2 research outputs found

    포유λ₯˜ μœ μ „μ²΄ λ‚΄ 선택압에 μ˜ν•œ 적응 흔적 및 νŠΉμ„± 발꡴

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ ν˜‘λ™κ³Όμ • 생물정보학전곡,2019. 8. κΉ€ν¬λ°œ.The central goal of evolutionary biology is to understand the genetic basis of evolutionary processes and adaptive traits. In this regard, the recent advances in sequencing technologies and the explosion of sequence data provide a better opportunity to reach this goal. Various genomic variations are now easily and precisely obtained for large-scale of samples. They are expanding the scope of typical genomic studies, allowing us to take into account diverse evolutionary processes. The aim of this thesis is to demonstrate the applications of such genomic variations while taking into account diverse evolutionary scenarios and time scales. As such, this thesis will fill in the gaps in the knowledge of mammalian genetic background underlying adaptive traits through genome-wide scan and comparative genome analysis. This thesis consists of five chapters and includes results of genome analysis for detecting evolutionary signatures in three mammal species; pinnipeds, primates, and cattle. The basic background, terminologies and recent example studies related to this thesis were introduced in chapter 1. Chapter 2 and 3 focused on divergence between species (macroevolution), while chapter 4 and 5 focused on polymorphism within species (microevolution). Pinnipeds are a remarkable group of marine animals with unique adaptations to semi-aquatic life. However, their genomes are poorly characterized. In chapter 2, evolutionary signatures of pinnipeds have been investigated using amino acid substitutions. Novel genome assemblies of 3 pinniped species; Phoca largha, Callorhinus ursinus, and Eumetopias jubatus have been