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Fidelity decay for local perturbations: Microwave evidence for oscillating decay

exponents
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We study fidelity decay in classically chaotic microwave billiards for a local, pistonlike boundary
perturbation. We experimentally verify a predicted nonmonotonic crossover from the Fermi golden
rule to the escape-rate regime of the Loschmidt echo decay with increasing local boundary pertur-
bation. In particular, we observe pronounced oscillations of the decay rate as a function of the
piston position which quantitatively agree with corresponding theoretical results based on a refined
semiclassical approach for local boundary perturbations.

PACS numbers: 05.45.Mt, 03.65.Sq

I. INTRODUCTION

The stability of quantum time evolution measured by
the overlap between time-evolved perturbed and unper-
turbed states, as suggested by Peres [1], has been studied
from various viewpoints and under different names. In
the field of quantum information this overlap is called
“fidelity” [2] and plays an important role for quantify-
ing the susceptibility of quantum dynamics to environ-
mental or other external perturbations. In semiclassical
quantum and wave mechanics, alternatively, the overlap
of an initial state with the state reached after succes-
sive forward and backward time propagation, governed
by the unperturbed and perturbed Hamiltonian, is often
termed “Loschmidt echo” (LE) [3], especially for Hamil-
tonians associated with complex, in particular, classically
chaotic dynamics. This terminology refers to the notion
of echoes from momenta reversal in a Hamiltonian system
considered by Loschmidt [4] in the 19th century.

For chaotic systems the LE has been predicted to ex-
hibit different decay characteristics [5] depending on the
form and strength of the perturbation. One distinguishes
roughly three prominent LE decay regimes: the per-
turbative Gaussian [6, 7], the Fermi-golden-rule (FGR)
[5–8], and the Lyapunov regimes [5, 9] (for reviews see
Refs. [10, 11]). The various perturbations considered
have in common that they act “globally” on the system,
i.e., already a moderate perturbation strength can cause
a considerable rearrangement of the spectrum and eigen-
functions. Correspondingly, in a semiclassical picture,
a global perturbation affects all trajectories of the sys-
tem, and hence all of them are responsible for the decay
of the LE. The corresponding, original semiclassical ap-
proach to the LE [5, 9], which was recently generalized
beyond the so-called diagonal approximation [12], was
extended in Ref. [13] to strong local perturbations in co-
ordinate space. This combined analytical and numerical
study revealed for a billiard with a local boundary de-

formation, much larger than the de Broglie wavelength,
a novel LE decay law exp(−2γt), where γ is the classi-
cal “escape rate” from the related open billiard. This
approach was refined and generalized to weak perturba-
tions in Ref. [14] predicting a nonmonotonic crossover
from the FGR to the escape-rate regime with increasing
perturbation. For the case of a pistonlike boundary per-
turbation the LE decay rate is expected to show distinct
oscillations as a function of the perturbation strength,
i.e., piston position. While this nonmonotonic crossover
has been numerically confirmed for maps [15], quantum
wave packet simulations for billiards requiring more ex-
pensive numerics could only reveal precursors of this be-
havior [14], calling for an experimental verification of the
oscillations.
For a global perturbation the fidelity decay was studied

in a microwave billiard with classically chaotic dynamics
by shifting a billiard wall [16]. Using the concept of scat-
tering fidelity [17] the predicted fidelity decay from the
perturbative to the FGR regime was verified experimen-
tally.
A theoretical and experimental investigation of fidelity

decay for another type of “local” perturbation in the
perturbative regime, where the eigenstates are not sig-
nificantly modified by the perturbation, has been done
in [18]. On the experimental side a small scatterer was
shifted inside the microwave billiard in a two-dimensional
array of pointlike scatterers. Using the random plane
wave conjecture, an algebraic decay 1/t was predicted
theoretically and confirmed experimentally. Another
type of fidelity decay caused by local perturbations has
been studied in Ref. [19], where the coupling to an at-
tached antenna was varied. In the present paper we use a
microwave billiard with a piston attached to address the
predicted nonmonotonic features in the fidelity decay.
The paper is organized as follows. In Sec. II we present

the experimental setup and introduce the scattering fi-
delity. In Sec. III we briefly summarize the semiclassical
results for the LE decay with local boundary perturba-
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FIG. 1. (Color online) Geometry of the chaotic Sinai-shaped
billiard (length of 472mm, width of 200mm, and a quarter-
circle of radius 70mm) with a variable pistonlike local bound-
ary deformation. The piston position can be changed from a
displacement h = 45mm to h = 0mm for four different piston
widths w=20, 40, 70, and 98mm. At position a the mea-
suring antenna is introduced. The additional elements were
inserted to perform ensemble averages (rotatable ellipse) and
to reduce the influence of bouncing balls.

