4 research outputs found

    Dynamic Substructuring for Evaluating Vibro-acoustic Performance

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀, 2020. 8. κ°•μ—°μ€€.Generally, a mechanical system consists of various substructures that cause noise and vibration problems. This thesis proposes a dynamic substructuring method for the estimation of the dynamic characteristics of a coupled mechanical system based on substructure characteristics. The first phase of this thesis presents a method for the estimation of rotational stiffness at the coupled points of an assembled system based on a dynamic substructuring method. Conventional test-based rotational stiffness evaluation methods are sensitive to measurement errors and require a specialized jig for testing. In contrast, given that the proposed method uses the natural frequency shift phenomenon that results from the addition of mass, the measurement error is relatively small, and the accuracy is improved by excluding the interference of other modes. In addition, the proposed method solves the problem due to the complexity of the conventional method by changing the fixed condition of the system using frequency response function (FRF)-based substructuring (FBS) modeling; thus, it does not require a specialized jig for fixing parts. In this manuscript, the concepts of trial mass, virtual mass, and virtual spring are introduced to systematically explain the proposed method and its application based on frequency shifts. The results of the experiments conducted on a vehicle shock absorber verify the utility of the proposed method. In the second phase, a novel transfer path analysis (TPA) method based on a dynamic substructuring model is proposed. With the dynamic substructuring model, the FRF information of a base system can be used to evaluate the stiffness addition effect at the measurement points instead of adding the actual stiffness. In the proposed method, a spring with an infinite stiffness is virtually added to a specific transfer path among various possible paths, such that the specific path is removed. Hence, the virtual spring significantly reduces the contribution of the specific path. This method is more implementable and applicable than existing TPA methods (i.e., conventional TPA and operational TPA), as it does require part removal or the correlation information between the