generated. These genome assemblies have been used to detect rapidly evolving genes and substitutions unique to pinnipeds associated with their specificities. As a result, unique substitutions were found within the TECTA gene and are likely related to the adaptation to amphibious sound perception in pinnipeds. In addition, several genes (FASN, KCNA5, and IL17RA) containing substitutions specific to pinnipeds were found to be potential candidates of phenotypic convergence in all marine mammals. It indicates the weak link between molecular and phenotypic convergence, and confirms the results of previous studies. This study provides candidate targets for future studies of gene function, as well as backgrounds for convergent evolution of marine mammals. Humans have the largest brain among extant primates with specialized neuronal connections. However, how the human brain rapidly evolved compared to that of closely related primates is not fully understood. In chapter 3, a genome-wide survey has been performed to find an explanation for the rapid evolution of human brain. Based on the hypothesis that tandem repeats could play a key role in introducing genetic variations due to their unstable nature, a genome-wide survey detected 152 human-specific TRs (HSTR) that have emerged only in the human lineage. The HSTRs are associated with biological functions in brain development and synapse function, and the expression level of HSTR-associated genes in brain tissues was significantly higher in human than in other primates. These results suggest a possibility that de novo emergence of TRs might have contributed to the rapid evolution of human brain. The genetic history of cattle is complex, but contains plentiful information to comprehend mammalian evolutionary process such as domestication, and