tions [14] and derive (in the Appendix) an extension of
the expression for the effective decay rate for the case of
a pistonlike boundary perturbation as used in the exper-
iment. We then present in Sec. IV our results for the
experimentally determined scattering fidelity decay and
compare them with the theoretical predictions for the
corresponding Loschmidt echo decay. Our main findings
are then summarized in Sec. V.

II. EXPERIMENT

Microwave experiments with flat cavities have become
a well-known paradigm in the field of quantum chaos [20].
In microwave billiards we can measure scattering matrix
elements Sab(ν) and S′

ab(ν) for unperturbed and per-
turbed systems, independently, in frequency space. The
scattering fidelity amplitude is defined in terms of their
Fourier transforms, Ŝab and Ŝ′

ab (upon choosing an ap-
propriate frequency window) [17]:

fab(t) =
〈Ŝab(t)Ŝ

′∗

ab(t)〉
√

〈Ŝab(t)Ŝ∗

ab(t)〉〈Ŝ
′

ab(t)Ŝ
′∗

ab(t)〉
. (1)

The scattering fidelity itself is

F (t) = |fab(t)|
2 . (2)

For chaotic systems and weak coupling of the measuring
antenna the scattering fidelity approaches the ordinary
fidelity [17].
In the present experiment we chose a resonator with

a height of 8mm which can be considered as two-
dimensional for frequencies below 18GHz. The setup, as
illustrated in Fig. 1, is based on a quarter Sinai-shaped
billiard. Additional elements were inserted into the bil-
liard to reduce the influence of bouncing-ball resonances.
The classical dynamics for the chosen geometry of the

billiard is chaotic. The straight left boundary of the un-
perturbed billiard was deformed at a certain position by
inserting pistons of four different widths w. The horizon-
tal piston position can be changed in steps of 0.5mm via a
step motor from a displacement h = 45mm to h = 0mm.
At position a an antenna is fixed and connected to an Ag-
ilent 8720ES vector network analyzer (VNA), which was
used for measurements in a frequency range from 2 to
18GHz with a resolution of 0.1MHz. We measured the
reflection S-matrix element Saa for four piston widths
and all displacements h realizing 18 different positions of
a rotating ellipse (see Fig. 1) to perform ensemble aver-
ages. The unperturbed system is defined as the one with
the straight wall, corresponding to h = 0mm.

III. THEORY

The LE

M(t) = |〈φ|eiH
′t/~e−iHt/~|φ〉|2 (3)

is defined as the overlap of an initial state |φ〉 evolved
in time t under a Hamiltonian H with that evolved un-
der a perturbed Hamiltonian H ′. Within a semiclassical
approach this quantity was studied in Refs. [13, 14] for lo-
cal perturbations in chaotic systems. There it was shown
that the LE is approximately [14]

M(t) ≈ e−κγt (4)

with the effective decay rate κ given by

κ = 2
(

1− Re〈e2πiu/λ〉
)

. (5)

Here u, called the deformation function, equals the length
difference, induced by the local boundary perturbation,
between the perturbed trajectory and the unperturbed
one. λ denotes the de Broglie wavelength. For the case
of a pistonlike boundary deformation with piston width
w and displacement h of the piston, as it is realized in
our experiment, we find, in generalization of the results
of Ref. [14] (see the Appendix),

κ = 2−
2

w

∞
∑

k=0

∫

Ω2k+1

dxdθ cos θ cos

[

4π

λ
(h cos θ + kw sin θ)

]

(6)
with the integration domains Ω2k+1 over incident posi-
tions x and momentum directions θ defined in Eq. (12).
In the limit h ≪ w, Eq. (6) reduces to [14]

κ = πH1(4πh/λ) (7)

with H1 being the Struve H-function of first order.
Furthermore, M(t) in Eq. (4) depends on γ, which is

the classical escape rate of the corresponding open cavity
if the piston is removed. It is given by