signals. To verify the feasibility of the FBS-based TPA method, it was applied to a significant road noise phenomenon. The test results confirm that the proposed method can be applied to the TPA of suspension linkages and vehicle bodies. In the final phase of this thesis, an improved dynamic substructuring model is presented based on the estimated FRF information at a coupling point between substructures. An assembled system generally consists of two or more such substructures, which are typically connected by a bolt. To ensure an accurate estimation of the dynamic characteristics of the assembled system, an accurate measurement of the joint properties is required. However, in most practical cases, physical constraints prevent such measurements at actual coupling points. Accordingly, this study proposes a method that uses generalized coupling properties to estimate the dynamic characteristics of a new coupling system based on the characteristics of the original substructure. In this process, the concept of virtual point transformation was used to estimate accurate FRFs at the coupling points of the assembled system based on convenient measurements. Thereafter, the proposed method was validated using a hard-mount vehicle suspension in a test jig and on an actual vehicle body for estimating the vibration characteristics of the assembled system. This research contributes towards the accurate estimation of the dynamic properties of bolt-assembled systems in several practical applications.일반적으둜 κΈ°κ³„μ‹œμŠ€ν…œμ€ λ‹€μ–‘ν•œ ν•˜μœ„ λΆ€λΆ„κ΅¬μ‘°λ¬Όλ‘œ κ΅¬μ„±λ˜λ©°, 이듀은 λ§Žμ€ μ†ŒμŒ 및 진동 문제λ₯Ό μ•ΌκΈ°ν•œλ‹€. λ³Έ 논문은 μ΄λŸ¬ν•œ ν•˜μœ„ λΆ€λΆ„κ΅¬μ‘°λ¬Όμ˜ λ™νŠΉμ„± μ •λ³΄λ§Œμ„ μ‚¬μš©ν•˜μ—¬ 전체 λŒ€μƒ μ‹œμŠ€ν…œμ˜ 동적 νŠΉμ„±μ„ μΆ”μ •ν•˜κΈ° μœ„ν•œ λ™νŠΉμ„± 합성기법을 닀루고 μžˆλ‹€. λ¨Όμ €, λ³Έ λ…Όλ¬Έμ˜ 첫 μž₯μ—μ„œλŠ”, λ™νŠΉμ„± 합성기법을 ν™œμš©ν•œ κ²°ν•© μ‹œμŠ€ν…œμ˜ νšŒμ „ κ°•μ„± μΆ”μ • 기법을 μ œμ‹œν•˜μ˜€λ‹€. κΈ°μ‘΄ μ‹œν—˜κΈ°λ°˜μ˜ νšŒμ „ κ°•μ„± 평가법듀은 μΈ‘μ • 였λ₯˜μ— 민감 ν•  뿐 μ•„λ‹ˆλΌ, 츑정을 μœ„ν•œ λ³„λ„μ˜ κ³ μ •μš© 지그가 ν•„μš”ν•˜λ‹€. κ·ΈλŸ¬λ‚˜, λ³Έ μ—°κ΅¬μ—μ„œ μ œμ‹œλœ 방법은 μ‹œμŠ€ν…œμ— λΆ€κ°€λ˜λŠ” μ§ˆλŸ‰μ— μ˜ν•œ 고유 주파수 편이 ν˜„μƒμ„ μ‚¬μš©ν•˜κΈ° λ•Œλ¬Έμ— κΈ°μ‘΄ 방법에 λΉ„ν•΄ μΈ‘μ •μ˜€μ°¨κ°€ μƒλŒ€μ μœΌλ‘œ μž‘κ³ , λ‹€λ₯Έ λͺ¨λ“œμ˜ 간섭을 λ°°μ œν•¨μœΌλ‘œμ¨ μΆ”μ • μ •ν™•λ„μ˜ ν–₯상을 κΈ°λŒ€ν•  수 μžˆλ‹€. λ˜ν•œ, λ³Έ 기법은 주파수 μ‘λ‹΅ν•¨μˆ˜ 기반 ν•©μ„± λͺ¨λΈμ„ μ‚¬μš©ν•˜μ—¬ μ‹€μ œ κ³ μ • 지그λ₯Ό μ‚¬μš©ν•˜λŠ” λŒ€μ‹ , κ³ μ • 경계쑰건을 μˆ˜μ‹μ μœΌλ‘œ λŒ€μ²΄ν•¨μœΌλ‘œμ¨ κΈ°μ‘΄ λ°©λ²•μ˜ λ³΅μž‘μ„±μ„ ν•΄κ²°ν•˜μ˜€λ‹€. 