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ABSTRACT
The main purpose of this paper is to revisit the well known potentials, called stress functions,

needed in order to study the parametrizations of the stress equations, respectively provided by
G.B. Airy (1863) for 2-dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870)
and G. Morera (1892) for 3-dimensional elasticity, finally by A. Einstein (1915) for 4-dimensional
elasticity, both with a variational procedure introduced by C. Lanczos (1949,1962) in order to
relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mix-
ing differential geometry with homological algebra and combining the double duality test involved
with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation
with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to
variational calculus with differential constraints as a way to eliminate the corresponding Lagrange
multipliers. For example, the canonical parametrization of the stress equations is just described by
the formal adjoint of the n2(n2−1)/12 components of the linearized Riemann tensor considered as
a linear second order differential operator but the minimum number of potentials needed in elas-
ticity theory is equal to n(n − 1)/2 for any minimal parametrization. Meanwhile, we can provide
all the above results without even using indices for writing down explicit formulas in the way it
is done in any textbook today. The example of relativistic continuum mechanics with n = 4 is
provided in order to prove that it could be strictly impossible to obtain such results without using
the above methods. We also revisit the possibility (Maxwell equations of electromagnetism) or the
impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations
for various other equations of physics. It is nevertheless important to notice that, when n and the
algorithms presented are known, most of the calculations can be achieved by using computers for
the corresponding symbolic computations. Finally, though the paper is mathematically oriented
as it aims providing new insights towards the mathematical foundations of elasticity theory and
mathematical physics, it is written in a rather self-contained way.

1) INTRODUCTION

The language of differential modules has been recently introduced in control theory as a way
to understand in an intrinsic way the structural properties of systems of ordinary differential (OD)
equations (controllability, observability, identifiability, ...), but it can also be applied to systems of
partial differential (PD) equations ([4],[15],[25],[26],[28],[32],[45],[46],[47],[54]). A similar comment
can be done for optimal control, that is for variational calculus with differential constraints and
the author thanks Prof. Lars Andersson (Einstein Institute, Potsdam) for having suggested him
to study the Lanczos potential within this new framework.

We start providing a few explicit examples in order to convince the reader that the correspond-
ing computations are often becoming so tricky that nobody could achieve them or even imagine
any underlying general algorithm, for example in the study of the mathematical foundations of
control theory, elasticity theory or general relativity.
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EXAMPLE 1.1: OD Control Theory
With one independent variable x, for example the time t in control theory or the curvilinear abcissa
s in the study of a beam, and three unknowns (y1, y2, y3). Setting formally dxy

k = ykx for k = 1, 2, 3
and so on, let us consider the system made by the two first order OD equations depending on a
variable coefficient a(x):

y3x − a(x)y
2 − y1x = 0, y3 − y2x + y1x = 0

In control theory, if a = cst is a constant parameter, one could bring the system to any first
order Kalman form and check that the corresponding control system is controllable if and only if
a(a − 1) 6= 0, that is a 6= 0 and a 6= 1 (exercise), independently of the choice of 1 input and 2
outputs among the 3 control variables. In addition to that, using the second OD equation in the
form y3 = y2x − y

1
x and substituting in the first, we get the only second order OD equation:

y1xx + y1x − y
2
xx + a(x)y2 = 0

a result leading to a kind of ”vicious circle” because the only way to test controllability is ... to
bring this second order equation back to a first order system and there are a lot of possibilities.
Again, in any case, the only critical values are a = 0 and a = 1. Of course, one could dream about
a direct approach providing the same result in an intrinsic way. Introducing the operator d = dx
as the (formal) derivative with respect to x, we may rewrite the last equation in the form:

d(d+ 1)y1 = (d2 − a)y2

Replacing the operators d(d + 1) and d2 − a by the polynomials χ(χ + 1) and χ2 − a, the two
polynomials have a common root χ = 0 ⇒ a = 0 or χ = −1 ⇒ a = 1 and we find back the
desired critical values but such a result is not intrinsic at all. However, we notice that, for ex-
ample a = 0 ⇒ d((d + 1)y1 − dy2) = 0. Introducing z′ = y1x + y1 − y2x, we get z′x = 0 while
a = 1 ⇒ (d + 1)(dy1 − (d − 1)y2 that is, setting z” = y1x − y

2, we get now z”x + z” = 0. Calling
”torsion element ” any scalar quantity made from the unknowns and their derivatives but satisfy-
ing at least one OD equation, we discover that such quantities do exist ... if and only if a = 0 or
a = 1 (exercise). Of course, the existence of any torsion element breaks at once the controllability
of the system but the converse is not evident at all, a result leading nevertheless to the feeling that
a control system is controllable if and only if no torsion element can be found and such an idea
can be extended ”mutatis mutandis ” to any system of PD equations ([32]). However, this result
could be useful if and only if there is a test for checking such a property of the system.