γ =
p0
mld

(8)
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FIG. 2. (Color online) Measured scattering fidelity decay
F (t), Eq. (2), (solid lines with symbols) for three different
piston displacements h1 = 1mm (blue triangles), h2 = 5mm
(green circles), h3 = 10mm (red squares), for a frequency
range 17− 18GHz corresponding to a mean de Broglie wave-
length λ̄ ≈ 17mm. The dashed lines show the corresponding
semiclassical prediction, Eq. (4), for the LE decay, with κ cho-
sen as free parameter: κ1 = 0.26, κ2 = 2.78, and κ3 = 1.09,
respectively. The time is given in units of the dwell time 1/γ,
with γ determined from experimental parameters via Eq. (8)
with w = 40mm.

for particles with momentum p0 and mass m, and for
the average dwell length ld of paths in the related open
chaotic billiard. In billiards with openings (deformation
widths) w much smaller than the perimeter one can ap-
proximate ld ≈ πA/w with A the area of the correspond-
ing closed billiard. Further we will set p0/m = c, where
c is, in the case of the microwave billiard the speed of
light.

In semiclassical theory of the Loschmidt echo the per-
turbation strength is a measure of the action change in-
troduced by the perturbation. Thus, for perturbations
caused by pistonlike boundary deformations the piston
displacement h serves as the measure of the perturba-
tion strength. As shown in Ref. [14] it is convenient to

define a dimensionless quantity χ = 2π
√

〈u2〉/λ, where
〈u2〉 = 8h2/3 for a pistontype deformation, as the pertur-
bation strength. Then, based on Eqs. (4 and 5), different
decay regimes of the LE can be identified as follows. For

weak local perturbations, χ ≤ 1, one has M(t) ≈ e−χ2γt

characterizing the FGR regime. Strong local perturba-
tions, χ ≫ 1, lead to M(t) ≈ e−2γt corresponding to the
escape rate regime. In the following section we will use
Eq. (4), together with the refined expression (6) for the
decay rate κ, for a comparison with the experimentally
determined scattering fidelity (2).

FIG. 3. (Color online) Decay rate κ as a function of piston
displacement h for a piston of width w = 40mm in a frequency
range 17− 18GHz corresponding to a mean de Broglie wave-
length λ̄ ≈ 17mm. The asterisks represent the data points ob-
tained from fitting the decay exponent of the measured scat-
tering fidelity. The three cases discussed in Fig. 2 are marked
by correspondingly colored symbols. The dashed curve shows
the theoretical approximation (7) (valid for h ≪ w), and the
solid curve is a result of the numerical evaluation of the full
semiclassical expression (6).

IV. RESULTS AND DISCUSSION

In this section we present our measurements of the
scattering fidelity decay for the pistonlike boundary per-
turbation and compare them with the theoretical predic-
tions (4)-(7) for LE decay for this specific type of per-
turbation. We start with a piston of width w = 40mm.
In Fig. 2 the scattering fidelity F (t), Eq. (2), is plotted
for three different piston displacements h acting as per-
turbation to the system (symbols and solid lines). Ad-
ditionally the corresponding semiclassical predictions for
the Loschmidt decay according to Eq. (4) are plotted
(dashed lines) with κ used as a fitting parameter, while
γ was obtained from the geometry. The experimental
fidelity decay shows good agreement with the expected
exponential law beyond a certain time, which passes un-
til the perturbation is “seen” during the measuring pro-
cess. Upon increasing the displacements h, illustrated
in Fig. 2 by the successive triangle (blue), circle (green),
and squares (red) traces, the corresponding LE decay ex-
ponent κ exhibits a nonmonotonic behavior.
For a more detailed investigation of this dependence of

the Loschmidt decay exponent κ on the displacements h
of the piston, κ is compared to the corresponding theo-
retical predictions in Fig. 3. The data points κ(h), ob-
tained from fitting to the experimental fidelity decay re-
sults as in Fig. 2, are shown by asterisks. The three
cases discussed in Fig. 2 are marked by correspondingly
colored symbols at h1 =1, 5, and 10mm. The figure
shows an oscillating behavior of the fidelity exponent,
and thereby of the fidelity decay at fixed time, as al-
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FIG. 4. Decay rate κ as a function of χ =
√