environmental adaptations. In chapter 4, the genomic influence of recent artificial selection has been examined in the case of Korean native cattle, Hanwoo. Using runs of homozygosity (ROH), an increase of inbreeding for decades has been shown, and at the same time, it has been demonstrated that inbreeding has been of little influence on body weight trait. In chapter 5, admixture between two cattle populations; Bos taurus, and Bos indicus has been examined in Indigenous African cattle populations., Several evidences based on single nucleotide polymorphism (SNP) support that adaptive admixture is at the root of the success of African cattles rapid dispersion across African continent. The findings in this thesis demonstrated applications of various genomic variations under diverse evolutionary scenarios and time scales, and thus may contribute to the understanding of evolutionary processes in mammals.진화 μƒλ¬Όν•™μ˜ 핡심 λͺ©ν‘œλŠ” 진화 κ³Όμ •κ³Ό 적응 ν˜•μ§ˆμ˜ μœ μ „μ  기초λ₯Ό μ΄ν•΄ν•˜λŠ” 것이닀. 이와 κ΄€λ ¨ν•˜μ—¬ 졜근 μ‹œν€€μ‹± 기술의 진보와 μ„œμ—΄ λ°μ΄ν„°μ˜ 폭발적 μ¦κ°€λŠ” μ΄λŸ¬ν•œ λͺ©ν‘œλ₯Ό 달성 ν•  수 μžˆλŠ” 더 쒋은 기회λ₯Ό μ œκ³΅ν•˜κ³  μžˆλ‹€. μ‹€μ œλ‘œ μ‹œν€€μ‹± 기술의 λ°œλ‹¬λ‘œ λŒ€κ·œλͺ¨ μ‹œλ£Œμ— λŒ€ν•˜μ—¬ μ’€ 더 쉽고 μ •ν™•ν•˜κ²Œ λ‹€μ–‘ν•œ μœ μ „λ³€μ΄λ₯Ό 얻을 수 있게 λ˜μ—ˆμœΌλ©°, 이 덕뢄에 일반적인 μœ μ „μ²΄ μ—°κ΅¬μ˜ λ²”μœ„κ°€ ν™•μž₯λ˜μ—ˆκ³  λ‹€μ–‘ν•œ 진화 과정을 κ³ λ €ν•  μˆ˜λ„ 있게 λ˜μ—ˆλ‹€. 이에 이 λ…Όλ¬Έμ˜ λͺ©μ μ€ λ‹€μ–‘ν•œ 진화과정 ν•˜μ—μ„œ μ—¬λŸ¬ μœ μ „λ³€μ΄μ˜ μœ μš©μ„±μ„ 보여주고, μ „μž₯ μœ μ „μ²΄ 및 비ꡐ μœ μ „μ²΄ 뢄석을 톡해 포유λ₯˜ 적응 ν˜•μ§ˆμ˜ μœ μ „μ  배경을 λ°νžˆλŠ” 것이닀. 이 논문은 μ„Έ 가지 포유 동물 μ’…(기각λ₯˜, 영μž₯λ₯˜, μ†Œ)의 μœ μ „μ²΄ 뢄석 κ²°κ³Όλ₯Ό ν¬ν•¨ν•œ 5 개의 μž₯으둜 κ΅¬μ„±λ˜μ–΄μžˆλ‹€. 제 1μž₯μ—μ„œλŠ” 이 λ…Όλ¬Έκ³Ό κ΄€λ ¨λœ λ°°κ²½ 지식과 졜근의 연ꡬ 사둀λ₯Ό μ†Œκ°œν•˜κ³  μžˆλ‹€. μ „λ°˜λΆ€ (제 2, 3μž₯)λŠ” μ’…κ°„ 비ꡐ뢄석에 쀑점을 λ‘μ—ˆκ³ , ν›„λ°˜λΆ€(제4, 5μž₯)λŠ” μ’…λ‚΄μ˜ λ‹€ν˜•μ„±μ— μ΄ˆμ μ„ 두고 μžˆλ‹€. 