coefficient. Subcooled flow boiling experiments were performed comparing the standard channel with no thermal break hole to the channels with thermal break holes at various coolant conditions varying the mass flowrate and inlet subcooling. CHF was also measured in the experiment. The results showed that regardless of thermal break hole numbers and coolant conditions, CHF increase. The increase in CHF for thermal break hole case would be the evidence that wall heat flux and wall temperature are lower than the standard channel. However, thermal-hydraulic models and correlations that can predict the thermal distribution do not exist in the divertor. In the study, the model is developed modifying the heat transfer coefficient from the existing one-side heating correlation. The final model was compared with the experiment results from the temperature measurements. The thermal analysis of channels were compared and thermal break hole channel showed the improved result in safety aspect of divertor
    corecore