8/3h 2π/λ̄. The
fuzzy trace depicts the overlayed experimental data and the
dashed curve the theoretical prediction (7).

ready predicted and referred to as Fabry-Perot-type in-
terferences between perturbed and unperturbed paths in
Ref. [14]. In Fig. 3 the semiclassical results for κ(h)
resulting from the numerical evaluation of the expres-
sion (6) and the approximation (7) (for h ≪ w) are de-
picted as solid and dashed curves, respectively. Already
the dashed curve exhibits qualitatively good agreement
with the measurement, though there is a mismatch in
the amplitudes: While this approximative theoretical re-
sult shows a monotonic decay of the maximum ampli-
tude with h, the experimentally observed peaks of κ(h)
do not show this simple structure. However, the refined
semiclassical prediction (6) (solid line) reflects the exper-
imentally found irregular oscillation of amplitudes much
more convincingly, showing reasonable agreement. In
particular, for h ≈ w = 40mm (square shape of the
pistonlike deformation) the experimental results show a
particularly pronounced amplitude which is met by the
solid line. In this range, which is beyond the range of
validity of Eq. (7), the expression (6) constitutes a clear
improvement.

Furthermore, in Fig. 4 we present on the same plot
experimental data for κ versus χ curves with the mean
de Broglie wavelength λ̄ in the frequency range λ̄ < 2w,
while w ≥ 40mm and h < w. We find very convincing
agreement with the theoretical prediction (7).

Finally, we demonstrate that the agreement between
the experimental and theoretical curves can be shaken by
pushing the experimental conditions too far beyond the
main limit of the semiclassical theory, λ ≪ w. Figure 5
shows the decay rate κ for a piston width w = 20mm
which is of the order of λ̄. As expected, the agreement
between theory and experiment is not as good as that for
the w = 40mm case; in particular the experimental data
points (dashed line) oscillate with a period that differs
from the theoretical one. Experimentally, we again find
a more pronounced amplitude around h ≈ w, which is

FIG. 5. Decay rate κ as a function of the displacement h
for a thin piston of width w = 20mm in a frequency range
17 − 18GHz corresponding to a mean de Broglie wavelength
λ̄ ≈ 17mm. The asterisks show the data points extracted
again from the fit exponent of the exponential decay of the
observed scattering fidelity. The dashed and solid curves show
the theoretical predictions based on Eq. (7) and the numerical
evaluation of Eq. (6).

again described more convincingly by the full (solid line)
than the approximative theoretical expression. However,
the fact that the experimental parameters are beyond
the regime of validity of the semiclassical theory does
not allow for a further reasonable comparison between
experiment and theory.

V. CONCLUSIONS

In this work we presented an experimental verification
of the recent semiclassical predictions for fidelity decay
arising from a local perturbation of a chaotic quantum
system. In particular, we could confirm that the rate
governing exponential fidelity decay exhibits oscillations
as a function of the perturbation strength. The ob-
served nonmonotonic behavior implies that for certain
ranges of the perturbation strength the fidelity decay
becomes weaker (for fixed time) with increasing pertur-
bation strength. While the original semiclassical treat-
ment [14] for a pistontype local boundary deformation
was based on the assumption of a small piston displace-
ment, the present microwave setting required a general-
ization of the semiclassical approach to arbitrary ratios
between piston displacement and width, which we per-
formed by deriving an expression for the decay exponent
in terms of a quadrature. We find quantitative agreement
between the measurements and this refined semiclassical
theory despite the fact that the microwave billiard does
not really satisfy the underlying semiclassical assump-
tion, namely, that the extent of the local perturbation,
here the piston width w, should be much larger than the
de Broglie wave length λ. An improved semiclassical ap-
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FIG. 6. (Color online) Examples of correlated trajectory
pairs, unperturbed (blue dash-dotted line) and perturbed (red
solid line), belonging to sets Ω1 (a), Ω3 (b), and Ω5 (c) (see
text in the Appendix).

proach for local perturbations of size w . λ would require
one to treat semiclassical contributions due to diffractive
trajectories properly, which is left for future research.
On the experimental side, there remains the challenge

to observe fidelity decay in the escape rate regime (for
strong perturbations) characterized by a perturbation-
independent fidelity decay rate. Naturally, this regime is
difficult to access since the expected signals are tiny.
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APPENDIX: SEMICLASSICAL THEORY OF