이 κ³Όμ •μ—μ„œ μ‹œν—˜ μ§ˆλŸ‰, 가상 μ§ˆλŸ‰ 및 가상 μŠ€ν”„λ§μ˜ κ°œλ…μ΄ λ„μž…λ˜μ—ˆμœΌλ©°, μ‹€μ œ μ°¨λŸ‰μ˜ 좩격 흑수μž₯치λ₯Ό μ΄μš©ν•˜μ—¬ λͺ¨λΈμ˜ 검증을 μˆ˜ν–‰ν•˜μ˜€λ‹€. λ‹€μŒμœΌλ‘œ, λ³Έ λ…Όλ¬Έμ˜ 두 번째 μž₯μ—μ„œλŠ”, λ™νŠΉμ„± ν•©μ„± λͺ¨λΈμ„ μ΄μš©ν•œ μƒˆλ‘œμš΄ 전달 경둜 뢄석 기법을 μ œμ‹œν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” λŒ€μƒ μ‹œμŠ€ν…œμ˜ μ‹€μ œ μ „λ‹¬κ²½λ‘œλ₯Ό μ œκ±°ν•˜λŠ” λŒ€μ‹ , λ¬΄ν•œλŒ€μ˜ 강성을 κ°–λŠ” κ°€μƒμ˜ μŠ€ν”„λ§μ„ 주파수 응닡 ν•¨μˆ˜μ˜ ν˜•νƒœλ‘œ λ°˜μ˜ν•¨μœΌλ‘œμ¨, νŠΉμ • μ „λ‹¬κ²½λ‘œμ˜ 제거 효과λ₯Ό κ΅¬ν˜„ν•˜μ˜€λ‹€. λ³Έ 기법은 기쑴의 μ „λ‹¬κ²½λ‘œ 뢄석법에 λΉ„ν•˜μ—¬ μ‹€ν—˜μ μœΌλ‘œ κ΅¬ν˜„μ΄ μ‰¬μš°λ©°, 츑정에 μ†Œμš”λ˜λŠ” μž‘μ—…λŸ‰κ³Ό κ³„μ‚°λŸ‰ λ˜ν•œ 획기적으둜 쀄일 수 μžˆλ‹€. ν•΄λ‹Ή 기법은 μ°¨λŸ‰ ν˜„κ°€κ³„μ˜ νŠΉμ • 진동 전달 ν˜„μƒμ„ μ΄μš©ν•˜μ—¬ μ‹€ν—˜μ μœΌλ‘œ μœ νš¨μ„±μ΄ κ²€μ¦λ˜μ—ˆλ‹€. λ³Έ λ…Όλ¬Έμ˜ λ§ˆμ§€λ§‰ μž₯μ—μ„œλŠ”, λ™νŠΉμ„± ν•©μ„± λͺ¨λΈμ˜ 정확도 κ°œμ„ μ„ μœ„ν•œ 연ꡬ가 μˆ˜ν–‰λ˜μ—ˆλ‹€. 일반적으둜 κ²°ν•©μ‹œμŠ€ν…œμ€ 두 개 μ΄μƒμ˜ 결합물이 볼트λ₯Ό μ΄μš©ν•˜μ—¬ κ²°ν•©λ˜λ©°, κ²°ν•© μ‹œμŠ€ν…œμ˜ λ™νŠΉμ„± μ˜ˆμΈ‘μ„ μœ„ν•΄μ„œλŠ” κ²°ν•©λΆ€μ˜ μ •ν™•ν•œ λ™νŠΉμ„±μ΄ μš”κ΅¬λœλ‹€. ν•˜μ§€λ§Œ λŒ€λΆ€λΆ„μ˜ 경우, 물리적 κ³΅κ°„μ˜ μ œμ•½μœΌλ‘œ μΈν•˜μ—¬ μ‹€μ œ κ²°ν•© μ§€μ μ—μ„œμ˜ 츑정이 λΆˆκ°€λŠ₯ν•˜κΈ° λ•Œλ¬Έμ—, 가상 μ§€μ μ˜ κ°œλ…μ„ λ„μž…ν•˜μ—¬ κ²°ν•©μ§€μ μ—μ„œμ˜ 주파수 μ‘λ‹΅ν•¨μˆ˜λ₯Ό μΆ”μ •ν•˜μ˜€λ‹€. ν•΄λ‹Ή 방법 μ—­μ‹œ, μ‹€μ œ μ°¨λŸ‰κ³Ό μ„œμŠ€νŽœμ…˜ μ‹œν—˜ 지그λ₯Ό μ΄μš©ν•˜μ—¬ κ²€μ¦λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬λŠ” λ§Žμ€ μ‹€μ œ μ‘μš© λΆ„μ•Όμ—μ„œ μ •ν™•ν•œ μ‹œμŠ€ν…œμ˜ λ™νŠΉμ„± 좔정에 κΈ°μ—¬ν•˜κ³  μžˆλ‹€.CHAPTER 1. GENERAL INTRODUCTION 1 1.1 Research background and motivation of the work 1 1.2 Literature reviews 8 1.3 Overview of the present work 15 1.4 Contributions 17 CHAPTER 2. INTRODUCTION TO DYNAMIC SUBSTRUCTURING 21 2.1 Introduction 21 2.2 Summary 25 CHAPTER 3. VIRTUAL PARAMETERS FOR ESTIMATING ROTATIONAL STIFFNESS 27 3.1 Introduction 27 3.2 Theoretical concepts 34 3.2.1 Concept of trial masses 34 3.2.2 Concept of virtual masses 40 3.2.3 Concept of virtual springs 44 3.3 Experimental validation 47 3.3.1 Validation of trial masses 47 3.3.2 Validation of virtual masses 55 3.3.3 Validation of virtual springs 59 3.4 Summary 64 CHAPTER 4. TRANSFER PATH ANALYSIS USING A VIRTUAL SPRING 69 4.1 Introduction 69 4.2 Conventional TPA 76 4.3 FBS-based TPA 79 4.4 Experimental validation 83 4.4.1 Specific road noise phenomenon 83 