기각λ₯˜λŠ” 반 μˆ˜μƒ ν™˜κ²½μ— μ μ‘ν•œ νŠΉμ§•μ μΈ ν•΄μ–‘ 동물이닀. κ·ΈλŸ¬λ‚˜ κ·Έ μœ μ „μ²΄λŠ” νŠΉμ„±μ΄ 잘 μ•Œλ €μ Έ μžˆμ§€ μ•Šλ‹€. 제2 μž₯μ—μ„œλŠ” μ•„λ―Έλ…Έμ‚° μΉ˜ν™˜ 정보λ₯Ό μ΄μš©ν•˜μ—¬ 기각λ₯˜μ˜ 진화 및 적응 흔적을 μ‘°μ‚¬ν•˜μ˜€λ‹€. ꡬ체적으둜 기각λ₯˜3 μ’…μ˜ μƒˆλ‘œμš΄ μœ μ „μ²΄λ₯Ό μ΄μš©ν•˜μ—¬ 기각λ₯˜μ˜ μƒν™œν™˜κ²½κ³Ό κ΄€λ ¨λœ 양성선택 μœ μ „μž 및 μ•„λ―Έλ…Έμ‚° μΉ˜ν™˜ 흔적을 λ°œκ΅΄ν•˜μ˜€λ‹€. 특히 TECTA μœ μ „μž λ‚΄μ˜ κ³ μœ ν•œ μ•„λ―Έλ…Έμ‚° μΉ˜ν™˜ 흔적은 기각λ₯˜μ˜ 청각과 λ°€μ ‘ν•œ 관련이 μžˆμ„ κ²ƒμœΌλ‘œ μ˜ˆμƒλœλ‹€. λ˜ν•œ, 이전 연ꡬ결과와 같이 ν•΄μ–‘ 포유λ₯˜μ—μ„œ ν‘œν˜„ν˜•μ˜ μˆ˜λ ΄μ§„ν™”μ™€ μ§μ ‘μ μœΌλ‘œ μ—°κ΄€λ˜μ–΄ μžˆλŠ” μ„œμ—΄ μˆ˜λ ΄μ€ ν”ν•˜μ§€ μ•Šλ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 예λ₯Ό λ“€μ–΄, FASN, KCNA5 및 IL17RAλŠ” 기각λ₯˜μ— 특이적인 μ•„λ―Έλ…Έμ‚° μΉ˜ν™˜μ„ ν¬ν•¨ν•˜μ§€λ§Œ λͺ¨λ“  ν•΄μ–‘ 포유 λ™λ¬Όμ—μ„œ κ³΅ν†΅μ μœΌλ‘œ ν‘œν˜„ν˜• μˆ˜λ ΄μ§„ν™” (λ‘κΊΌμš΄ 지방쑰직, μ €μ‚°μ†Œ 적응 및 병원체에 λŒ€ν•œ λ©΄μ—­ λ°˜μ‘)κ°€ 일어났을 κ²ƒμœΌλ‘œ μ˜ˆμƒλœλ‹€. μ΄λŸ¬ν•œ 연ꡬ 결과듀은 ν•΄μ–‘ 포유λ₯˜μ˜ 수렴 진화 νŠΉμ„±μ— λŒ€ν•œ 지식을 μ œκ³΅ν•¨κ³Ό λ™μ‹œμ— μœ μ „μž κΈ°λŠ₯ 연ꡬ에 λŒ€ν•œ 후보 ν‘œμ μ„ μ œκ³΅ν•  κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€. 인간은 ν˜„μ‘΄ν•˜λŠ” 영μž₯λ₯˜ μ€‘μ—μ„œ κ°€μž₯ 큰 λ‘λ‡Œλ₯Ό 가지고 μžˆλ‹€. κ·ΈλŸ¬λ‚˜ μΈκ°„μ˜ λ‡Œκ°€ μ–΄λ–»κ²Œ 영μž₯λ₯˜ μ€‘μ—μ„œ 특히 λΉ λ₯΄κ²Œ μ§„ν™”ν–ˆλŠ”μ§€ λŠ” μ™„μ „νžˆ λ°ν˜€μ§€μ§€ μ•Šμ•˜λ‹€. 제 3 μž₯μ—μ„œλŠ” 인간 λ‘λ‡Œμ˜ κΈ‰μ†ν•œ 진화에 λŒ€ν•œ 가섀을 μ°ΎκΈ° μœ„ν•΄ μœ μ „μ²΄ 뢄석을 μˆ˜ν–‰ν•˜μ˜€λ‹€. λ°˜λ³΅μ„œμ—΄μ΄ κ·Έ λΆˆμ•ˆμ •ν•œ μ„±μ§ˆ λ•Œλ¬Έμ— κΈ‰μ†ν•œ μœ μ „μ  변이λ₯Ό μΌμœΌν‚€λŠ” 데 핡심적인 역할을 ν•  수 μžˆλ‹€λŠ” 가섀에 κ·Όκ±°ν•˜μ—¬, μœ μ „μ²΄ λΉ„κ΅λΆ„μ„μ—μ„œ 인간 특이적인 152 개의 λ°˜λ³΅μ„œμ—΄μ„ κ²€μΆœν•˜μ˜€λ‹€. νŠΉμ΄ν•˜κ²Œλ„, μ΄λŸ¬ν•œ λ°˜λ³΅μ„œμ—΄λ“€μ€ λ‡Œ λ°œλ‹¬ 및 μ‹œλƒ…μŠ€ κΈ°λŠ₯κ³Ό 관련이 μžˆμ—ˆμœΌλ©°, λ‡Œ μ‘°μ§μ—μ„œ ν•΄λ‹Ή λ°˜λ³΅μ„œμ—΄κ³Ό κ΄€λ ¨λœ μœ μ „μžμ˜ λ°œν˜„ μˆ˜μ€€μ€ λ‹€λ₯Έ 영μž₯λ₯˜λ³΄λ‹€ μΈκ°„μ—μ„œ μœ μ˜ν•˜κ²Œ λ†’μ•˜λ‹€. μ΄λŸ¬ν•œ κ²°κ³ΌλŠ” λ°˜λ³΅μ„œμ—΄μ΄ 인간 λ‘λ‡Œμ˜ κΈ‰μ†ν•œ 진화에 κΈ°μ—¬ν•˜μ˜€μ„ μˆ˜λ„ μžˆλ‹€λŠ” ν•˜λ‚˜μ˜ κ°€λŠ₯성을 μ œμ‹œν•œλ‹€. μ†Œμ˜ μœ μ „μ  μ—­μ‚¬λŠ” λ³΅μž‘ν•˜μ§€λ§Œ κ°€μΆ•ν™” 및 ν™˜κ²½ 적응과 같은 포유 λ™λ¬Όμ˜ 진화 과정을 이해할 수 μžˆλŠ” ν’λΆ€ν•œ 정보λ₯Ό λ‹΄κ³ μžˆλ‹€. 