Now, using a variable parameter a(x), not a word of the preceding approach is left but the
concept of a torsion element still exists. Let us prove that the condition a(a − 1) 6= 0 becomes
∂xa + a2 − a 6= 0 and that the computations needed are quite far from the previous ones. We
ask the reader familiar with classical control theory to make his mind a few minutes (or hours !)
to agree with us before going ahead by recovering himself such a differential condition. For this
purpose, let us introduce the formal adjoint operators ad(d2 + d) = d2− d and ad(d2− a) = d2− a
in the inhomogeneous system:

{

(d2 − a)y ≡ yxx − ay = u
(d2 − d)y ≡ yxx − yx = v

Substracting, we get (d − a)y ≡ yx − ay = u − v and thus yxx − ayx − ∂xay = ux − vx, a result
leading to:

(∂xa+ a2 − a)y = vx − ux + av + (1 − a)u

and to two possibilities:

• ∂xa+ a2 − a 6= 0

Finding y and substituting it into yxx−ay = u, we get two third order operators P and Q such
that, among the CC of the previous system, we have Pu −Qv = 0. Using the adjoint, we obtain
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therefore two identities in the operator sense:

P (d2 − a) ≡ Q(d2 − d)⇒ (d2 − a)ad(P ) ≡ (d2 + d)ad(Q)

Writing y1 = (d2 + d)−1(d2 − a)y2 in a symbolic way and setting y2 = ad(P )ξ, we obtain finally:

y1 = (d2 + d)−1(d2 − a)ad(P )ξ = (d2 + d)−1(d2 + d)ad(Q)ξ = ad(Q)ξ

and discover the true reason for introducing the adjoint operator in order to invert the position of
the factors. It is easy to check that we have obtained a third order parametrization of the control
system. Of course, the situation a = cst is much simpler as we can choose P = d2 − d,Q = d2 − a
and get the second order parametrization y1 = (d2 − a)ξ, y2 = (d2 + d)ξ which is easily seen to
be injective, in a coherent way with controllability (exercise).

However, the aim of this example is to point out the fact that things are in fact quite more
tricky indeed because, substituting y into into yxx − ay = u, after a painful computation largely
simplified by assuming that ∂xa+ a2 − a = 1, we obtain the third order OD equation:

vxxx + avxx + (2∂xa− a)vx + (∂xxa− a
2)v = uxxx + (a− 1)uxx + (2∂xa− a)ux + (∂xxa+ ∂xa)u

Under the same assumption, using now the OD equation yx− ay = v−u already obtained by sub-
straction, we only get the ”simpler ” second order OD equation P ′(d2−a) = Q′(d2−d) in the form:

vxx + (2∂xa− a)v = uxx − ux + 2∂xau

which is leading, exactly as before, to the new second order parametrization:

y1 = ad(Q′)ξ′ = (d2 + 2∂xa− a)ξ
′, y2 = ad(P ′)ξ′ = (d2 + d+ 2∂xa)ξ

′

which is injective as we obtain easily y1x − y
2
x + (1− a)y1 + ay2 = (∂xa+ a2 − a)ξ′ = ξ′ and we let

the reader check the identity:

(d2 + d)(d2 + 2∂xa− a) ≡ (d2 − a)(d2 + d+ 2∂xa)

The reason is that the third order CC already considered are in fact generated by the above only
second order CC as it can be seen by applying the operator d+ a to this CC. We have indeed:

P = (d+ a)P ′, Q = (d+ a)Q′ ⇒ ad(P ) = ad(P ′)(d− a), ad(Q) = ad(Q′)(d− a)

and it just remains to set ξ′ = (d − a)ξ in order to get coherent parametrizations. As a byprod-
uct, the third order parametrization is not injective as it should only lead to ξ′ = 0 and thus to
ξx − aξ = 0. Needless to say that, if the situation is already tricky for OD equations, it should
become worst for PD equations as we shall see in the next examples.

