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The model. The model under consideration is the reinforced branching process anal-
ysed in a recent series of papers (see [1] and references therein). Variants of this model
include the Bianconi-Barabasi (BB) model [2] of preferential attachment with fitness.
The model describes a growing population of individuals (e.g., bacteria), each char-
acterised by a fitness x ∈ [0,∞) which controls its reproduction rate. Each individual
can independently divide with rate x, and each division event can either produce a ’de-
scendant’ of the same fitness x (this happens with probability γ), or (with probability
β ) a ’mutant’ with a different fitness y drawn independently from a distribution with
density µ(y). Generically α + β > 1, so that a division event can produce both a de-
scendant and a mutant, with probability γ +β −1. All individuals are immortal. Setting
γ = β = 1 reproduces (in continuous time) the dynamics of the degree distribution in
the BB model (but not the full topology of the BB network): an ’individual’ is now a
half-link emanating from a node, with each ’mutant’ corresponding to a new node.

A population grown according to these rules can be viewed as a collection of ’fami-
lies’, each with its own fitness (growth rate) x. Quantities of interest include the overall
size of the population N(t) at time t, the number of distinct families M(t), the popula-

tion profile N(x, t), and the distribution of family sizes P(n, t) = E

[
M(t)

∑
i=1

δni(t),n

]
, where

ni(t) is the population of the i-th family at time t. An issue that engendered a consider-
able amount of discussion in the literature is whether this model allows a “winner takes
all” behaviour whereby a single family contains a finite fraction of the whole popula-
tion, analogous to Bose-Einstein (B.-E.) condensation into the lowest available energy
eigenstate [2]. This question has been answered in the negative in Ref. [1] in the case of
a class of distributions µ(x) with finite support. The purpose of this note is to investigate
the cases of finite and infinite support within a unified framework, explicitly studying
the time evolution of the quantities of interest rather than just the limiting behaviour.
Expectations of the relevant population sizes are considered, as well as the family size
distribution. The distributions of the whole population size require a different set of
techniques [3].

Methodology. The starting point is the generating function G(x, t,z) = E

[
M(t)

∑
i=1

zni(t)δ (x− xi)

]
,

where xi is the fitness of the i-th family. It follows immediately that
∫

dxG(x, t,1) =

E[M(t)], similarly z∂zG(x, t,1)|z=1 = E[N(x, t)], and
∫

dx
∮ G(x, t,z)

zn+1
dz
2πi

= P(n, t).
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Applying the standard techniques one finds that G(x, t,z) satisfies

∂tG(x, t,z) = γx(z−1)z∂zG(x, t,z)+ zβ µ(x)F(t), (1)

with F(t) =
∫

∂zG(z,x, t)
∣∣∣∣
z=1

xdx. Solving Eq. (1) one finds the following self-consistency

equation on F(t):

F(t) = m(t)+β

∫ t

0
F(ϕ)m(t−ϕ)dϕ, (2)

with m(t) =
∫

µ(x)eγxtxdx. In order for the population not to explode in finite time

µ(x) must either have a finite support, or decay at large x faster than any exponential.

Case 1: Finite support. Without loss of generality one can restrict x to [0,1]. Conse-
quently, m(t) possesses a Laplace transform

m̃(p) =
∫ 1

0

xµ(x)dx
p− γx

. (3)

Equation (2) is then solved straightforwardly:

F(t) =
∫ c+i∞

c−i∞

d p
2πi

ept m̃(p)
1−β m̃(p)

, (4)

where c > maxγ, p∗, and the Malthusian parameter p∗ (if it exists!) is the root of
1 = β m̃(p). Existence of the root distinguishes the regime without “condensation”,
in analogy with the formalism of genuine B.-E. condensation. It can be shown that p∗

exists if µ(1) is finite (both cases are possible if µ(x→ 1)→ 0), is unique, and that
p∗ > γ . This last property ensures that the integral (4) is dominated by the pole at p∗

rather than the cut along [0,γ], and so F(t)→ ep∗t/β 2ρ(p∗), with ρ(p∗) =
∫ xµ(x)dx

(p∗−γx)2 .
Correspondingly, the asymptotically dominant part of the expected population profile
evaluates to E[N(x, t)]→ ep∗t

