42 research outputs found

    ๋„ํŒŒ๋กœ์™€ ๋ฉ”ํƒ€ํ‘œ๋ฉด์—์„œ์˜ ๋น„๋Œ€์นญ ๊ด‘๋ชจ๋“œ ๋ณ€ํ™˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์ด๋ณ‘ํ˜ธ.In this dissertation, asymmetric characteristics of photonic mode conversion structures in waveguides and metasurfaces have been discussed. More specifically, I propose design schemes for i) adjustment of mode conversion asymmetry in tri-mode waveguide system, ii) compact unidirectional mode converter in plasmonic waveguide and iii) unidirectional scattering of polarization-converted wave from bilayer metasurface. Firstly, a Lorentz reciprocal mode conversion asymmetry in reflectionless tri-mode waveguide system with weak waveguide gratings is discussed. In particular, the dark-mode which is the photonic analogue of atomic dark-state has been exploited for independent design of forward and backward direction characteristics. Due to the stationary property of the dark-mode, the mode conversion characteristics in one propagation direction could be fixed regardless of the length of the grating that defines the dark-mode. By carefully selecting the dark-mode and the length of the waveguide grating, the mode conversion asymmetry could be controlled. Secondly, a compact spatial plasmonic mode converter with unidirectional mode conversion characteristics is proposed. By combining mode-selective blockers with simple stub mode converter, unidirectional mode conversion characteristics could be achieved. Furthermore, it was found that the redundant scattering and the backward reflection can be completely eliminated by mode filtering and destructive interference, respectively. An application of the design strategy using the mode-selective blockers is also presented for the problem of near-complete out-coupling from subwavelength nanoslits. Lastly, a bilayer metasurface which transmits polarization converted signal only to the forward direction is proposed. The bilayer metasurface was designed by assembling two identical thin metasurfaces, the property of which is well-known. After numerical design of the bilayer metasurface, the designed structure was fabricated and its transmission and reflection characteristics were measured. It was found that the reflectance of the fabricated structure is successfully suppressed. The issue of amplitude distortion and its compensation is discussed and experimentally verified. The results on the dark-mode based asymmetric conversion device offer a method to control the transmission asymmetry and this capability can pave a way to actively tunable asymmetry of optical systems. Furthermore, by using mode selective blockers, asymmetric mode converters can be constructed in a compact form which is suitable for nanophotonic applications. The bilayer metasurface can be easily extended to the reflection-type and the multiplexing of transmitted signal and reflected signal can be made possible by making a supercell of a transmission-type cell and a reflection-type cell. This opens a new way of metasurface function multiplexing.Chapter 1 Introduction 1 1.1 Overview 1 1.1.1 Asymmetric transmission characteristics in multimode systems 2 1.1.2 Metasurfaces 6 1.2 Motivation and organization of this dissertation 9 Chapter 2 Adjustment of waveguide mode conversion asymmetry by using photonic dark-states 13 2.1 Introduction 13 2.1.1 Asymmetric transmission in tri-mode waveguide system allowed by Lorentz reciprocity 13 2.1.2 Photonic analogue of dark-state in coupled-mode theory 14 2.2 Designed asymmetry by using dark-modes 16 2.3 Specification of dark-mode 21 2.4 Asymmetric mode conversion by cascaded gratings 25 2.5 Conclusion 33 Chapter 3 Compact plasmonic spatial mode converter with mode conversion asymmetry 34 3.1 Introduction 34 3.1.1 Asymmetric spatial mode converters in waveguides 34 3.1.2 Mode conversion by using mode-selective blocking filters 35 3.2 Plasmonic spatial mode conversion by using a stub mode converter 37 3.2.1 Dispersion relation of the plasmonic waveguide 37 3.2.2 Stub mode converter 39 3.3 Asymmetric mode conversion by using spatial mode filters 44 3.3.1 Configuration of the proposed structure 44 3.3.2 Design of the anti-symmetric mode barrier (F2) 45 3.3.3 Design of the notch filter (F1) 47 3.3.4 Unidirectional mode conversion characteristics of the whole structure 50 3.4 Tuning of the mode-selective cavity for idle scattering component elimination 51 3.4.1 Modelling of the mode-selective cavity and optimization conditions 51 3.4.2 Cavity length optimization 54 3.5 Application of the design strategy to out-coupler design problem 56 3.5.1 Scattering components at the end of nanoslit 56 3.5.2 Trench-type antenna near nanoslit and its working principle 57 3.5.3 Design of the SPP blocking trench 60 3.5.4 Radiation pattern from the optimized structure 63 3.6 Conclusion 66 Chapter 4 Unidirectional launching of polarizationconverted waves from bilayer metasurfaces 67 4.1 Introduction 67 4.1.1 Properties of thin, single layer metasurfaces and the symmetry of scattering characteristics 67 4.1.2 Multiplexing of the transmitted and reflected wavefronts 70 4.2 Numerical design 72 4.2.1 Configuration of the bilayer metasurface and reduction into a single layer metasurface design problem 72 4.2.2 Unit cell structure and gap distance optimization 75 4.2.3 Effective material parameter point of view 78 4.2.4 Amplitude distortion and its compensation 79 4.3 Experiment 82 4.3.1 Fabrication and experimental setup 82 4.3.2 Antenna resonance condition specification 85 4.3.3 Transmission and reflection characterization 87 4.3.4 Amplitude distortion and its reduction by polarization basis change 90 4.4 Conclusion 92 Chapter 5 Summary 93 Bibliography 96 Appendix 105 ์ดˆ ๋ก 106Docto

    A Case Study on the Operational Efficiency of Liner Service Routes of a Container Liner Shipping Company : Focusing on A Shipping Company

    Get PDF
    This study starts from the thought about how global container shipping company that competition is getting deepened recently is operating its service routes effectively and if it is willing to improve. The goal of this study is to examine how effectively global container shipping company in the current competitive environment is operating its service routes. Thus, this study analyze the relative efficiency of liner service routes in the container liner shipping company, using Data Envelopment Analysis(DEA), known as an attractive method for evaluating relative efficiency of some groups with multi factor. That is analyzed by CCR and BCC model. And the efficiency analysis use factors related to cost structure in container shipping company, draws ways to improve the efficiency of current service routes. Based on the result, it suggests the factor that has to be considered by container shipping companies to be more competitive in the industry. Finally, a scale of service route and the effectiveness of operation can be analyzed and ultimately improved.1. ์„œ ๋ก  1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์  1.2 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• ๋ฐ ๋ฒ”์œ„ 2. ์ปจํ…Œ์ด๋„ˆ ํ•ด์šด์‚ฐ์—…์˜ ํ˜„ํ™ฉ 2.1 ์„ธ๊ณ„ ์ปจํ…Œ์ด๋„ˆ ํ•ด์šด ์‚ฐ์—… ํ˜„ํ™ฉ 2.2 ๊ตญ๋‚ด ์ปจํ…Œ์ด๋„ˆ ํ•ด์šด ์‚ฐ์—… ํ˜„ํ™ฉ 2.3 ์™ธํ•ญ ์ปจํ…Œ์ด๋„ˆ์„ ์‚ฌ ํ•ญ๋กœ ์„ ์ • ๋ฐฉ์‹ 3. ์ด๋ก ์  ๋ฐฐ๊ฒฝ๊ณผ ์„ ํ–‰์—ฐ๊ตฌ 3.1 ์ด๋ก ์  ๋ฐฐ๊ฒฝ 3.2 ์„ ํ–‰์—ฐ๊ตฌ 4. ํ•ญ๋กœ์˜ ํšจ์œจ์„ฑ ๋ถ„์„ 4.1 ํ‰๊ฐ€๋Œ€์ƒ์˜ ์„ ์ • 4.2 ํˆฌ์ž…๋ณ€์ˆ˜์™€ ์‚ฐ์ถœ๋ณ€์ˆ˜์˜ ์„ ์ • 4.3 ๋ถ„์„ ์ž๋ฃŒ์˜ ์š”์•ฝ 4.4 DEA ๋ถ„์„ ๊ฒฐ๊ณผ 5. ๊ฒฐ ๋ก  5.1 ์—ฐ๊ตฌ๊ฒฐ๊ณผ์˜ ์š”์•ฝ 5.2 ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์ ๊ณผ ๊ณผ์ œ ์ฐธ๊ณ  ๋ฌธํ—ŒMaste

    A Study on the Effect of N2 Diluent on Soot Formation Characteristics in Ethylene Diffusion Flames