제 4 μž₯μ—μ„œλŠ” ν•œκ΅­ ν† μ’… μ†Œν’ˆμ’…μΈ ν•œμš°μ˜ μœ μ „μ²΄ μ„ λ°œμ΄ ν•œμš° 집단에 미친 μœ μ „μ  영ν–₯을 쑰사 ν•˜μ˜€λ‹€. Runs of humozygosityλ₯Ό μ΄μš©ν•˜μ—¬, μ΅œκ·Όμ— μΌμ–΄λ‚œ 근친 ꡐ배의 증가λ₯Ό 보여 μ£Όμ—ˆκ³  λ™μ‹œμ—, 근ꡐ약세가 체쀑에 영ν–₯을 λ―ΈμΉ  만큼 크지 μ•Šμ•˜λ‹€λŠ” 것을 μœ μ „μ •λ³΄λ₯Ό 톡해 λ³΄μ—¬μ£Όμ—ˆλ‹€. 제 5 μž₯μ—μ„œλŠ” μ†Œμ˜ 두 μ•„μ’… (Bos taurus, Bos indicus)μ‚¬μ΄μ˜ μœ μ „μ  ν˜Όν•©μ„ 아프리카 ν† μ°© μ†Œμ˜ 단일 μ—ΌκΈ° λ‹€ν˜•μ„± 자료λ₯Ό 톡해 λΆ„μ„ν•˜μ˜€λ‹€. 이λ₯Ό 톡해 아프리카 μ†Œμ˜ ν™˜κ²½μ— λŒ€ν•œ λΉ λ₯Έ μ μ‘μ˜ 원인은 μœ μ „μ  ν˜Όν•©μ— μžˆλ‹€λŠ” μ—¬λŸ¬ 증거λ₯Ό μ œμ‹œν•˜μ˜€λ‹€. 이 논문은 λ‹€μ–‘ν•œ 진화과정 ν•˜μ—μ„œ λ‹€μ–‘ν•œ μœ μ „λ³€μ΄μ˜ μ μš©μ‚¬λ‘€λ₯Ό 보여주고, λ˜ν•œ 이λ₯Ό 톡해 포유 λ™λ¬Όμ˜ λ‹€μ–‘ν•œ 진화 과정을 μ΄ν•΄ν•˜λŠ” 데에 κΈ°μ—¬ν•  수 μžˆμ„ κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.ABSTRACT I CONTENTS V LIST OF TABLES VII LIST OF FIGURES IX GENERAL INTRODUCTION XIV CHAPTER 1. LITERATURE REVIEW 1 1.1 GENOMIC VARIATIONS 2 1.2 SIGNATURES OF POSITIVE SELECTION 7 1.3 SIGNATURES OF INTROGRESSION 13 CHAPTER 2. DECIPHERING THE EVOLUTIONARY SIGNATURES OF PINNIPEDS USING NOVEL GENOME SEQUENCES: THE FIRST GENOMES OF PHOCA LARGHA, CALLORHINUS URSINUS, AND EUMETOPIAS JUBATUS 17 2.1 ABSTRACT 18 2.2 INTRODUCTION 19 2.3 MATERIALS AND METHODS 23 2.4 RESULTS 37 2.5 DISCUSSION 66 CHAPTER 3. DE NOVO EMERGENCE AND POTENTIAL FUNCTION OF HUMAN-SPECIFIC TANDEM REPEATS IN BRAIN-RELATED LOCI 70 3.1 ABSTRACT 71 3.2 INTRODUCTION 72 3.3 MATERIALS AND METHODS 75 3.4 RESULTS 89 3.5 DISCUSSION 109 CHAPTER 4. ARTIFICIAL SELECTION INCREASED BODY WEIGHT BUT INDUCED INCREASE OF RUNS OF HOMOZYGOSITY IN HANWOO CATTLE 