βρ(p∗)(p∗−γx) , with the overall population growth and the total

number of families both proportional to ep∗t .
In the opposite case when p∗ does not exist (µ(x → 1) → 0 is a necessary but

not a sufficient condition for that), the integral (4) is controlled by the cut inherited
from m̃(p). The overall population growth is then proportional to eγt I(t), where I(t) =∫ 1

0 µ(1−ξ )e−ξ γtdξ . For example, if µ(x)∼ (1−x)α with some finite parameter α , the
integral gives a power-law correction to the dominant exponential behaviour. The ex-
pected number profile evaluates to the sum of two qualitatively different contributions: a
smooth term proportional to β

γ+β

µ(x)
1−x , which accounts for a finite fraction of the overall

population, and an asymptotically singular term proportional to µ(x)e−γt(1−x). When t
is large (and taking into account that µ(x→ 1)→ 0) the second term has the form of
a sharp peak ‘squeezed’ ever closer to 1. If normalised, this term would converge to a
δ -function, consistent with [1], with the peak profile generalising Conjecture 8.1 of [1]
obtained for a power-law µ(x→ 1) in a different setting. The expected number of fami-
lies under the peak is macroscopic, generalising the conclusion of Ref. [1] that there are
no ‘winner-take-all’ families to arbitary µ(x) consistent with fintie support and absence
of maltusian parameter.



Case 2: Infinite support. The solution of Eq. (2) is now complicated by the fact that
Laplace transform of m(t) does not exist. This difficulty can be circumvented by per-
forming an analytical continuation into the complex t plane, solving the equation along
a direction where m(t) is ‘well-behaved’, and analytically continuing the result back

to the real axis. (see, e.g., [4]). One therefore obtains F(t) =
∫

CH

d p
2πi

ept m̃(p)
1−β m̃(p)

,

where CH is the Hankel contour. Subsequent evaluation of the integral gives the follow-
ing asymptotic result: E[N(t)]→ (1+ β/γ)

∫
∞

0 µ(x)eγxtdx. The asymptotic behaviour
of the number profile is subtle, due to the fact that the corresponding normalised den-
sity profile does not exhibit uniform convergence as t → ∞. If x is fixed, one obtains
E[N(x, t)]→ E[N(t)]β µ(x)

β+γ
, analogous to the smooth piece in the finite support case.

However, the integral of this contribution contains only a finite fraction of the over-
all population. The second contribution is a smooth peak having the shape µ(x)eγxt ,
centered at an increasing with time (’travelling’) position x0(t) given by the solution
of γt = −µ ′(x)/µ(x). The area under the peak contributes the ’missing piece’ of the
overall expected number.

It is illuminating to specialise to ln µ(x) ∼ −x1+α , with α > 0 to ensure existence
of m(t). One then finds x0(t) = (γt/(1+α))1/α , and, up to subleading corrections, the
total number of individuals under the ’travelling’ peak is exp{α(γt/(1+α))1+1/α}.
However, the expected number of families there is proportional to exp{(α−1)(γt/(1+
α))1+1/α}. Therefore in the regime 1 < α < 2 this number decays at large t, and even-
tually becomes less than 1. Thus a family with fitness in the peak region exists only
occasionally, with a population much larger than the expected value.

Such a picture may be consistent with occasional existence of a ‘winner-take-all’
family. Further insight can be gained by analysing the family size distribution:

P(n, t) =
∫

∞

0
µ(x)dx

∫
CH

d p
2πi

βF(p)ept

γx

∫ 1

e−γxt
dζ ζ

p/γx(1−ζ )n−1. (5)

For a finite n this expression reduces to the Beta-function, reproducing the known re-
sults [5]. Assuming, however, that n scales with E[N(t)], one can find that the probabil-
ity of family size greater than Const.·E[N(t)] behaves as exp{[1−(1+α)1+1/α ]α(γt/(1+
α)2)1+1/α}, and therefore decays as t becomes large for any α . This decay, however,
can be slower than the probability of finding a family under the travelling peak (esti-
mated as the inverse expected number of such families) if 1/(1+α)1+1/α > α , and
therefore not inconsistent with the picture of occasional (with probability going to zero
as t→ ∞) ‘winner-take-all’ families, large enough to ensure a finite contribution to the
expected overall number. A more subtle analysis exploring the correlations between the
numbers of families and their sizes is needed to bring full clarity to the issue.
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