236 research outputs found

    The micronucleus assay in radiation accidents

    Get PDF
    The cytokinesis-block micronucleus assay in peripheral blood lymphocytes is a standardised and validated technique for biodosimetry. Automated scoring of micronuclei allows large scale applications as in population triage in case of radiation accidents or malevolent use of radioactive sources. The dose detection limit (95% confidence) of the micronucleus assay for individual dose assessment is restricted to 0.2 Gy but can be decreased to 0.1 Gy by scoring centromeres in micronuclei using fluorescence in situ hybridization (FISH). In the past the micronucleus assay was applied for a number of large scale biomonitoring studies of nuclear power plant workers and hospital workers. Baseline micronucleus frequencies depend strongly on age and gender. The assay was also already used for biodosimetry of radiation accidents. In a multiple endpoint biodosimetry study for dose assessment of a worker exposed accidentally in 2003 to X-rays, a good agreement was obtained between dose estimates resulting from the micronucleus assay, the scoring of dicentrics and translocations. Automated scoring of micronuclei in combination with centromere signals, allowing systematic biodosimetry of exposed populations, remains a challenge for the future

    The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure

    Get PDF
    Biological dosimetry, based on the analysis of micronuclei (MN) in the cytokinesis-block micronucleus (CBMN) assay can be used as an alternative method for scoring dicentric chromosomes in the field of radiation protection. Biological dosimetry or Biodosimetry, is mainly performed, in addition to physical dosimetry, with the aim of individual dose assessment. Many studies have shown that the number of radiation-induced MN is strongly correlated with dose and quality of radiation. The CBMN assay has become, in the last years, a thoroughly validated and standardised technique to evaluate in vivo radiation exposure of occupational, medical and accidentally exposed individuals. Compared to the gold standard, the dicentric assay, the CBMN assay has the important advantage of allowing economical, easy and quick analysis. The main disadvantage of the CBMN assay is related to the variable micronucleus ( MN) background frequency, by which only in vivo exposures in excess of 0.2-0.3 Gy X-rays can be detected. In the last years, several improvements have been achieved, with the ultimate goals (i) of further increasing the sensitivity of the CBMN assay for low-dose detection by combining the assay with a fluorescence in situ hybridisation centromere staining technique, (ii) of increasing the specificity of the test for radiation by scoring nucleoplasmic bridges in binucleated cells and (iii) of making the assay optimally suitable for rapid automated analysis of a large number of samples, viz. in case of a large-scale radiation accident. The development of a combined automated MN-centromere scoring procedure remains a challenge for the future, as it will allow systematic biomonitoring of radiation workers exposed to low-dose radiation

    Fluorescence in situ hybridisation study of micronuclei in C3A cells following exposure to ELF-magnetic fields

    Get PDF
    Human C3A cells were exposed to extremely low frequency (50 Hz) magnetic fields (ELF-MF's) up to 500 mu T. They were subjected to the micronucleus assay using a Fluorescence In Situ Hybridization (FISH) technique with an in-house pan-centromere probe. We found no increased frequency in micronucleated cells and no change in the proportion of centromere positive over centromere negative micronuclei compared to the unexposed control cells. These results are in accordance with some, but in contradiction with other previously published investigations underlining that effects of environmental ELF-EMF's on cellular DNA may be very subtle and that small changes or environmental influences may determine the outcome of a (geno)toxicity study. Interestingly, a low-level (5 mu T) exposure resulted in less than the background micronucleus frequency

    The cytokinesis-block micronucleus assay on human isolated fresh and cryopreserved peripheral blood mononuclear cells