114 4.1 ABSTRACT 115 4.2 INTRODUCTION 116 4.3 MATERIALS AND METHODS 121 4.4 RESULTS 128 4.5 DISCUSSION 150 CHAPTER 5. THE MOSAIC GENOME ARCHITECTURE OF INDIGENOUS AFRICAN CATTLE AS A UNIQUE GENETIC RESOURCE FOR ADAPTATION TO LOCAL ENVIRONMENTS 154 5.1 ABSTRACT 155 5.2 INTRODUCTION 157 5.3 MATERIALS AND METHODS 161 5.4 RESULTS 174 5.5 DISCUSSION 199 GENERAL DISCUSSION 204 REFERENCES 207 μš”μ•½(ꡭ문초둝) 234Docto

    Unraveling genomic characteristics of domesticated animals and its applications using bioinformatic approaches

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 농생λͺ…곡학뢀 동물생λͺ…곡학전곡, 2016. 2. κΉ€ν¬λ°œ.κ°€μΆ•ν™”λœ 동물듀은 인간에 μ˜ν•œ μΈμœ„μ  μ„ νƒμœΌλ‘œ 인해 μžμ—°μƒνƒœμ˜ λ™λ¬Όκ³ΌλŠ” λ‹€λ₯Έ μœ μ „μ²΄μ  νŠΉμ„±μ„ 가지고 μžˆλ‹€. λ˜ν•œ, κ·Έλ“€μ˜ μœ μ „μ²΄μ  νŠΉμ„±μ€ μœ μƒμ‚°, μ‚°μžμˆ˜μ™€ 같은 μƒμ‚°ν˜•μ§ˆμ— 큰 영ν–₯을 λ―ΈμΉ  수 있기 λ•Œλ¬Έμ— κ°€μΆ•ν™”λœ λ™λ¬Όμ˜ μƒˆλ‘œμš΄ μœ μ „μ  νŠΉμ„±μ„ 규λͺ…ν•˜κ³  λΆ„μ„ν•˜λŠ” 것은 μ‚°μ—…μ μœΌλ‘œλ‚˜ ν•™λ¬Έμ μœΌλ‘œ 큰 κ°€μΉ˜λ₯Ό μ§€λ‹ˆκ³  μžˆλ‹€κ³  ν•  수 μžˆλ‹€. μœ μ „μ  νŠΉμ„± 쀑, 단일 μ—ΌκΈ° λ‹€ν˜•μ„±μ€ λ§Žμ€ μ—°κ΅¬μ—μ„œ ν™œμš©λ˜μ–΄μ™”λŠ”λ°, 특히 κ°€μΆ•μ—μ„œλŠ” μ‚°μ—…μ μœΌλ‘œ 큰 κ°€μΉ˜λ₯Ό μ§€λ‹Œ ν’ˆμ’…μ„ κ΅¬λΆ„ν•˜κΈ° μœ„ν•˜μ—¬ μ—°κ΅¬λ˜μ—ˆλ‹€. 예λ₯Ό λ“€μ–΄, 단일 μ—ΌκΈ° λ‹€ν˜•μ„±μ— λŒ€ν•œ μœ μ „ν˜• 뢄석을 ν†΅ν•˜μ—¬ ν¬μ†Œκ°€μΉ˜κ°€ 높은 돼지λ₯Ό κ΅¬λΆ„ν•˜λŠ” 방법이 μ‹€μ œλ‘œ ν™œμš©λ˜κ³  μžˆλ‹€. 또 λ‹€λ₯Έ ν˜•νƒœμ˜ μœ μ „μ²΄ νŠΉμ„±μΈ ꡬ쑰 λ³€μ΄λŠ” 단일염기 λ‹€ν˜•μ„± 보닀 λŒ€κ·œλͺ¨μΈ μˆ˜λ°±μ—μ„œ μˆ˜λ§Œκ°œμ— 이λ₯΄λŠ” μ—ΌκΈ°μ„œμ—΄ λ³€ν™”λ₯Ό μΌμœΌν‚¨λ‹€. μ΄λŸ¬ν•œ ꡬ쑰 변이 쀑 ν•˜λ‚˜μΈ 전이 μΈμžλŠ” νŠΉμ§•μ μœΌλ‘œ μœ μ „μ²΄λ‚΄μ—μ„œμ˜ 이동이 κ°€λŠ₯ν•˜λ©° μ΄λŸ¬ν•œ 이동은 μœ μ „μ  변이와 λ”λΆˆμ–΄ 개체의 ν˜•μ§ˆμ„ λ³€ν™”μ‹œν‚¬ 수 μžˆλ‹€. ν•œνŽΈ, λ‹­μ˜ μœ μ „μ²΄λŠ” λ‹€λ₯Έ 동물과 λ‹€λ₯΄κ²Œ 전이 인자λ₯Ό λ‹€λŸ‰λ³΄μœ ν•˜κ³  있으며 μ΄λŸ¬ν•œ 전이 인자둜 μΈν•œ ν˜•μ§ˆ 변화에 λŒ€ν•œ μ—¬λŸ¬ 연ꡬ가 보고 λ˜μ—ˆλ‹€. 