    Get PDF
    ํƒ„ํ™”์ˆ˜์†Œ๋กœ ์ด๋ฃจ์–ด์ง„ ์—ฐ๋ฃŒ์˜ ์—ฐ์†Œ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐฐ๊ธฐ๊ฐ€์Šค๋Š” ๋Œ€๊ธฐ์˜ค์—ผ์„ ์œ ๋ฐœํ•˜๊ณ  ์ธ์ฒด์— ์œ ํ•ดํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋งค์—ฐ์ž…์ž๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ ๋‹ค. ํ˜„๋Œ€์‚ฌํšŒ์—์„œ ๋งค์—ฐ์ž…์ž๋กœ ๊ธฐ์ธํ•œ ํ™˜๊ฒฝ๋ฌธ์ œ๋Š” ์ค‘์š”ํ•œ ์ด์Šˆ๊ฐ€ ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์ „๋ฐ˜์ ์ธ ์‚ฐ์—…์—์„œ ํ™˜๊ฒฝ ๊ด€๋ จ ๊ทœ์ œ๊ฐ€ ๊ฐ•ํ™”๋˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์ด๋‹ค. ์ด์— ๋”ฐ๋ผ ์—ฐ์†Œ ๊ณผ์ •์—์„œ ๋ฐœ์ƒ๋œ ๋งค์—ฐ์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋งค์—ฐ์ƒ์„ฑ๊ณผ์ • ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋„ ํ•„์ˆ˜์ ์ด๋‹ค. ๋งค์—ฐ์˜ ์ƒ์„ฑ๊ณผ ์‚ฐํ™”ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” ์ฃผ์š” ์š”์ธ ์ค‘ ์˜จ๋„๊ฐ€ ๊ด€๋ จ์ด ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒ„ ํ™”์ˆ˜์†Œ ๋ฌผ์งˆ ์ค‘ ์—ํ‹ธ๋ Œ ๊ฐ€์Šค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋Œ€ํ–ฅ๋ฅ˜ํ™•์‚ฐํ™”์—ผ์—์„œ ๋ถˆํ™œ์„ฑ ๊ธฐ์ฒด์ธ ์งˆ์†Œ๋ฅผ 10%๊ฐ„๊ฒฉ์œผ๋กœ 40%๊นŒ์ง€ ์ฒจ๊ฐ€ํ•˜๊ณ  ํ™”์—ผ ์˜จ๋„, ํ˜•ํƒœ, ๋งค์—ฐ์ƒ์„ฑ ๊ด€๋ จ ํ™”ํ•™์ข…์˜ ์ƒํƒœ๋ณ€ํ™”๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๊ด‘๊ณ„์ธก์„ ํ†ตํ•œ ์‹คํ—˜๊ณผ Chemkin 17.0ํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ์ˆ˜์น˜ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ์งˆ์†Œ์˜ ํ˜ผํ•ฉ๋น„์œจ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํ™”์—ผ์˜จ๋„๋Š” ๊ฐ์†Œํ•˜๋ฉฐ ๋งค์—ฐ์ƒ์„ฑ์ธต์ด ์ข์•„์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋งค์—ฐ์ฒด์ ๋ถ„์œจ๊ณผ ๋งค์—ฐ์„ฑ ์žฅ์— ๊ด€์—ฌํ•˜๋Š” ํ™”ํ•™์ข…๋“ค์˜ ๋ชฐ๋ถ„์œจ๋„ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ํ™˜๊ฒฝ ๊ทœ์ œ ๋Œ€์‘์„ ์œ„ํ•œ ์นœํ™˜๊ฒฝ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์— ์ ์ ˆํ•œ ์‘์šฉ๊ณผ ๋‹ค์–‘ํ•œ ์‚ฐ์—…ํ˜„์žฅ ๋ฐ ์‹คํ—˜ ์—ฐ๊ตฌ์—์„œ ์งˆ์†Œ์˜ ์ ์ ˆํ•œ ํ™œ์šฉ์— ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. |The exhaust gas generated in the combustion process of the hydrocarbon fuel contains soot particles that cause air pollution and have harmful effects on the human. Environmental problems caused by soot particles in modern society are becoming important issues, and environmental regulations are being strengthened in the overall industry. Therefore, it is necessary to study the soot formation process in order to control the soot formation in the combustion process. It is known that temperature is related to the main factors affecting the formation and oxidation characteristics of soot. Therefore, in this study, up to 40% of 10% of the nitrogen gas was added to the fuel side in the counterflow diffusion flame based on the ethylene gas. Experiments were carried out through laser extinction method to determine flame temperature, shape, and soot volume fraction. Numerical analyzes were performed with the Chemkin 17.0 program to identify changes in the state of the species associated with soot formation. As a result of the study, it was confirmed that as the dilution ratio of N2 increases, the flame temperature decreases and the soot formation layer becomes narrower. Also, it was confirmed that the soot volume fraction and the mole fraction of chemical species involved in soot growth were also decreased. The results of this study are expected to be useful for proper application of environmentally friendly technologies to cope with environmental regulations and for appropriate utilization of nitrogen in various industrial sites and experimental researches.1. ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ๋งค์—ฐ์ƒ์„ฑํŠน์„ฑ ๋ฐ ์—ฐ๊ตฌ ํ˜„ํ™ฉ 4 1.3 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• 7 2. ์‹คํ—˜์žฅ์น˜ ๋ฐ ์—ฐ๊ตฌ๋ฒ• 8 2.1 ์‹คํ—˜์žฅ์น˜ 8 2.1.1 ์œ ์ฒด๊ณต๊ธ‰์žฅ์น˜ 8 2.1.2 ๋Œ€ํ–ฅ๋ฅ˜๋ฒ„๋„ˆ 12 2.1.3 ๊ณ„์ธก์žฅ์น˜ 15 2.2 ์—ฐ๊ตฌ๋ฒ• 18 2.2.1 ์‹คํ—˜ ์กฐ๊ฑด 18 2.2.2 ์‹คํ—˜ ๋ฐฉ๋ฒ• 18 2.2.3 ์ˆ˜์น˜ํ•ด์„ ๋ฐฉ๋ฒ• 19 3. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 20 3.1 ํ™”์—ผ ํ˜•์ƒ 20 3.2 ํ™”์—ผ ์˜จ๋„ ๋ถ„ํฌ 22 3.3 ๋งค์—ฐ์ƒ์„ฑ ํŠน์„ฑ 26 3.3.1 ๊ด‘์†Œ๋ฉธ๋ฒ• 26 3.3.2 ์ˆ˜์น˜ํ•ด์„์— ๋”ฐ๋ฅธ ๊ฐ ํ™”ํ•™์ข… ๋ชฐ๋ถ„์œจ ๋ณ€ํ™” 31 4. ๊ฒฐ๋ก  46 ์ฐธ๊ณ  ๋ฌธํ—Œ 49Maste

    ๊ฐ€์žฅ์ž๋ฆฌํšจ๊ณผ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์œ -๋ฌด๊ธฐ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ๋ฐ•๋ง‰์˜ ๊ณ ์ •๋ฐ€ ์„œ๋ธŒ๋งˆ์ดํฌ๋ก  ํŒจํ„ฐ๋‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2018. 2. ๊น€๋Œ€ํ˜•.Organic-inorganic hybrid perovskite materials have got into the spotlight for their remarkable optoelectronic performance. They are expected to replace the photoactive layer in commercial silicon-based opotoelectronic devices such as solar cell and photodetector. However, their weak stability in various solvents makes them incompatible with conventional photolithography process, which is highly desirable for solution-processed device array. Although some research groups reported patterning methods to solve this problem, they are suffering from low patterning yield and low patterning quality at the pattern edge. Here, I propose a new patterning method of CH3NH3PbI3 by employing SiO2 trench and dodecyltrichlorosilane, which minimizes shrinkage of CH3NH3PbI3 near the pattern edge and makes it possible to realize submicron pattern of CH3NH3PbI3 thin film. As a demonstration, Au/CH3NH3PbI3/Au photoresistor type photodetector was fabricated by the proposed method. This patterning method provides a new potential for fine-patterned organic-inorganic hybrid material based device.1. Introduction 1 2. Patterning of CH3NH3PbI3 thin film 3 2.1. Patterns realized by the proposed method 3 2.2. Characterization of the proposed patterning method 11 3. Photoresistor type photodetector of CH3NH3PbI3 patterned by the proposed method 19 3.1. Patterning of single cell photodetectors 19 3.2. Current-voltage (I-V) curve of a single cell photodetector depending on light irradiance 21 3.3. I-V curve of single cell photodetectors depending on cell size 24 3.4. Photoresponse characterization of a single cell photodetector 28 3.5. Response time characterization of a single cell photodetector 32 4. 24 24 array of CH3NH3PbI3 photodetectors 35 4.1. Structure of 24 24 array of CH3NH3PbI3 photodetectors 35 4.2. 24 24 CH3NH3PbI3 photodetector array demonstration 38 5. Experimental Section 42 5.1. Materials 42 5.2. Preparing CH3NH3PbI3 precursor solution 42 5.3. Patterning CH3NH3PbI3 with SiO2 trench and DDTS 42 5.4. Patterning CH3NH3PbI3 by SoP method 44 5.5. Fabrication of photodetector array 44 5.6. Fabrication of single cell photodetectors 45 5.7. X-ray diffraction characterization 45 5.8. I-V characterization of single cell CH3NH3PbI3 photodetectors 45 5.9. Pattern size and film thickness characterization 46 5.10. Response time characterization of a single cell photodetector 46 5.11. Absorption spectrum characterization of CH3NH3PbI3 47 5.12. EQE characterization of CH3NH3PbI3 photodetector 47 5.13. Multiplexing 24 24 CH3NH3PbI3 photodetector array 47 5.14. Obtaining images 48 6. Conclusion 49 7. References 50Maste

