61 research outputs found

    Fitness-based network growth with dynamic feedback

    Get PDF
    This article is a preprint of a paper that is currently under review with Physical Review E.We study a class of network growth models in which the choice of attachment by new nodes is governed by intrinsic attractiveness, or tness, of the existing nodes. The key feature of the models is a feedback mechanism whereby the distribution from which fitnesses of new nodes are drawn is dynamically updated to account for the evolving degree distribution. It is shown that in the case of linear mapping between fitnesses and degrees, the models lead to tunable stationary powerlaw degree distribution, while in the non-linear case the distributions converge to the stretched exponential form

    Surprising relations between parametric level correlations and fidelity decay

    Get PDF
    Unexpected relations between fidelity decay and cross form--factor, i.e., parametric level correlations in the time domain are found both by a heuristic argument and by comparing exact results, using supersymmetry techniques, in the framework of random matrix theory. A power law decay near Heisenberg time, as a function of the relevant parameter, is shown to be at the root of revivals recently discovered for fidelity decay. For cross form--factors the revivals are illustrated by a numerical study of a multiply kicked Ising spin chain.Comment: 4 pages 3 figure

    Network growth model with intrinsic vertex fitness

    Get PDF
    © 2013 American Physical SocietyWe study a class of network growth models with attachment rules governed by intrinsic node fitness. Both the individual node degree distribution and the degree correlation properties of the network are obtained as functions of the network growth rules. We also find analytical solutions to the inverse, design, problems of matching the growth rules to the required (e.g., power-law) node degree distribution and more generally to the required degree correlation function. We find that the design problems do not always have solutions. Among the specific conditions on the existence of solutions to the design problems is the requirement that the node degree distribution has to be broader than a certain threshold and the fact that factorizability of the correlation functions requires singular distributions of the node fitnesses. More generally, the restrictions on the input distributions and correlations that ensure solvability of the design problems are expressed in terms of the analytical properties of their generating functions

    Universality of Parametric Spectral Correlations: Local versus Extended Perturbing Potentials

    Full text link
    We explore the influence of an arbitrary external potential perturbation V on the spectral properties of a weakly disordered conductor. In the framework of a statistical field theory of a nonlinear sigma-model type we find, depending on the range and the profile of the external perturbation, two qualitatively different universal regimes of parametric spectral statistics (i.e. cross-correlations between the spectra of Hamiltonians H and H+V). We identify the translational invariance of the correlations in the space of Hamiltonians as the key indicator of universality, and find the connection between the coordinate system in this space which makes the translational invariance manifest, and the physically measurable properties of the system. In particular, in the case of localized perturbations, the latter turn out to be the eigenphases of the scattering matrix for scattering off the perturbing potential V. They also have a purely statistical interpretation in terms of the moments of the level velocity distribution. Finally, on the basis of this analysis, a set of results obtained recently by the authors using random matrix theory methods is shown to be applicable to a much wider class of disordered and chaotic structures.Comment: 16 pages, 7 eps figures (minor changes and reference [17] added

    A New Type of Intensity Correlation in Random Media

    Full text link
    A monochromatic point source, embedded in a three-dimensional disordered medium, is considered. The resulting intensity pattern exhibits a new type of long-range correlations. The range of these correlations is infinite and their magnitude, normalized to the average intensity, is of order 1/k0â„“1/k_0 \ell, where k0k_0 and â„“\ell are the wave number and the mean free path respectively.Comment: RevTeX, 8 pages, 3 figures, Accepted to Phys. Rev. Let

    Differential identities for parametric correlation functions in disordered systems

    Get PDF
    Copyright © 2008 The American Physical Society.We derive a family of differential identities for parametric correlation functions in disordered systems by casting them as first- or second-order Ward identities of an associated matrix model. We show that this approach allows for a systematic classification of such identities, and provides a template for deriving higher-order results. We also reestablish and generalize some identities of this type which had been derived previously using a different method

    Crossover Between Universality Classes in the Statistics of Rare Events in Disordered Conductors

    Full text link
    The crossover from orthogonal to the unitary universality classes in the distribution of the anomalously localized states (ALS) in two-dimensional disordered conductors is traced as a function of magnetic field. We demonstrate that the microscopic origin of the crossover is the change in the symmetry of the underlying disorder configurations, that are responsible for ALS. These disorder configurations are of weak magnitude (compared to the Fermi energy) and of small size (compared to the mean free path). We find their shape explicitly by means of the direct optimal fluctuation method.Comment: 7 pages including 2 figure

    Nucleation of superconducting pairing states at mesoscopic scales at zero temperature

    Full text link
    We find the spin polarized disordered Fermi liquids are unstable to the nucleation of superconducting pairing states at mesoscopic scales even when magnetic fields which polarize the spins are substantially higher than the critical one. We study the probability of finding superconducting pairing states at mesoscopic scales in this limit. We find that the distribution function depends only on the film conductance. The typical length scale at which pairing takes place is universal, and decreases when the magnetic field is increased. The number density of these states determines the strength of the random exchange interactions between mesoscopic pairing states.Comment: 11 pages, no figure
    • …
    corecore