제 2 μž₯μ—μ„œλŠ” νŒŒλž€ 달걀을 μƒμ‚°ν•˜λŠ” 닭인 경뢁 μ•„λΌμš°μΉ΄λ‚˜μ˜ μœ μ „μ²΄ λ‹¨νŽΈ μ„œμ—΄μ •λ³΄λ₯Ό μ°¨μ„ΈλŒ€ μ—ΌκΈ°μ„œμ—΄ 뢄석방법을 μ΄μš©ν•˜μ—¬ μ–»μ–΄λ‚΄μ—ˆλ‹€. 이λ₯Ό μ΄μš©ν•˜μ—¬ 특이적 전이 인자의 탐색과 ꡰ집 뢄석을 μˆ˜ν–‰ν•˜μ˜€κ³ , 경뢁 μ•„λΌμš°μΉ΄λ‚˜μ˜ νŠΉμ„±κ³Ό κ΄€λ ¨ 된 3개의 후보 전이 인자λ₯Ό λ°œκ΅΄ν•˜μ˜€λ‹€. λ˜ν•œ ꡰ집 λΆ„μ„μ˜ κ²°κ³Όλ₯Ό 톡해 경뢁 μ•„λΌμš°μΉ΄λ‚˜μ˜ 기원과 μ’… λ‚΄μ—μ„œμ˜ μœ„μΉ˜μ— λŒ€ν•œ 정보λ₯Ό 얻을 수 μžˆμ—ˆλ‹€. 생산이λ ₯μ œλŠ” 동물 λ˜λŠ” 동물성 μ‹ν’ˆμ˜ 생산지λ₯Ό μΆ”μ ν•˜λŠ” 방법을 λ§ν•œλ‹€. μ΄λŠ” 식쀑독과 같은 μ‹ν’ˆκ³Ό κ΄€λ ¨λœ μ „μ—Όμ„± μ§ˆλ³‘μ„ μ˜ˆλ°©ν•˜κ±°λ‚˜ λŒ€μ²˜ν•˜λŠ” 데 맀우 μ€‘μš”ν•œ 방법이닀. 생산이λ ₯μ œλŠ” λ˜ν•œ 동물성 μ‹ν’ˆμ— λŒ€ν•œ μ†ŒλΉ„μžμ˜ 신뒰도λ₯Ό ν–₯상 μ‹œν‚€λŠ” 역할을 ν•  수 μžˆλ‹€. κ·ΈλŸ¬λ‚˜ κΈ°κ³„ν•™μŠ΅μ„ ν†΅ν•œ 생산이λ ₯μ œμ— λŒ€ν•œ μ—°κ΅¬λŠ” ν˜„μž¬κΉŒμ§€ 거의 μ§„ν–‰λ˜μ§€ μ•Šμ•˜λ‹€. 제 3 μž₯μ—μ„œλŠ” 104개의 농μž₯μ—μ„œ μƒμ‚°λœ 4,122 마리의 돼지λ₯Ό μ΄μš©ν•˜μ—¬ μœ μ „ν˜•μ„ λΆ„μ„ν•˜κ³  이λ₯Ό μ΄μš©ν•˜μ—¬ 각각의 돼지λ₯Ό 농μž₯에 따라 λΆ„λ₯˜ν•  수 μžˆλŠ” λͺ¨ν˜•μ„ κ΅¬μΆ•ν•˜μ˜€λ‹€. 거의 λͺ¨λ“  κ²½μš°μ—μ„œ LogitBoost λΆ„λ₯˜κΈ°λ₯Ό μ΄μš©ν•œ λͺ¨ν˜•μ΄ λΆ„λ₯˜ 정확도 μΈ‘λ©΄μ—μ„œ λ‹€λ₯Έ λͺ¨ν˜•μ„ λŠ₯κ°€ν•˜μ˜€μœΌλ©°, μœ μ „μ  관계가 높은 μ§‘λ‹¨μ—μ„œ 더 높은 정확도λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 이 두 κ²°κ³ΌλŠ” 단일염기 λ‹€ν˜•μ„±μ„ μ΄μš©ν•œ κΈ°κ³„ν•™μŠ΅ μ ‘κ·Ό λ°©λ²•μ˜ 생산이λ ₯μ œμ— λŒ€ν•œ μ‘μš©κ°€λŠ₯성을 보여쀀닀.CHAPTER 1. LITERATURE REVIEW 1 1.1 TRANSPOSABLE ELEMENTS 2 1.2 MACHINE-LEARNING APPROACH FOR TRACEABILITY 7 CHAPTER 2. WHOLE GENOME SEQUENCING OF GYEONGBUK ARAUCANA, A NEWLY DEVELOPED BLUE-EGG LAYING CHICKEN BREED, REVEALS ITS ORIGIN AND GENETIC CHARACTERISTICS 13 2.1 ABSTRACT 14 2.2 INTRODUCTION 15 2.3 MATERIALS AND METHODS 18 2.4 RESULTS AND DISCUSSION 22 CHAPTER 3. APPLICATION OF LOGITBOOST CLASSIFIER FOR TRACEABILITY USING SNP CHIP DATA 33 3.1 ABSTRACT 34 3.2 INTRODUCTION 35 3.3 MATERIALS AND METHODS 38 3.4 RESULTS AND DISCUSSION 44 GENERAL DISCUSSION 81 REFERENCES 82 μš”μ•½(ꡭ문초둝) 91Maste
    corecore