    Initial of shi(ๆบผ) in Old Chinese

    No full text

    A Numerical Study on the Optimum Design of Gas Injection Nozzles for Two-stroke Dual Fuel Engine

    No full text
    In line with the global trend toward environmental pollution, the International Maritime Organization has been working for several years to regulate air pollutants emitted from ships. Existing diesel engines for ships use hydrocarbon fuel as their main fuel, which makes it difficult to regulate exhaust gas. Therefore, many researchers are actively conducting research and development to use alternative fuels. In 2015, the world's first two-stroke dual-fuel engine, which uses liquefied natural gas as its main fuel along with the low ratio of existing ship fuel, was commercialized. However, there have been continuous reports of damage to the gas injection nozzle after commercialization. Damage to the nozzle can not only worsen the combustion condition of the engine due to improper injection, but can also cause secondary accidents. The purpose of this study is to check the effect on nozzle durability such as stress and deformation through structural analysis by referring to a gas injection nozzle currently commercialized in a dual fuel engine for ships. In order to compare and verify durability due to nozzle variable, a total of three results including total deformation, equivalent elastic strain, and equivalent stress were analyzed for 27 nozzles to which each variable was applied. A length of the nozzle affects a range exposed into a high-temperature combustion chamber, which leads to a temperature change of the nozzle. As the nozzle length exposed in the combustion chamber increases, the nozzle temperature rises and the hardness eventually becomes weak. A hole piping diameter and a hole piping angle affect the flow rate and flow of the fluid inside the nozzle, which affects the pressure of the inner wall of the nozzle and the change of turbulent kinetic energy. For the total deformation, the effect of a change in nozzle temperature according to nozzle length was 98% of the main cause, and the effect of adjusting the pipe angle and diameter of the nozzle hole was insignificant. It was confirmed that the total deformation of the nozzle with a short nozzle length is reduced by about 70% relative to the reference nozzle, and durability is increased. Equivalent stress and equivalent elastic strain tend to be similar to each other. A main cause is the influence of the nozzle hole piping angle, and the nozzle length and the diameter of the hole piping are shown to affect the equivalent stress and the variability of the equivalent elastic strain due to the nozzle hole piping angle. It was confirmed that the equivalent elastic strain and the equivalent stress were affected by the nozzle temperature by 32% and 5%, respectively, and the equivalent elastic strain was more affected by the nozzle temperature than the equivalent stress. In order to verify the effect of nozzle variable on engine performance and exhaust gas emission, an injection angle, an injection position, and a spray coverage are analyzed as variables. A nozzle length affects an injection position and a nozzle hole piping angle affects an injection angle. Because the nozzle has five nonlinear holes, the fluid injected according to the hole position undergoes a liquid collision/splitting process. Flow rate changes due to hole pipe diameter adjustment combine with complex fluid flow to affect spray coverage. It was confirmed that the engine performance is improved as the injection angle decreases, the injection position is close to the piston, and the spray coverage decreases. The exhaust emissions of nitrogen oxides, soot, and carbon dioxide decreased as the injection angle increased, the injection position moved away from the piston, and the spray range was wide. Considering the results of this study, a nozzle with a shorter length of 2 mm and a 10 degree increase in nozzle hole piping angle was selected as the most optimized nozzle. Compared to the existing commercial nozzles, the total deformation of the nozzle decreased by 70%, the equivalent stress decreased by 25%, the equivalent elastic strain increased by 4%, and the turbulent kinetic energy in the nozzle inside decreased by 13%, resulting