4.4.2 Suspension link TPA 89 4.4.3 Body TPA 99 4.5 Summary 104 CHAPTER 5. EXPERIMENTAL METHOD FOR IMPROVED ACCURACY OF DYNAMIC SUBSTRUCTURING MODEL 109 5.1 Introduction 109 5.2 Theoretical concepts 111 5.2.1 Dynamic substructuring model considering generalized coupling properties 111 5.2.2 Virtual point transformation method to improve experimental data 117 5.2.2.1 Virtual point displacement 117 5.2.2.2 Virtual point FRF 125 5.3 Validation of virtual point transformation 128 5.3.1 Target system and system description 128 5.3.2 Validation of virtual point transformation 133 5.3.2.1 Validation of virtual point displacement 133 5.3.2.2 Validation of virtual point FRF 139 5.3.3 Dynamic substructuring with virtual point transformation 143 5.4 Summary 152 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 155 6.1 Conclusions 155 6.2 Recommendations 159 APPENDIX 163 REFERENCES 167 κ΅­ λ¬Έ 초 둝 177Docto

    A Study on the Pressure Drop Characteristics According to the Shape of a Gas Turbine Combustor Strainer

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(석사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅ν•™μ „λ¬ΈλŒ€ν•™μ› μ‘μš©κ³΅ν•™κ³Ό, 2022.2. ν™©μ›νƒœ.κ°€μŠ€ν„°λΉˆ μ—°μ†ŒκΈ°λŠ” κ³ μ˜¨λΆ€ν’ˆμœΌλ‘œμ„œ μ—°λ£Œλ…Έμ¦ 내뢀에 μ„€μΉ˜λ˜λŠ” μŠ€νŠΈλ ˆμ΄λ„ˆμ˜ μ••λ ₯κ°•ν•˜λ₯Ό μΈ‘μ •ν•˜λŠ” μ„€λΉ„κ°€ μ—†μ–΄, μ‹€μ œ κ°€μŠ€ν„°λΉˆ 유 λ™μ—μ„œμ˜ μŠ€νŠΈλ ˆμ΄λ„ˆ ν˜•μƒλ³„ μ••λ ₯κ°•ν•˜ νŠΉμ„±μ„ νŒŒμ•…ν•˜κΈ° μœ„ν•œ 이둠적, μ‹€ν—˜μ  연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μŠ€νŠΈλ ˆμ΄λ„ˆλ₯Ό ν†΅κ³Όν•˜λŠ” μœ λ™μ€ κ΄€μ„±λ ₯의 영ν–₯으둜 인해 속도에 λŒ€ν•œ μ••λ ₯κ°•ν•˜κ°€ λΉ„μ„ ν˜•μ μΈ 관계λ₯Ό λ³΄μ΄λŠ” Non-Darcy μœ λ™μ΄λ©°, μΈ‘μ •λœ μ••λ ₯κ°•ν•˜ 데이터와 Forchheimer 이둠 식을 톡해 μŠ€νŠΈλ ˆμ΄λ„ˆ 고유의 투과율과 관성저항인 Ergun μƒμˆ˜λ₯Ό 도 μΆœν•˜μ˜€λ‹€ μ„œμšΈλ³΅ν•©λ°œμ „μ†Œ κ°€μŠ€ν„°λΉˆ M501GAC κΈ°μ’…μ˜ λ§€μ‰¬νƒ€μž…κ³Ό 포러슀 νƒ€μž…μ˜ μ—°μ†ŒκΈ° μŠ€νŠΈλ ˆμ΄λ„ˆλ₯Ό μ„€μΉ˜ν•˜μ—¬ κΈ°λ³Έμƒνƒœ, 철가루 5, 10, 20 g이 νˆ¬μž…λœ μ‘°κ±΄μ—μ„œ μœ μž…λ˜λŠ” 곡기의 μ••λ ₯κ³Ό μœ λŸ‰μ„ λ³€ν™”μ‹œν‚€λ©΄ μ„œ μ‹€ν—˜μ„ μ§„ν–‰ν•˜μ˜€μœΌλ©°, 각 κ²½μš°μ— λŒ€ν•΄ μŠ€νŠΈλ ˆμ΄λ„ˆ 고유의 투과 율과 관성저항인 Ergun μƒμˆ˜λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. λ˜ν•œ μ‹€ν—˜μ„ 톡해 도 μΆœν•œ μŠ€νŠΈλ ˆμ΄λ„ˆ ν˜•μƒκ³„μˆ˜λ₯Ό 180 MW μ •κ²©μΆœλ ₯ μ‹€μ œ κ°€μŠ€ν„°λΉˆ 유 동에 μ μš©ν•˜μ—¬ Forchheimer식을 톡해 μ••λ ₯κ°•ν•˜λ₯Ό μ˜ˆμΈ‘ν•˜μ˜€μœΌλ©°, κΈ°λ³Έμƒνƒœ κΈ°μ€€ λ§€μ‰¬νƒ€μž…μ€ 0.74 bar, ν¬λŸ¬μŠ€νƒ€μž…μ€ 1.06 bar의 μ••λ ₯ κ°•ν•˜κ°€ ν˜•μ„±λœλ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ‹€μ œ μ„œμšΈλ³΅ν•©λ°œμ „μ†Œ 1, 2호기의 μŠ€νŠΈλ ˆμ΄λ„ˆ ν˜•μƒμ„ λ‹¬λ¦¬ν•˜μ—¬ μš΄μ „ ν›„ μ—°μ†Œμ‹€ 노즐 평균압λ ₯을 λΉ„κ΅ν•˜μ—¬ μ•½ 0.3 bar의 μ••λ ₯κ°•ν•˜ 차이가 λ‚˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. λ˜ν•œ μŠ€νŠΈλ ˆμ΄λ„ˆμ˜ μ••λ ₯κ°•ν•˜μ— λ”° λ₯Έ λ°œμ „μΆœλ ₯ λ³€ν™”λŸ‰κ³Ό κ°€μŠ€ν„°λΉˆ νš¨μœ¨μ„ ν™•μΈν•˜μ˜€μœΌλ©°, 180 MW 좜λ ₯ κΈ°μ€€μ—μ„œ λ§€μ‰¬νƒ€μž…μ„ μ„€μΉ˜ν•œ κ°€μŠ€ν„°λΉˆμ΄ ν¬λŸ¬μŠ€νƒ€μž…μ„ μ„€μΉ˜ ν•œ κ°€μŠ€ν„°λΉˆλ³΄λ‹€ λ°œμ „μΆœλ ₯은 μ•½ 2.2 % 높은 것을 ν™•μΈν•˜μ˜€λ‹€.Since the gas turbine combustor is a high-temperature component and there is no facility to measure the pressure drop of the strainer installed inside the fuel nozzle, theoretical and experimental studies were performed to understand the pressure drop characteristics of each strainer shape in the actual gas turbine flow. The flow through the strainer is a Non-Darcy flow in which the pressure drop with respect to velocity has a non-linear relationship due to the influence of inertial force, and the Ergun coefficient which is the intrinsic transmittance and inertia resistance of the strainer, is derived through the measured pressure drop data and Forchheimer's theory. By installing a mesh type and porous type combustor strainer of the Seoul Combined Cycle Power Plant gas turbine M501GAC model, the experiment was conducted while varying the pressure and flow rate of the incoming air under the condition that 5, 10, 20 g of iron powder was added. The strainer's intrinsic transmittance and inertia resistance, Ergun's coefficient, are shown. In addition, the pressure drop was predicted through the Forchheimer equation by applying the strainer shape factor derived through the experiment to the actual flow of the 180 MW rated output gas turbine. It was confirmed that a pressure drop of 0.74 bar for the mesh type and 1.06 bar for the porous type was formed based on the basic condition. In fact, by comparing the average pressure of the combustion chamber nozzles after operation with different strainer shapes of Seoul Combined Cycle Power Plant Units 1 and 2, it was confirmed that there was a difference in pressure drop of about 0.3 bar. In addition, the amount of change in power generation output and gas turbine efficiency according to the strainer pressure drop were confirmed. Based on 180MW power generation output, the gas turbine with the mesh type strainer had about 4MW higher power generation output than the gas turbine with the porous type strainer. The efficiency of the gas turbine with the mesh type was about 0.22% higher than that of the gas turbine with the porous type.