    Get PDF
    The cytokinesis-block micronucleus (CBMN) assay is a standardized method used for genotoxicity studies. Conventional whole blood cultures (WBC) are often used for this assay, although the assay can also be performed on isolated peripheral blood mononuclear cell (PBMC) cultures. However, the standardization of a protocol for the PBMC CBMN assay has not been investigated extensively. The aim of this study was to optimize a reliable CBMN assay protocol for fresh and cryopreserved peripheral blood mononuclear cells (PBMCS), and to compare micronuclei (MNi) results between WBC and PBMC cultures. The G(0)CBMN assay was performed on whole blood, freshly isolated, and cryopreserved PBMCS from healthy human blood samples and five radiosensitive patient samples. Cells were exposed to 220 kV X-ray in vitro doses ranging from 0.5 to 2 Gy. The optimized PBMC CBMN assay showed adequate repeatability and small inter-individual variability. MNi values were significantly higher for WBC than for fresh PBMCS. Additionally, cryopreservation of PBMCS resulted in a significant increase of MNi values, while different cryopreservation times had no significant impact. In conclusion, our standardized CBMN assay on fresh and cryopreserved PBMCS can be used for genotoxicity studies, biological dosimetry, and radiosensitivity assessment

    Chromosomal radiosensitivity of human immunodeficiency virus positive/negative cervical cancer patients in South Africa

    Get PDF
    Cervical cancer is the second most common cancer amongst South African women and is the leading cause of cancer-associated mortality in this region. Several international studies on radiation-induced DNA damage in lymphocytes of cervical cancer patients have remained inconclusive. Despite the high incidence of cervical cancer in South Africa, and the extensive use of radiotherapy to treat it, the chromosomal radiosensitivity of South African cervical cancer patients has not been studied to date. Since a high number of these patients are human immunodeficiency virus (HIV)-positive, the effect of HIV infection on chromosomal radiosensitivity was also investigated. Blood samples from 35 cervical cancer patients (20 HIV-negative and 15 HIV-positive) and 20 healthy controls were exposed to X-rays at doses of 6 MV of 2 and 4 Gy in vitro. Chromosomal radiosensitivity was assessed using the micronucleus (MN) assay. MN scores were obtained using the Metafer 4 platform, an automated microscopic system. Three scoring methods of the MNScore module of Metafer were applied and compared. Cervical cancer patients had higher MN values than healthy controls, with HIV-positive patients having the highest MN values. Differences between groups were significant when using a scoring method that corrects for false positive and false negative MN. The present study suggested increased chromosomal radiosensitivity in HIV-positive South African cervical cancer patients

    A semi-automated FISH-based micronucleus-centromere assay for biomonitoring of hospital workers exposed to low doses of ionizing radiation

    Get PDF
    The aim of the present study was to perform cytogenetic analysis by means of a semi-automated micronucleus-centromere assay in lymphocytes from medical radiation workers. Two groups of workers receiving the highest occupational doses were selected: 10 nuclear medicine technicians and 10 interventional radiologists/cardiologists. Centromere-negative micronucleus (MNCM-) data, obtained from these two groups of medical radiation workers were compared with those obtained in matched controls. The blood samples of the matched controls were additionally used to construct a 'low-dose' (0-100 mGy) MNCM-dose-response curve to evaluate the sensitivity and suitability of the micronucleus-centromere assay as an 'effect' biomarker in medical surveillance programs. The physical dosimetry data of the 3 years preceding the blood sampling, based on single or double dosimetry practices, were collected for the interpretation of the micronucleus data. The in vitro radiation results showed that for small sized groups, semi-automated scoring of MNCM-enables the detection of a dose of 50 mGy. The comparison of MNCM-yields in medical radiation workers and control individuals showed enhanced MNCM-scores in the medical radiation workers group (P=0.15). The highest MNCM-scores were obtained in the interventional radiologists/cardiologists group, and these scores were significantly higher compared with those obtained from the matched control group (P=0.05). The higher MNCM-scores observed in interventional radiologists/cardiologists compared with nuclear medicine technicians were not in agreement with the personal dosimetry records in both groups, which may point to the limitation of 'double dosimetry' procedures used in interventional radiology/cardiology. In conclusion, the data obtained in the present study supports the importance of cytogenetic analysis, in addition to physical dosimetry, as a routine biomonitoring method in medical radiation workers receiving the highest occupational radiation burdens

    Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    Get PDF
    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells
    • ‚Ķ