in improved durability. Furthermore, as a result of the fluid analysis under the same conditions as the nozzle, the result of reducing the exhaust emissions by 21.11% nitrogen oxide, 16.60% soot and 4.40% carbon dioxide was confirmed. The indicated mean effective pressure affecting power is reduced by about 7%, but it can be improved by changing other engine parts and adjusting injection timing. Considering environmental regulations and operating cost reduction, which are issues in the shipping industry, the effectiveness is greater. The results of this study are expected to be used as basic data that can be referenced in the process of localizing nozzles, developing the next nozzle, and selecting a nozzle for a new engine. In addition, among the various efforts of the industrial group to respond to environmental regulations, it will act as a positive factor such as the effect of responding to environmental regulations through the nozzle and cost reduction due to the extension of the life of the parts.|ํ™˜๊ฒฝ์˜ค์—ผ์— ๋Œ€ํ•œ ์ „ ์„ธ๊ณ„์ ์ธ ํ๋ฆ„์— ๋”ฐ๋ผ ๊ตญ์ œํ•ด์‚ฌ๊ธฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ•์—์„œ ๋ฐฐ์ถœ๋˜๋Š” ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์— ๋Œ€ํ•ด ๊ทœ์ œํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์„ ์ˆ˜๋…„์งธ ์ด์–ด์˜ค๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์„ ๋ฐ•์šฉ ๋””์ ค๊ธฐ๊ด€์€ ์ผ๋ฐ˜์ ์œผ๋กœ ํƒ„ํ™”์ˆ˜์†Œ๋กœ ์ด๋ฃจ์–ด์ง„ ์—ฐ๋ฃŒ๋ฅผ ์ฃผ ์—ฐ๋ฃŒ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐฐ๊ธฐ๊ฐ€์Šค ๊ทœ์ œ์— ์ทจ์•ฝํ•˜๋ฏ€๋กœ ๋Œ€์ฒด ์—ฐ๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌยท๊ฐœ๋ฐœ์ด ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์กŒ๋‹ค. 2015๋…„์—๋Š” ๋‚ฎ์€ ๋น„์œจ์˜ ๊ธฐ์กด ์„ ๋ฐ• ์—ฐ๋ฃŒ์™€ ํ•จ๊ป˜ ์•กํ™”์ฒœ์—ฐ๊ฐ€์Šค๋ฅผ ์ฃผ ์—ฐ๋ฃŒ๋กœ ์‚ฌ์šฉํ•˜๋Š” 2ํ–‰์ • ์ด์ค‘์—ฐ๋ฃŒ ์—”์ง„์ด ์„ธ๊ณ„ ์ตœ์ดˆ๋กœ ์ƒ์šฉํ™”๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ƒ์šฉํ™” ์ดํ›„ ๊ฐ€์Šค ๋ถ„์‚ฌ๋…ธ์ฆ์ด ์†์ƒ๋˜๋Š” ์‚ฌ๋ก€๊ฐ€ ์ง€์†ํ•ด์„œ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ๋…ธ์ฆ ์†์ƒ์€ ๋ถ€์ ์ ˆํ•œ ๋ถ„์‚ฌ๋กœ ์ธํ•œ ์—”์ง„์˜ ์—ฐ์†Œ ์ƒํƒœ๋ฅผ ์•…ํ™”์‹œํ‚ฌ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ 2์ฐจ ์‚ฌ๊ณ ๊ฐ€ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ˜„์žฌ ์„ ๋ฐ•์šฉ ์ด์ค‘์—ฐ๋ฃŒ ์—”์ง„์—์„œ ์ƒ์šฉํ™” ์ค‘์ธ ๊ฐ€์Šค ๋ถ„์‚ฌ๋…ธ์ฆ์„ ์ฐธ์กฐํ•˜์—ฌ ๋…ธ์ฆ ๊ธธ์ด, ํ™€ ๋ฐฐ๊ด€ ์ง๊ฒฝ, ํ™€ ๋ฐฐ๊ด€ ๊ฐ๋„ ๋“ฑ์„ ๋ณ€์ˆ˜๋กœ ํ•˜๊ณ  ๊ตฌ์กฐํ•ด์„์„ ํ†ตํ•ด ์‘๋ ฅ, ๋ณ€ํ˜•๋Ÿ‰ ๋“ฑ ๋…ธ์ฆ ๋‚ด๊ตฌ์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜๊ณ , ์œ ๋™ ํ•ด์„์œผ๋กœ ์—”์ง„์˜ ์„ฑ๋Šฅยท๋ฐฐ๊ธฐ๊ฐ€์Šค ๋ฐฐ์ถœ๋ฌผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ํ˜•์ƒ ์กฐ๊ฑด์˜ ๊ฐ€์Šค ๋ถ„์‚ฌ๋…ธ์ฆ์ด ๋‚ด๊ตฌ์„ฑ, ์—”์ง„์„ฑ๋Šฅ, ๋ฐฐ๊ธฐ๊ฐ€์Šค ๋ฐฐ์ถœ๋ฌผ์˜ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ๊ธฐ์ดˆ ์ž๋ฃŒ๋ฅผ ํ™•๋ณดํ•˜๊ณ , ๋” ๋‚˜์•„๊ฐ€ ๊ฐ€์žฅ ์ตœ์ ํ™” ๋…ธ์ฆ ์„ค๊ณ„ ์กฐ๊ฑด์„ ํ™•์ธํ•˜๋Š” ๊ฒƒ์— ๊ทธ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๋…ธ์ฆ ํ˜•์ƒ ๋ณ€๊ฒฝ์— ๋”ฐ๋ฅธ ๋‚ด๊ตฌ์„ฑ์„ ๋น„๊ต ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ๋ณ€์ˆ˜๊ฐ€ ์ ์šฉ๋œ 27๊ฐœ์˜ ๋…ธ์ฆ์„ ๋Œ€์ƒ์œผ๋กœ ์ „๋ณ€ํ˜•๋Ÿ‰, ๋“ฑ๊ฐ€ ํƒ„์„ฑ ๋ณ€ํ˜•๋ฅ , ๋“ฑ๊ฐ€์‘๋ ฅ ๋“ฑ ์ด 3๊ฐ€์ง€ ๊ฒฐ๊ณผ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์ „๋ณ€ํ˜•๋Ÿ‰์€ ๋…ธ์ฆ ๊ธธ์ด์— ์˜ํ•œ ๋…ธ์ฆ ์˜จ๋„ ๋ณ€ํ™”๊ฐ€ ์ฃผ์š” ์›์ธ์˜ 98%๋ฅผ ์ฐจ์ง€ํ•˜๋ฉฐ ๋…ธ์ฆ ํ™€ ๋ฐฐ๊ด€ ๊ฐ๋„์™€ ์ง๊ฒฝ ์กฐ์ •์— ๋”ฐ๋ฅธ ์˜ํ–ฅ์€ ๋ฏธ๋ฏธํ•˜์˜€๋‹ค. ๋…ธ์ฆ ๊ธธ์ด๊ฐ€ ์งง๊ฒŒ ์กฐ์ •๋œ ๋…ธ์ฆ์ด ์ „๋ณ€ํ˜•๋Ÿ‰์ด ๊ธฐ์ค€ ๋…ธ์ฆ ๋Œ€๋น„ ์•ฝ 70% ๊ฐ์†Œํ•˜์—ฌ ๋‚ด๊ตฌ์„ฑ์ด ๋†’์•„์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋“ฑ๊ฐ€์‘๋ ฅ๊ณผ ๋“ฑ๊ฐ€ ํƒ„์„ฑ ๋ณ€ํ˜•๋ฅ ์€ ์œ ์‚ฌํ•œ ๊ฒฝํ–ฅ์„ฑ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋…ธ์ฆ ํ™€ ๋ฐฐ๊ด€ ๊ฐ๋„์— ์˜ํ•œ ์˜ํ–ฅ์ด ์ฃผ๋œ ์›์ธ์ด๋ฉฐ ๋…ธ์ฆ ๊ธธ์ด์™€ ํ™€ ๋ฐฐ๊ด€ ์ง๊ฒฝ์€ ๋…ธ์ฆ ํ™€ ๋ฐฐ๊ด€ ๊ฐ๋„์— ๋”ฐ๋ฅธ ๋“ฑ๊ฐ€์‘๋ ฅ๊ณผ ๋“ฑ๊ฐ€ ํƒ„์„ฑ ๋ณ€ํ˜•๋ฅ ์˜ ๋ณ€๋™์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋“ฑ๊ฐ€ ํƒ„์„ฑ ๋ณ€ํ˜•๋ฅ ๊ณผ ๋“ฑ๊ฐ€์‘๋ ฅ์€ ๋…ธ์ฆ ์˜จ๋„์— ์˜ํ–ฅ์„ ๊ฐ 32%, 5% ๋ฐ›์•˜์œผ๋ฉฐ, ์ƒ๋Œ€์ ์œผ๋กœ ๋“ฑ๊ฐ€ ํƒ„์„ฑ ๋ณ€ํ˜•๋ฅ ์ด ๋“ฑ๊ฐ€์‘๋ ฅ๋ณด๋‹ค ๋…ธ์ฆ ์˜จ๋„์— ์˜ํ–ฅ์„ ๋งŽ์ด ๋ฐ›์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋…ธ์ฆ ํ˜•์ƒ ๋ณ€๊ฒฝ์— ๋”ฐ๋ฅธ ์—”์ง„ ์„ฑ๋Šฅ๊ณผ ๋ฐฐ๊ธฐ๊ฐ€์Šค ๋ฐฐ์ถœ๋Ÿ‰์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ถ„์‚ฌ ๊ฐ๋„, ๋ถ„์‚ฌ ์œ„์น˜, ๋ถ„๋ฌด ๋ฒ”์œ„๋ฅผ ๋ณ€์ˆ˜๋กœ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์—”์ง„ ์„ฑ๋Šฅ์€ ๋ถ„์‚ฌ ๊ฐ๋„๊ฐ€ ๊ฐ์†Œํ•˜๊ณ  ๋ถ„์‚ฌ ์œ„์น˜๊ฐ€ ํ”ผ์Šคํ†ค์— ๊ฐ€๊นŒ์šฐ๋ฉฐ ๋ถ„๋ฌด ๋ฒ”์œ„ ๊ฐ๋„๊ฐ€ ์ข์•„์งˆ์ˆ˜๋ก ๋ฏธ๋ฏธํ•œ ์ˆ˜์ค€์ด์ง€๋งŒ ์—”์ง„ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ์ตœ์  ์กฐ๊ฑด์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐฐ๊ธฐ ๋ฐฐ์ถœ๋ฌผ์ธ ์งˆ์†Œ์‚ฐํ™”๋ฌผ, ๊ทธ์„์Œ, ์ด์‚ฐํ™”ํƒ„์†Œ๋Š” ๋ถ„์‚ฌ ๊ฐ๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ๋ถ„์‚ฌ ์œ„์น˜๊ฐ€ ํ”ผ์Šคํ†ค์—์„œ ๋ฉ€์–ด์ง€๋ฉฐ ๋ถ„๋ฌด ๋ฒ”์œ„๊ฐ€ ๋„“์„์ˆ˜๋ก ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ๋ณธ ๊ตฌ์กฐํ•ด์„ ๋Œ€์ƒ ๋…ธ์ฆ ์ค‘ ๊ธธ์ด๋Š” ์กฐ์ •ํ•˜์ง€ ์•Š๊ณ  ๋…ธ์ฆ ํ™€ ๋ฐฐ๊ด€ ๊ฐ๋„๊ฐ€ 10ใ€‚์ฆ๊ฐ€ํ•œ ๋…ธ์ฆ์„ ๊ฐ€์žฅ ์ตœ์ ํ™”๋œ ํ˜•์ƒ์œผ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ํ•ด๋‹น ๋…ธ์ฆ์€ ๊ธฐ์กด ์ƒ์šฉํ™” ๋…ธ์ฆ ๋Œ€๋น„ ์ „๋ณ€ํ˜•๋Ÿ‰์€ 5% ์ฆ๊ฐ€, ๋“ฑ๊ฐ€์‘๋ ฅ์€ 21% ๊ฐ์†Œ, ๋“ฑ๊ฐ€ ํƒ„์„ฑ ๋ณ€ํ˜•๋ฅ ์€ 22% ๊ฐ์†Œํ•˜์—ฌ ๋‚ด๊ตฌ์„ฑ์ด ๊ฐœ์„ ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋…ธ์ฆ์€ ๊ฐ€ํ•™์ ์ธ ํ™˜๊ฒฝ์—์„œ ์žฅ์‹œ๊ฐ„, ๋ฐ˜๋ณต์ ์ธ ์ƒํ™ฉ์— ๋…ธ์ถœ๋˜๋ฉฐ, ์šด์ „ ์ค‘ ์†์ƒ ๋ฐœ์ƒ ์‹œ ํฐ ์‚ฌ๊ณ ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๋ณด์ˆ˜์ ์ธ ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹ค. ์ด์— ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์—์„œ ๋ณ€ํ˜•๋Ÿ‰, ์‘๋ ฅ, ๋ณ€ํ˜•๋ฅ ์˜ ๊ฐ ๊ฐ์†Œ์œจ์ด ๋” ํฐ ๋…ธ์ฆ๋„ ์žˆ์œผ๋‚˜, ๋‚ด๊ตฌ์„ฑ์— ๋ถ€์ •์ ์ธ ๋ฐฉํ–ฅ์œผ๋กœ ์‹ฌ๊ฐํ•œ ๋ณ€ํ™”์œจ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋…ธ์ฆ์€ ๋ฐฐ์ œํ•˜์˜€๋‹ค. ํ•ด๋‹น ๋…ธ์ฆ๊ณผ ์œ ์‚ฌํ•œ ์กฐ๊ฑด์˜ ์œ ๋™ ํ•ด์„ ๊ฒฐ๊ณผ์—์„œ ๋ฐฐ๊ธฐ ๋ฐฐ์ถœ๋ฌผ์€ ์งˆ์†Œ์‚ฐํ™”๋ฌผ 13.95%์™€ ๊ทธ์„์Œ 6.67%, ์ด์‚ฐํ™”ํƒ„์†Œ 4.05% ๊ฐ์†Œํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ถœ๋ ฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋„์‹œ ํ‰๊ท ์œ ํšจ์••๋ ฅ์€ 6.2% ๊ฐ์†Œํ•˜๋Š” ๋ถ€์ •์ ์ธ ๊ฒฐ๊ณผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜, ์ด๋Š” ํƒ€ ์—”์ง„ ๋ถ€ํ’ˆ ๋ณ€๊ฒฝ ๋ฐ ๋ถ„์‚ฌ ์‹œ๊ธฐ ์กฐ์ •์„ ํ†ตํ•ด ๊ฐœ์„  ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ตœ๊ทผ ํ•ด์šด ์‚ฐ์—…์˜ ์ด์Šˆ์ธ ํ™˜๊ฒฝ๊ทœ์ œ์™€ ์šด์˜ ์›๊ฐ€ ์ ˆ๊ฐ ๋“ฑ์„ ๊ณ ๋ คํ•  ๋•Œ ๋‚ด๊ตฌ์„ฑ๊ณผ ๋ฐฐ๊ธฐ ๋ฐฐ์ถœ๋ฌผ ์–ต์ œ๋กœ ์ธํ•œ ํšจ์šฉ์„ฑ์ด ๋” ํฌ๋‹ค๊ณ  ํŒ๋‹จํ•˜์˜€๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋…ธ์ฆ์˜ ๊ตญ์‚ฐํ™”, ์ฐจ๊ธฐ ๋…ธ์ฆ ๊ฐœ๋ฐœ ๋ฐ ์‹ ๊ทœ ์—”์ง„์˜ ๋…ธ์ฆ ์„ ์ •๊ณผ์ •์—์„œ ์ฐธ๊ณ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ดˆ ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. ๋”๋ถˆ์–ด ํ™˜๊ฒฝ๊ทœ์ œ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ์‚ฐ์—…๊ตฐ์˜ ๋‹ค์–‘ํ•œ ๋…ธ๋ ฅ ๊ฐ€์šด๋ฐ ๋…ธ์ฆ์„ ํ†ตํ•ด ํ™˜๊ฒฝ๊ทœ์ œ ๋Œ€์‘ ํšจ๊ณผ์™€ ํ•จ๊ป˜ ๋ถ€ํ’ˆ์˜ ์ˆ˜๋ช… ์—ฐ์žฅ์œผ๋กœ ์ธํ•œ ์›๊ฐ€ ์ ˆ๊ฐ ๋“ฑ ๊ธ์ •์ ์ธ ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•  ๊ฒƒ์ด๋‹ค.1. ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋™ํ–ฅ 6 1.3 ์—ฐ๊ตฌ ๊ตฌ์„ฑ 8 2. ์ด์ค‘์—ฐ๋ฃŒ ์—”์ง„ 10 2.1 ๊ณ ์•• ๋ถ„์‚ฌ ๋ฐฉ์‹ ์—”์ง„ 10 2.2 ์ €์•• ๋ถ„์‚ฌ ๋ฐฉ์‹ ์—”์ง„ 11 2.3 ๊ณ ์•• ๋ถ„์‚ฌ ๋ฐฉ์‹ ๊ฐ€์Šค์—ฐ๋ฃŒ ์‹œ์Šคํ…œ์˜ ์ฃผ์š” ๊ตฌ์„ฑ 12 2.3.1 ๋ถ„์‚ฌ ์ œ์–ด์žฅ์น˜ 13 2.3.2 ์—ฐ๋ฃŒ ๋ถ„์‚ฌ ๋ฐธ๋ธŒ 14 3. ์ด๋ก  16 3.1 ์ „์‚ฐ ์œ ์ฒด ์—ญํ•™ 16 3.2 ๋‚œ๋ฅ˜ ๋ชจ๋ธ 17 3.3 ์—ฐ๋ฃŒ ๋ถ„์‚ฌ ๋ชจ๋ธ 19 3.3.1 ์—ฐ๋ฃŒ ์•ก์  ์šด๋™ ๋ชจ๋ธ 19 3.3.2 ์—ฐ๋ฃŒ ๋ถ„์—ด ๋ชจ๋ธ 21 3.4 ๋ฐฐ๊ธฐ ๋ฐฐ์ถœ๋ฌผ ๋ชจ๋ธ 23 3.4.1 ์งˆ์†Œ์‚ฐํ™”๋ฌผ ๋ฐฐ์ถœ 23 3.4.2 ๊ทธ์„์Œ ๋ฐฐ์ถœ 25 3.5 ๋„์‹œ ํ‰๊ท ์œ ํšจ์••๋ ฅ 27 4. ๋…ธ์ฆ ํ˜•์ƒ์— ๋”ฐ๋ฅธ ๋ถ„๋ฌด ํŠน์„ฑ 32 4.1 ๋ชจ๋ธ๋ง 32 4.1.1 ๋…ธ์ฆ ๋ชจ๋ธ 32 4.1.2 ๋ถ„๋ฌด ํ•ด์„ ๋ชจ๋ธ 35 4.2 ๋ถ„๋ฌด ํ•ด์„์กฐ๊ฑด 39 4.3 ๋ถ„๋ฌด ํ•ด์„ ๋ชจ๋ธ ๊ฒ€์ฆ 41 4.4 ๋ถ„๋ฌด ํ•ด์„ ๊ฒฐ๊ณผ 44 4.5 ๊ฒฐ๋ก  53 5. ๋…ธ์ฆ ํ˜•์ƒ์— ๋”ฐ๋ฅธ ์—ด ๊ตฌ์กฐํ•ด์„ 55 5.1 ๋…ธ์ฆ ์žฌ๋ฃŒ 55 5.2 ๊ฒฝ๊ณ„ ์กฐ๊ฑด 56 5.2.1 ๊ฒฉ์ž ์ƒ์„ฑ 57 5.2.2 ์—ด ํ•ด์„ ๊ฒฝ๊ณ„ ์กฐ๊ฑด 60 5.2.3 ๊ตฌ์กฐํ•ด์„ ๊ฒฝ๊ณ„ ์กฐ๊ฑด 62 5.3 ํ•ด์„ ๊ฒฐ๊ณผ 63 5.3.1 ์ „๋ณ€ํ˜•๋Ÿ‰ 63 5.3.2 ๋“ฑ๊ฐ€(๋ณธ ๋ฏธ์ œ์Šค)์‘๋ ฅ ๋ฐ ๋“ฑ๊ฐ€ ํƒ„์„ฑ ๋ณ€ํ˜•๋ฅ  69 5.4 ๊ฒฐ๋ก  81 6. ๋…ธ์ฆ ํ˜•์ƒ์— ๋”ฐ๋ฅธ ์—ฐ์†Œยท๋ฐฐ๊ธฐ ํŠน์„ฑ 84 6.1 ์—”์ง„ ์‚ฌ์–‘ ๋ฐ ์—ฐ๋ฃŒ์œ  ์„ฑ๋ถ„ 84 6.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ตฌ์„ฑ 86 6.2.1 ์—”์ง„ ๋ชจ๋ธ 86 6.2.2 ํ•ด์„ ๋ชจ๋ธ 90 6.2.3 ๊ฒฝ๊ณ„ ๋ฐ ์ดˆ๊ธฐ ์กฐ๊ฑด 91 6.2.4 ๊ฒฉ์ž ๊ตฌ์„ฑ 93 6.3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ฆ 98 6.4 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ 99 6.4.1 ์‹ค๋ฆฐ๋” ๋‚ด ์••๋ ฅ ๋ฐ ์—”์ง„ ์„ฑ๋Šฅ 99 6.4.2 ์‹ค๋ฆฐ๋” ๋‚ด ์˜จ๋„ 104 6.4.3 ๋‚œ๋ฅ˜์šด๋™์—๋„ˆ์ง€ 112 6.4.4 ์งˆ์†Œ์‚ฐํ™”๋ฌผ ๋ฐฐ์ถœ 116 6.4.5 ๊ทธ์„์Œ ๋ฐฐ์ถœ 119 6.4.6 ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐฐ์ถœ 122 6.5 ๊ฒฐ๋ก  125 7. ๊ฒฐ๋ก  128 ์ฐธ๊ณ  ๋ฌธํ—Œ 131Docto