EXPONENTIAL FIDELITY DECAY FOR

ARBITRARY w AND h

In view of the above experiments we extend the semi-
classical theory for the decay of the fidelity due to pis-
tonlike boundary deformations, presented in Ref. [14] for
the limit h ≪ w. There it was shown that the rate of
exponential fidelity decay is given by Eq. (5) with

〈e2πiu/λ〉 =

∫ w

0

dx

w

∫ π/2

0

dθ cos θ e2πiu(x,θ)/λ . (9)

Here x and θ denote the incident position and angle,
respectively [see Fig. 6(a)]. The deformation function
u(x, θ) equals the length difference between the per-
turbed and unperturbed trajectory of a correlated tra-
jectory pair. A pair made up of an unperturbed and
perturbed trajectory is considered correlated if the two

FIG. 7. (Color online) “Unfolded” representation of corre-
lated trajectory pairs belonging to sets Ω1 (a), Ω3 (b), and
Ωn (c) with an odd integer n.

trajectories exit the perturbation region with the same
momentum direction [14] (see Fig. 6).
We first note that only perturbed trajectories with an

odd number of reflections may exit the perturbation re-
gion with the same momentum direction as the unper-
turbed trajectory and, therefore, contribute to the fi-
delity. We denote by Ωn a set of all correlated trajectory
pairs where the perturbed trajectory exhibits n reflec-
tions. The panels (a)-(c) in Fig. 6 show representative
trajectory pairs belonging to the sets Ω1, Ω3 and Ω5,
respectively. Equation (9) can then be written as

〈e2πiu/λ〉 =
1

w

∞
∑

k=0

∫

Ω2k+1

dxdθ cos θ eiu/λ , (10)

where the double integral in the kth summand runs over
a region in the (x, θ) plane that defines the set Ω2k+1.
In order to calculate the deformation function u(x, θ)

for a trajectory pair from the set Ωn we “unfold” the per-
turbation rectangle (by “gluing” mirror copies of the rect-
angle along the reflection sides) making the perturbed
trajectory become a straight line (see Fig. 7). Thereby,
Fig. 7(a) is the “unfolded” version of Fig. 6(a), Fig. 7(b)
corresponds to Fig. 6(b), and Fig. 7(c) represents a tra-
jectory pair belonging to Ωn. In this representation, the
deformation function u equals the length of the interval
AB, u = AB. Here A is a point of incidence, while the
point B belongs to the perturbed trajectory and is spec-

ified by requiring the angle ÂBA′ to be π/2, where A′

represents the incident point A in the “exit” copy of the
perturbation rectangle (see Fig. 7). Then, a geometrical
calculation yields

u(x, θ) = 2h cos θ + (n− 1)w sin θ , (11)

where (x, θ) ∈ Ωn.
We now give a precise definition of the region Ωn in

the (x, θ) plane. As evident from Fig. 7(c), a trajectory
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FIG. 8. Schematic representation of the regions Ω1, Ω3, and
Ω5, see Eq. (12). Further regions, Ω2k+1 with k ≥ 3, con-
tributing to the sum on the right hand side of Eq. (6) are not
shown in the figure; they cluster as narrow stripes “to the
right” of Ω5 and approach θ = π/2 in the limit k → ∞.

pair belongs to Ωn if and only if the x coordinate of the

exit point of the perturbed trajectory (in the unfolded
picture) lies between (n− 1)w and nw. This yields

Ωn =
{

(x, θ) : x ∈ (0, w) , θ ∈ (0, π/2) ,

x+ 2h tan θ ∈ (n− 1, n)w
}

. (12)

Figure 8 schematically shows the first three sets, Ω1, Ω3,
and Ω5, contributing to the sum in Eq. (10).

Combining Eqs. (5), (10), (11), and (12) we arrive at
Eq. (6), which completes the derivation. The sum and
integrals in Eq. (6) are then computed numerically by
means of Monte Carlo sampling.

As a final remark, we note that in the limit of h ≪ w
the sum on the right hand side of Eq. (6) is dominated by
the k = 0 term. Then the integration region Ω1 can be
approximately extended to the rectangle x ∈ (0, w), θ ∈
(0, π/2), since the contribution for large angles, θ close
to π/2, is suppressed by the cos θ term in the integrand.
This approximation leads to Eq. (7) (see also Ref. [14]).
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