제 1 μž₯ μ„œλ‘  1 1.1 연ꡬ λ°°κ²½ 1 1.2 기쑴의 연ꡬ 3 1.3 연ꡬ 방법 4 제 2 μž₯ μŠ€νŠΈλ ˆμ΄λ„ˆ μœ λ™ νŠΉμ„± 5 2.1 μŠ€νŠΈλ ˆμ΄λ„ˆμ˜ μ’…λ₯˜μ™€ νŠΉμ§• 5 2.1.1. Yν˜• μŠ€νŠΈλ ˆμ΄λ„ˆ 5 2.1.2 Cν˜• μŠ€νŠΈλ ˆμ΄λ„ˆ 6 2.1.3 Coneν˜• μŠ€νŠΈλ ˆμ΄λ„ˆ 6 2.2 속도에 λ”°λ₯Έ μŠ€νŠΈλ ˆμ΄λ„ˆ μœ λ™ νŠΉμ„± 9 2.2.1. λ‹€λ₯΄μ‹œμ˜ 법칙 9 2.2.2. Non-Darcy μœ λ™ 10 2.2.3. Forchheimer 이둠식 11 제 3 μž₯ μŠ€νŠΈλ ˆμ΄λ„ˆ μœ λ™ μ••λ ₯κ°•ν•˜ νŠΉμ„±12 3.1 μ‹€ν—˜ μž₯치 및 방법 12 3.2 신뒰도 검증 16 3.2.1 κΈ°μ••μ‹œν—˜ 16 3.2.2 T-뢄포(Student’s Distribution) 19 3.3 μ‹€ν—˜ κ²°κ³Ό 및 κ³ μ°° 23 3.3.1 μ••λ ₯κ°•ν•˜ 23 3.3.2 투과율 및 Ergunμƒμˆ˜ 30 제 4 μž₯ κ°€μŠ€ν„°λΉˆ μ—°μ†ŒκΈ° μ••λ ₯κ°•ν•˜ νŠΉμ„± 34 4.1 Forchheimer 이둠식 κΈ°μ€€ μ••λ ₯κ°•ν•˜ 예츑 34 4.2 μ‹€μ œ κ°€μŠ€ν„°λΉˆ μœ λ™ μ••λ ₯κ°•ν•˜ νŠΉμ„± 36 4.2.1 μŠ€νŠΈλ ˆμ΄λ„ˆ μ••λ ₯κ°•ν•˜ 및 λ°œμ „μΆœλ ₯ 36 4.2.2 μŠ€νŠΈλ ˆμ΄λ„ˆ μ••λ ₯κ°•ν•˜ 및 κ°€μŠ€ν„°λΉˆ 효율 38 제 5 μž₯ κ²°λ‘  41 μ°Έκ³ λ¬Έν—Œ 44 Abstract 46석

    METHOD AND SYSTEM OF PROVIDING AUTHORIZATION IN DM SERVER

    No full text
    DM(Device Management) ν΄λΌμ΄μ–ΈνŠΈμ— λŒ€ν•œ 관리 κΆŒν•œμ„ λ‹€λ₯Έ DM μ„œλ²„λ‘œ μœ„μž„(delegation)ν•˜λŠ” 데에 μžˆμ–΄, μ„€μ •λ˜λŠ” μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트(DM account management object)에 λ…Έλ“œλ₯Ό μΆ”κ°€ν•˜μ—¬ 효율적인 μœ„μž„ μ²˜λ¦¬κ°€ 이루어지도둝 ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법 및 κΆŒν•œ λΆ€μ—¬ μ‹œμŠ€ν…œμ„ κ°œμ‹œν•œλ‹€.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법.제2 DM(Device Management) μ„œλ²„μ—μ„œμ˜ μœ„μž„ μš”μ²­ λ°œμƒμ— μ—°λ™ν•˜μ—¬,μ„Έμ…˜μ„ ν˜•μ„±ν•˜κ³  μžˆλŠ” 제1 DM μ„œλ²„λ‘œλΆ€ν„°, 상기 제2 DM μ„œλ²„μ™€μ˜ 접속을 μœ„ν•œ 제2 접속λͺ…λ Ή(DMS-2 DMAcc)을 μˆ˜μ‹ ν•˜λŠ” 단계;상기 제2 접속λͺ…λ Ή(DMS-2 DMAcc)의 μˆ˜μ‹ μ— 따라, μ–΄μΉ΄μš΄νŠΈ 관리 였브젝트λ₯Ό μ„€μ •ν•˜λŠ” 단계;상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— κΈ°μ΄ˆν•˜μ—¬, 상기 제2 DM μ„œλ²„μ™€μ˜ μ„Έμ…˜ ν˜•μ„±μ„ μ œμ–΄ν•˜λŠ” 단계; 및상기 μ–΄μΉ΄μš΄νŠΈ 관리 μ˜€λΈŒμ νŠΈμ— λΆ€μ—¬λœ 유효 κΈ°κ°„ λ‚΄μ—μ„œ, 상기 제2 DM μ„œλ²„μ— μ˜ν•œ λ””λ°”μ΄μŠ€μ˜ 관리λ₯Ό ν—ˆμš©ν•˜λ˜, 상기 제2 DM μ„œλ²„λ‘œλΆ€ν„° λΆˆμ‚¬μš© μ œμ–΄λͺ…령이 μž…λ ₯되면, 상기 유효 κΈ°κ°„ λ™μ•ˆ, 상기 λΆˆμ‚¬μš© μ œμ–΄λͺ…령에 μ˜ν•΄ μ‹λ³„λ˜λŠ” νŠΉμ •μ˜ λ””λ°”μ΄μŠ€μ˜ μ‚¬μš©μ„ λΉ„ν™œμ„±ν•˜λŠ” 단계λ₯Ό ν¬ν•¨ν•˜λŠ” DM μ„œλ²„μ˜ κΆŒν•œ λΆ€μ—¬ 방법
    corecore