    Evaluation of Feral Cat (Felis catus) Management at Mt. Dobong Based on Home Range, Demographic Status, and Population Viability Analysis

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฐ๋ฆผ๊ณผํ•™๋ถ€(์‚ฐ๋ฆผํ™˜๊ฒฝํ•™์ „๊ณต), 2015. 8. ์ด์šฐ์‹ .๋“ค๊ณ ์–‘์ด(Felis catus)๋Š” ๋†’์€ ๋ฒˆ์‹๋ ฅ๊ณผ ์ ์‘๋ ฅ, ๋ฐ˜๋ ค๋™๋ฌผ์˜ ์œ ๊ธฐ ๋ฐ ๋ถ„์‹ค ๋“ฑ์œผ๋กœ ์ธํ•˜์—ฌ ์ „์„ธ๊ณ„์ ์œผ๋กœ ๊ฐœ์ฒด์ˆ˜๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ƒํƒœ์ , ์‚ฌํšŒ์  ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ด€๋ฆฌ๋ฐฉ์•ˆ์ด ํ•„์š”ํ•œ ์‹ค์ •์ด๋‹ค. ๊ตญ๋‚ด์—์„œ๋„ ์ผ๋ถ€ ๋„์‹ฌ, ๊ตญ๋ฆฝ๊ณต์› ๋ฐ ์„œ์‹์ง€ ๋ณดํ˜ธ์ง€์—ญ ๋“ฑ์—์„œ ๋“ค๊ณ ์–‘์ด ๊ด€๋ฆฌ๊ฐ€ ์‹œํ–‰๋˜๊ณ  ์žˆ์œผ๋‚˜, ๊ทธ ํšจ๊ณผ์— ๋Œ€ํ•œ ๋ถ„์„๊ณผ ํ‰๊ฐ€๋Š” ๋ฏธ๋ฏธํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ถํ•œ์‚ฐ๊ตญ๋ฆฝ๊ณต์› ๋‚ด ๋„๋ด‰์‚ฐ ์ผ๋Œ€์—์„œ ๋“ค๊ณ ์–‘์ด์˜ ํ–‰๋™๊ถŒ ๋ฐ ํ–‰๋™ํŒจํ„ด์„ ํŒŒ์•…ํ•˜๊ณ , ์•ˆ๋ฝ์‚ฌ ๋ฐ ์ค‘์„ฑํ™” ์ˆ˜์ˆ (Trap-Neuter-Return, TNR)์˜ ๊ฐœ์ฒด๊ตฐ ์กฐ์ ˆ ํšจ๊ณผ๋ฅผ ๊ฐœ์ฒด๊ตฐ ์ƒ์กด๋Šฅ๋ ฅ ๋ถ„์„์„ ํ†ตํ•ด ๋น„๊ตํ•จ์œผ๋กœ์จ, ํ•ด๋‹น ์ง€์—ญ ๋“ค๊ณ ์–‘์ด ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ ์ ์ • ๊ด€๋ฆฌ๋ฐฉ์•ˆ์˜ ์„ ํƒ๊ณผ ๊ด€๋ฆฌ ๊ฐ•๋„๋ฅผ ์ œ์‹œํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. VHF ์ „ํŒŒ ๋ฐœ์‹ ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋“ค๊ณ ์–‘์ด 6๊ฐœ์ฒด๋ฅผ ๋ฌด์„  ์ถ”์ ํ•œ ๊ฒฐ๊ณผ, ํ‰๊ท  ํ–‰๋™๊ถŒ์€ 24.41ยฑ6.81ha (100% MCP: minimum convex polygon)์˜€์œผ๋ฉฐ, ํ•ต์‹ฌ์„œ์‹์ง€๋Š” 2.78ยฑ0.74ha (50% MCP), 4.40ยฑ1.42ha (50% KDE: Kernel density estimation)๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ถ”์ ํ•œ ๋“ค๊ณ ์–‘์ด๋“ค์€ ์ƒ์—…์ง€์—ญ ๋ฐ ์ ˆ๊ณผ ๊ฐ™์ด ์ธ๊ณต์‹œ์„ค ์ฃผ๋ณ€์œผ๋กœ ํ˜•์„ฑ๋œ ํ•ต์‹ฌ์„œ์‹์ง€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ผ์ • ๊ฑฐ๋ฆฌ๋ฅผ ์ด๋™ ํ›„ ํšŒ๊ท€ํ•˜๋Š” ํŒจํ„ด์„ ๋ณด์˜€๋‹ค. ๋„๋ด‰, ์›๋„๋ด‰, ์†ก์ถ” ๋“ฑ ์„ธ ๊ณณ์˜ ์—ฐ๊ตฌ์ง€์—ญ ์ค‘ ๋„๋ด‰ ์ง€์—ญ์—์„œ ๊ฐœ์ฒด์ˆ˜ ๊ด€์ฐฐ ๋นˆ๋„๊ฐ€ ๊ฐ€์žฅ ๋†’์•˜์œผ๋ฉฐ, ๊ฐ™์€ ์ง€์—ญ์˜ ๋“ค๊ณ ์–‘์ด ๊ฐœ์ฒด๊ตฐ ๋ฐ€๋„๋Š” Distance sampling๋ถ€ํ„ฐ 1.40๋งˆ๋ฆฌ/ha๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์—ฐ๊ฐ„ ์ƒ์กด์œจ์€ 0.61๋กœ ๋„์ถœ ๋˜์—ˆ์œผ๋ฉฐ, ํ˜„์žฅ ์กฐ์‚ฌ ๊ฒฐ๊ณผ ๋ฒˆ์‹๋ฅ ์€ ์—ฐ๊ฐ„ 2.52๋งˆ๋ฆฌ/์•”์ปท์œผ๋กœ ์ถ”์‚ฐ๋˜์—ˆ๋‹ค. ๊ฐœ์ฒด๊ตฐ ๋ฐ€๋„๋Š” ๋„์„œ ๋ฐ ๊ต์™ธ ์ง€์—ญ์—์„œ ์ด๋ฃจ์–ด์ง„ ์„ ํ–‰์—ฐ๊ตฌ๋ณด๋‹ค ๋†’์•˜์œผ๋ฉฐ, ๋„์‹ฌ์—์„œ ์ˆ˜ํ–‰๋œ ์„ ํ–‰์—ฐ๊ตฌ์™€ ์œ ์‚ฌํ•˜์˜€๋‹ค. ์ด๋Š” ์—ฐ๊ตฌ์ง€์—ญ ์ฃผ๋ณ€์œผ๋กœ ๊ฑฐ์ฃผ์ง€ ๋ฐ€๋„๊ฐ€ ๋†’๊ณ  ํƒ๋ฐฉ๊ฐ ๋ฐฉ๋ฌธ์ด ๋งŽ์•„ ์‚ฌ๋žŒ์œผ๋กœ๋ถ€ํ„ฐ ํš๋“ํ•  ์ˆ˜ ์žˆ๋Š” ๋จน์ด์˜ ๊ฐ€์šฉ์„ฑ์ด ๋†’๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. ๋„๋ด‰ ์ง€์—ญ์˜ ๋“ค๊ณ ์–‘์ด ๊ฐœ์ฒด๊ตฐ์„ ๋Œ€์ƒ์œผ๋กœ ๋ฐ€๋„์˜์กด์  ํ–‰๋ ฌ ๊ฐœ์ฒด๊ตฐ ๋ชจํ˜•(Density-dependent matrix population model)์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‘ ๊ด€๋ฆฌ๋ฐฉ์•ˆ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „์ฒด ์•”์ปท ์ง‘๋‹จ์— ๋Œ€ํ•ด์„œ ์•ˆ๋ฝ์‚ฌ๋ฅผ 20% ์ด์ƒ ๋˜๋Š” ์ค‘์„ฑํ™” ์ˆ˜์ˆ ์„ 30% ์ด์ƒ ์‹œํ–‰ํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ตœ๋Œ€์ˆ˜์šฉ๋Šฅ๋ ฅ์ด ๋†’์„์ˆ˜๋ก ๊ฐœ์ฒด๊ตฐ ๊ฐ์†Œ๋ฅผ ์œ„ํ•ด ๋” ๋†’์€ ๊ด€๋ฆฌ ๊ฐ•๋„๊ฐ€ ์š”๊ตฌ๋˜์—ˆ๋‹ค. ํ˜„์žฌ ์‹œํ–‰ ์ค‘์ธ ์ค‘์„ฑํ™” ์ˆ˜์ˆ (2013๋…„ 41๋งˆ๋ฆฌ, 2013๋…„ 53๋งˆ๋ฆฌ, 2014๋…„ 41๋งˆ๋ฆฌ)์„ ํ†ตํ•ด์„œ๋Š” ์„œ์‹์ง€์˜ ์ตœ๋Œ€์ˆ˜์šฉ๋Šฅ๋ ฅ๊นŒ์ง€ ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ธก๋˜์—ˆ๋‹ค. ๋“ค๊ณ ์–‘์ด๋Š” ๊ฐœ์ฒด์ˆ˜ ์ฆ๊ฐ€๋กœ ์ธํ•œ ์‚ฌํšŒ์ , ์ƒํƒœ์  ๋ฌธ์ œ๋“ค์„ ์•ผ๊ธฐํ•จ์— ๋”ฐ๋ผ ๊ฐœ์ฒด๊ตฐ ๊ด€๋ฆฌ์˜ ํ•„์š”์„ฑ์ด ๊ฐ•์กฐ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋“ค๊ณ ์–‘์ด์˜ ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋“ค๊ณ ์–‘์ด์˜ ์„œ์‹์ง€ ์ด์šฉํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์€์‹ ์ฒ˜ ๋ฐ ์ธ์œ„์  ๋จน์ด์›์˜ ์ œ๊ฑฐ ๋“ฑ ์„œ์‹์ง€ ๊ด€๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ์•ˆ๋ฝ์‚ฌ ๋˜๋Š” ์ค‘์„ฑํ™” ์ˆ˜์ˆ ์„ ์‹œํ–‰ํ•  ๊ฒฝ์šฐ ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ ๊ฐ์†Œ๋ฅผ ์œ„ํ•œ ์ตœ์†Œ ๊ด€๋ฆฌ ๊ฐ•๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์—ฐ๊ฐ„ ํฌํš ๊ฐœ์ฒด์ˆ˜ ์„ค์ •์ด ํ•„์š”ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.โ… . ์„œ ๋ก  1 1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  3 โ…ก. ์—ฐ ๊ตฌ ์‚ฌ 4 1. ๋“ค๊ณ ์–‘์ด์˜ ์ƒํƒœ 4 2. ๋“ค๊ณ ์–‘์ด์˜ ํ–‰๋™๊ถŒ 6 3. ๋“ค๊ณ ์–‘์ด์˜ ๊ด€๋ฆฌ๋ฐฉ์•ˆ 8 โ…ข. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 10 1. ์—ฐ๊ตฌ๋Œ€์ƒ์ข… ๋ฐ ์ง€์นญ ์ •์˜ 10 2. ์—ฐ๊ตฌ ๋Œ€์ƒ์ง€ 11 3. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 13 3.1. ๋“ค๊ณ ์–‘์ด์˜ ํ–‰๋™๊ถŒ ๋ฐ ํ–‰๋™ ํŒจํ„ด 13 3.1.1. ํฌํš ๋ฐ ๋ฌด์„ ์œ„์น˜์ถ”์  13 3.1.2. ํ–‰๋™๊ถŒ ์ถ”์ • 14 3.2. ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ, ์ƒ์กด์œจ ๋ฐ ๋ฒˆ์‹๋ฅ  15 3.2.1. ํ˜„์žฅ์กฐ์‚ฌ๋ฅผ ํ†ตํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋„์ถœ 15 3.2.2. ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ ๋ฐ ์ƒ์กด์œจ ๋„์ถœ์„ ์œ„ํ•œ ๋ชจํ˜• ๋ถ„์„ 18 3.3. ๊ด€๋ฆฌ๋ฐฉ์•ˆ ๋น„๊ต ๋ถ„์„ 20 3.3.1. ํ–‰๋ ฌ ๊ฐœ์ฒด๊ตฐ ๋ชจํ˜• ๋ถ„์„ 20 3.3.2. ์•ˆ๋ฝ์‚ฌ์™€ ์ค‘์„ฑํ™” ์ˆ˜์ˆ ์˜ ํšจ๊ณผ ๋น„๊ต ๋ถ„์„ 23 โ…ฃ. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 27 1. ๋“ค๊ณ ์–‘์ด์˜ ํ–‰๋™๊ถŒ 27 1.1. ๋“ค๊ณ ์–‘์ด์˜ ํ–‰๋™๊ถŒ ๋ฐ ํ–‰๋™ ํŒจํ„ด 27 1.2. ๊ณ ์ฐฐ 36 2. ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ, ์ƒ์กด์œจ ๋ฐ ๋ฒˆ์‹๋ฅ  39 2.1. ๋งค๊ฐœ๋ณ€์ˆ˜ ๋„์ถœ์„ ์œ„ํ•œ ํ˜„์žฅ์กฐ์‚ฌ ๊ฒฐ๊ณผ 39 2.2. ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ ๋ฐ ์ƒ์กด์œจ ๋„์ถœ์„ ์œ„ํ•œ ๋ชจํ˜• ๋ถ„์„ 41 2.3. ๊ณ ์ฐฐ 46 3. ๊ด€๋ฆฌ๋ฐฉ์•ˆ ๋น„๊ต ๋ถ„์„ 50 3.1. ํ–‰๋ ฌ ๊ฐœ์ฒด๊ตฐ ๋ชจํ˜• ๋ถ„์„ 50 3.2. ์•ˆ๋ฝ์‚ฌ์™€ ์ค‘์„ฑํ™” ์ˆ˜์ˆ ์˜ ํšจ๊ณผ๋น„๊ต ๋ถ„์„ 53 3.3. ๊ณ ์ฐฐ 58 โ…ค. ์ข…ํ•ฉ ๊ณ ์ฐฐ 62 โ…ฅ. ๊ฒฐ๋ก  67 ์ธ์šฉ๋ฌธํ—Œ 69 Abstract 83Maste

    Study on principals' and teachers' understanding of principal leadership : Based on ideal principal image

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ต์œกํ•™๊ณผ, 2018. 2. ์‹ ์ •์ฒ .๊ตญ๋ฌธ์ดˆ๋ก ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ต์žฅ ๋ฆฌ๋”์‹ญ ์—ฐ๊ตฌ๋กœ์„œ ๊ต์žฅ๊ณผ ๊ต์‚ฌ์˜ ์ธ์‹์„ ํ™œ์šฉํ•˜์—ฌ ๊ต์žฅ์ด ๋ฐœํœ˜ํ•˜๊ณ  ์žˆ๋Š” ๋ฆฌ๋”์‹ญ๊ณผ ๊ทธ์™€ ๊ด€๋ จ๋œ ๋งฅ๋ฝ, ๊ทธ๋ฆฌ๊ณ  ๊ต์žฅ ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•œ ๊ต์žฅ๊ณผ ๊ต์‚ฌ์˜ ์ธ์‹์„ ๋น„๊ตํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๊ทธ ๋™์•ˆ ๊ต์žฅ ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ๊ฐ€ ๊ต์žฅ ๋ฆฌ๋”์‹ญ์ด ๋ฐœํœ˜๋˜๋Š” ๋งฅ๋ฝ์€ ์ฃผ๋ชฉํ•˜์ง€ ์•Š๊ณ  ํŠน์ •ํ•œ ๋ฆฌ๋”์‹ญ์˜ ํšจ๊ณผ์„ฑ์„ ์ธก์ •ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ต์‚ฌ์˜ ๊ด€์ ์— ์ดˆ์ ์„ ๋งž์ถฐ์žˆ๋‹ค๋Š” ๋ฌธ์ œ์˜์‹ ํ•˜์— ๊ต์žฅ ๋ฆฌ๋”์‹ญ๊ณผ ์ด๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ๋งฅ๋ฝ, ๊ทธ๋ฆฌ๊ณ  ๊ต์žฅ ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•œ ๊ต์žฅ๊ณผ ๊ต์‚ฌ์˜ ์ธ์‹ ์ฐจ์ด์— ์ดˆ์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์—ฐ๊ตฌ๋ฌธ์ œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค ์ฒซ์งธ, ๊ต์žฅ์ด ๋ฐœํœ˜ํ•˜๊ณ  ์žˆ๋Š” ๋ฆฌ๋”์‹ญ๊ณผ ์ด๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ํ•™๊ต ํ™˜๊ฒฝ๊ณผ ๋งฅ๋ฝ์€ ์–ด๋– ํ•œ๊ฐ€. ๋‘˜์งธ, ๊ต์‚ฌ๊ฐ€ ๊ฒฝํ—˜ํ•œ ๊ต์žฅ์˜ ๋ฆฌ๋”์‹ญ๊ณผ ๊ต์žฅ์—๊ฒŒ ์š”๊ตฌํ•˜๋Š” ๋ฆฌ๋”์‹ญ์€ ์–ด๋– ํ•œ๊ฐ€. ์…‹์งธ, ๊ต์žฅ ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•œ ๊ต์žฅ๊ณผ ๊ต์‚ฌ์˜ ์ธ์‹์—๋Š” ์–ด๋–ค ์ฐจ์ด๊ฐ€ ์žˆ๋Š”๊ฐ€. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ๊ต์žฅ 6๋ช…, ๊ต์‚ฌ 6๋ช…์„ ์—ฐ๊ตฌ ์ฐธ์—ฌ์ž๋กœ ์„ ์ •ํ•˜๊ณ  ์‹ฌ์ธต๋ฉด๋‹ด์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์‹ฌ์ธต๋ฉด๋‹ด์„ ํ†ตํ•ด ์—ฐ๊ตฌ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๊ณ , ์ดํ›„ ์งˆ์  ์ž๋ฃŒ ๋ถ„์„ ๋ฐฉ๋ฒ•์ธ ์ฝ”๋”ฉ์„ ํ†ตํ•ด ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ฃผ์š”๊ฒฐ๊ณผ๋ฅผ ์„ค๋ช…ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๊ต์žฅ์˜ ๋ฆฌ๋”์‹ญ ํ˜•์„ฑ๊ณผ์ •์—์„œ ๊ต์žฅ๊ณผ ๊ต๊ฐ ์‹œ๊ธฐ๊ฐ€ ์ค‘์š”ํ•œ ๋‹จ๊ณ„์˜€๋‹ค. ๊ต์žฅ์ด ํ™œ์šฉํ•˜๊ณ  ์žˆ๋Š” ๋ฆฌ๋”์‹ญ์€ ๊ต์‚ฌ์ง€์› ๋ฆฌ๋”์‹ญ, ์ธํ™”์ค‘์‹ฌ ๋ฆฌ๋”์‹ญ, ์นด๋ฆฌ์Šค๋งˆ ๋ฆฌ๋”์‹ญ, ์ž๋ฐœ์„ฑ์„ ์ด๋Œ์–ด๋‚ด๋Š” ๋ฆฌ๋”์‹ญ, ๊ธฐ๋‹ค๋ฆผ์˜ ๋ฆฌ๋”์‹ญ, ํ™ฉ์˜์ •์Šน ๋ฆฌ๋”์‹ญ, ์†”์„ ์ˆ˜๋ฒ” ๋ฆฌ๋”์‹ญ, ํƒˆ๊ถŒ์œ„์  ๋ฆฌ๋”์‹ญ์ด์—ˆ๋‹ค. ์ด๋Š” ๊ต์‚ฌ ์ค‘์‹ฌ์˜ ๋ฆฌ๋”์‹ญ์œผ๋กœ์„œ ์ด์™€ ๊ด€๋ จ๋œ ๋งฅ๋ฝ์€ ๊ต์žฅ์˜ ๊ถŒ๋ ฅ ๊ฐ์†Œ์™€ ํ•™๊ต์กฐ์ง์˜ ๋ณ€ํ™”์˜€๋‹ค. ๊ต์‚ฌ๊ฐ€ ๊ต์žฅ์—๊ฒŒ ๊ธฐ๋Œ€ํ•˜๋Š” ๋ฆฌ๋”์‹ญ์€ ๊ต์‚ฌ ์ง€์› ๋ฆฌ๋”์‹ญ, ๊ต์‚ฌ๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋Š” ๋ฆฌ๋”์‹ญ, ์ž๊ธฐ์ค‘์‹ฌ์ ์ด์ง€ ์•Š๋Š” ๋ฆฌ๋”์‹ญ, ๋น„์ „์„ ์ œ์‹œํ•˜๋Š” ๋ฆฌ๋”์‹ญ, ์‹ค์ฒœํ•˜๋Š” ๋ฆฌ๋”์‹ญ์ด์—ˆ๋‹ค. ํ•œํŽธ ๊ต์žฅ ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•œ ๊ต์žฅ๊ณผ ๊ต์‚ฌ์˜ ์ธ์‹์„ ๋น„๊ตํ–ˆ์„ ๋•Œ ๊ต์‚ฌ ์ง€์› ๋ฆฌ๋”์‹ญ, ์‹ค์ฒœํ•˜๋Š” ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์˜๋ฏธ๋กœ ์ธ์‹ํ•˜๊ณ  ์žˆ์—ˆ๊ณ  ์นด๋ฆฌ์Šค๋งˆ ๋ฆฌ๋”์‹ญ, ์ธํ™”์ค‘์‹ฌ ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•ด์„œ๋Š” ๊ต์žฅ์€ ๊ธ์ •์ ์œผ๋กœ ๊ต์‚ฌ๋Š” ๋ถ€์ •์ ์œผ๋กœ ์ธ์‹ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๊ต์žฅ ๋ฆฌ๋”์‹ญ๊ณผ ๊ด€๋ จ๋œ ๋งฅ๋ฝ์— ๋Œ€ํ•ด์„œ๋Š” ๊ต์žฅ์˜ ์˜ํ–ฅ๋ ฅ๊ณผ ๊ต์œก์ •์ฑ…์— ๋Œ€ํ•œ ์ธ์‹์—์„œ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ๋„์ถœํ•œ ๊ฒฐ๋ก ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๊ต์žฅ ๋ฆฌ๋”์‹ญ์ด ์‹ค์ œ์ ์œผ๋กœ ํ˜•์„ฑ๋˜๋Š” ๊ฒƒ์€ ๊ต์žฅ์ด ๋˜๊ณ  ๋‚œ ํ›„์ด๋ฉฐ ๋‘˜์งธ, ๊ต์žฅ๋“ค์€ ์ž์‹ ๋“ค์ด ์ธ์‹ํ•˜๊ณ  ์žˆ๋Š” ํ•™๊ต ํ™˜๊ฒฝ์— ๋งž์ถ”์–ด ๋ฆฌ๋”์‹ญ์„ ๋ฐœํœ˜ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ์…‹์งธ, ๊ต์‚ฌ๋“ค์ด ๊ต์žฅ์—๊ฒŒ ๊ธฐ๋Œ€ํ•˜๋Š” ๋ฆฌ๋”์‹ญ์€ ๊ต์œก์ž๋กœ์„œ์˜ ๋ฆฌ๋”์‹ญ์ด์—ˆ๋‹ค. ๋„ท์งธ, ๊ต์žฅ๊ณผ ๊ต์‚ฌ๊ฐ€ ์ธ์‹ํ•˜๋Š” ๋ฆฌ๋”์‹ญ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ํฐ ํ‹€์—์„œ ๊ต์‚ฌ๋ฅผ ์ง€์›ํ•˜๋Š” ๋ฆฌ๋”์‹ญ์ด์—ˆ์ง€๋งŒ ๊ตฌ์ฒด์ ์ธ ์˜๋ฏธ์—์„œ ์ฐจ์ด๊ฐ€ ๋‚˜๋Š” ๋ถ€๋ถ„์ด ์กด์žฌํ•˜์˜€๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ œ์–ธ์„ ํ•˜์ž๋ฉด, ๊ต์žฅ ๋ฆฌ๋”์‹ญ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ๊ต์žฅ ์ž๊ฒฉ์—ฐ์ˆ˜์˜ ๊ฐœ์„ ์ด ํ•„์š”ํ•˜๊ณ , ๊ต์žฅ์ด ๋œ ์ดํ›„์— ๊ณต์‹์ ์œผ๋กœ ์ œ๊ณต๋˜๋Š” ์—ฐ์ˆ˜ํ”„๋กœ๊ทธ๋žจ์ด ํ•„์š”ํ•˜๋ฉฐ, ๊ต์žฅ์—๊ฒŒ ์ง‘์ค‘๋œ ํ–‰์ •์ ์ธ ์ฑ…์ž„์„ ๋ถ„์‚ฐ์‹œํ‚ค๊ฑฐ๋‚˜ ์ค„์ด๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌํ•„์š”์„ฑ ๋ฐ ๋ชฉ์  1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ๋ฌธ์ œ 3 ์ œ 2 ์žฅ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 3 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ์ฐธ์—ฌ์ž 3 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• ๋ฐ ์ ˆ์ฐจ 5 1. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 5 2. ์—ฐ๊ตฌ์ ˆ์ฐจ 9 ์ œ 3 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 9 ์ œ 1 ์ ˆ ๋ฆฌ๋”์‹ญ์˜ ๊ฐœ๋… 9 ์ œ 2 ์ ˆ ์ „ํ†ต์  ๋ฆฌ๋”์‹ญ ์ด๋ก  11 ์ œ 3 ์ ˆ ์ƒˆ๋กœ์šด ๋ฆฌ๋”์‹ญ ์ด๋ก  19 ์ œ 4 ์žฅ ์—ฐ๊ตฌ๊ฒฐ๊ณผ 24 ์ œ 1 ์ ˆ ๊ต์žฅ์ด ์ธ์‹ํ•˜๋Š” ๊ต์žฅ ๋ฆฌ๋”์‹ญ 24 1. ๊ต์žฅ์ด ๋˜๋Š” ๊ฒฝ๋กœ 24 2. ๊ต์žฅ ๋ฆฌ๋”์‹ญ ํ˜•์„ฑ ๊ณผ์ • 27 3. ๊ต์žฅ์˜ ๋ฆฌ๋”์‹ญ 34 4. ๊ต์žฅ ๋ฆฌ๋”์‹ญ ๋งฅ๋ฝ 47 ์ œ 2 ์ ˆ ๊ต์‚ฌ๊ฐ€ ์ธ์‹ํ•˜๋Š” ๊ต์žฅ ๋ฆฌ๋”์‹ญ 58 1. ๊ต์žฅ์— ๋Œ€ํ•œ ์ธ์‹ 58 2. ๊ต์‚ฌ๊ฐ€ ๊ฒฝํ—˜ํ•œ ๊ต์žฅ 66 3. ๊ต์žฅ์—๊ฒŒ ๊ธฐ๋Œ€ํ•˜๋Š” ๋ฆฌ๋”์‹ญ 72 ์ œ 3 ์ ˆ ๊ต์žฅ๊ณผ ๊ต์‚ฌ์˜ ๋ฆฌ๋”์‹ญ ์ธ์‹ ๋น„๊ต 78 1. ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•œ ์˜๋ฏธ ์ฐจ์ด 78 2. ๋ฆฌ๋”์‹ญ์— ๋Œ€ํ•œ ์ƒ๋ฐ˜๋œ ์ธ์‹ 84 3. ๋ฆฌ๋”์‹ญ ์ธ์‹์ฐจ์ด์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์†Œ 88 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  91 1. ์—ฐ๊ตฌ์š”์•ฝ 92 2. ๊ฒฐ ๋ก  98 ์ฐธ๊ณ ๋ฌธํ—Œ 101 Abstract 107Maste

    ๋ถ๊ทน ์ง€๋ฐฉ์˜ ์˜ค์กด ์†Œ๋ฉธ๊ณผ ๊ด€๋ จ๋œ ํ•˜๋ถ€ ์„ฑ์ธต๊ถŒ ๊ทน์™€๋™์˜ ํŠน์„ฑ

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€,2003.Maste

    ์ˆœํšŒ ์™ธํŒ์› ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์œ„ํ•œ ํšจ์œจ์ ์ธ ํœด๋ฆฌ์Šคํ‹ฑ ์ ‘๊ทผ ๋ฐฉ๋ฒ•

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐ. ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2008.2Maste
    corecore