• ∂xa+ a2 − a = 0

Multiplying the control system by a test function λ and integrating by parts, the kernel of the
operator thus obtained is defined by the OD equations:

λxx − λx = 0, λxx − aλ = 0 ⇒ λx − aλ = 0 ⇒ (∂xa+ a2 − a)λ = 0

The formal adjoint of the operator defining the control system is thus no longer injective but we can
repeat the previous computations in order to find the only generating CC vx + av = ux + (a− 1)u
that should lead to the injective parametrization y1 = ξx− aξ, y2 = ξx +(1− a)ξ because it gives
by substraction y2 − y1 = ξ. However, such a procedure is no longer working because we get by
substitution the first order OD equation:

z ≡ y2x − ay
2 − ay2 − y1x + (a− 1)y1 = 0

We notice that z is a torsion element as it satisfies zx + az = 0 under the assumptions made on a.
We finally point out that such a situation cannot be found when a parametrization is existing

because we may substitute it into the torsion element and get a contradiction as this procedure
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should provide at least one OD or PD equation among the arbitrary functions or potentials used
for the parametrization.

EXAMPLE 1.2: OD Optimal Control Theory
OD optimal control is the study of OD variational calculus with OD constraints described by
OD control systems. However, while studying optimal control, the author of this paper has been
surprised to discover that, in all cases, the OD constraints were defined by means of controllable
control systems. It is only at the end of this paper that the importance of such an assumption will
be explained. For the moment, we shall provide an example allowing to exhibit all the difficulties
involved. For this, let y1 = f1(x), y2 = f2(x) be a solution of the following single input/single
output (SISO) OD control system where a is a constant parameter:

y1x + y1 − y2x − ay
2 = 0

Proceeding as before, the two polynomials replacing the respective operators are χ+ 1, χ+ a and
can only have the common root a = 1. Accordingly, the system is controllable if and only if a 6= 1
for any choice of input and output. Now, let us introduce the so-called ” cost function ” and let
us look at the extremum of the integral

∫

1
2 ((y

1)2 − (y2)2)dx under the previous OD constraint.It
is well known that the proper way to study such a problem is to introduce a Lagrange multiplier
λ and to vary the new integral:

∫

[
1

2
((y1)2 − (y2)2) + λ(y1x + y1 − y2x − ay

2)]dx

The corresponding Euler-Lagrange (EL) equations are:

{

y1 → −λx + λ+ y1 = 0
y2 → λx − aλ− y2 = 0

to which we must add the OD constraint when varying λ. Summing the two EL equations, we get
(a− 1)λ = y1 − y2 and two possibilities:
1) a = 1⇒ y1 − y2 = 0 compatible with the constaint.
2) a 6= 1⇒ λ = (y1 − y2)/(a− 1).
Substituting, we get:

{

y1x − y
2
x − ay

1 + y2 = 0
y1x − y

2
x + y1 − ay2 = 0

This system may not be formally integrable. Indeed, by substraction, we get (a+ 1)(y1 − y2) = 0
and must consider the following two possibilities:

{

• a = −1 ⇒ y1x + y1 − y2x + y2 = 0
• a 6= −1 ⇒ y1 = y2 = 0

Summarising the results so far obtained, we discover that the Lagrange multiplier is known if
and only if the system is controllable. Also, if a = −1, we may exhibit the parametrization
ξx − ξ = y1, ξx + ξ = y2 and the cost function becomes 2ξξx = dx(ξ

2). Equivalently, when the
system is controllable it can be parametrized and the variational problem with constraint becomes
a variational problem without constraint which, sometimes, does not provide EL equations. We
finally understand that extending such a situation to PD variational calculus with PD constraints
needs new techniques.

EXAMPLE 1.3: Classical Elasticity Theory
In classical elasticity, the stress tensor density σ = (σij = σji) existing inside an elastic body is
a symmetric 2-tensor density intoduced by A. Cauchy in 1822. The corresponding Cauchy stress
equations can be written as ∂rσ

ir = f i where the right member describes the local density of forces
applied to the body, for example gravitation. With zero second member, we study the possibility
to ”parametrize ” the system of PD equations ∂rσ

ir = 0, namely to express its general solution by
means of a certain number of arbitrary functions or potentials, called stress functions. Of course,
the problem is to know about the number of such functions and the order of the parametrizing
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operator. In what follows, the space has n local coordinates x = (xi) = (x1, ..., xn). For n = 1, 2, 3
one may introduce the Euclidean metric ω = (ωij = ωji) while, for n = 4, one may consider the
Minkowski metric. A few definitions used thereafter will be provided later on.

• n = 1: There is no possible parametrization of ∂xσ = 0.

• n = 2: The stress equations become ∂1σ
11 + ∂2σ

12 = 0, ∂1σ
21 + ∂2σ

22 = 0. Their second order
parametrization σ11 = ∂22φ, σ

12 = σ21 = −∂12φ, σ22 = ∂11φ has been provided by George Biddell
Airy (1801-1892) in 1863 ([1]). It can be recovered by simply rewriting the stress equations in the
following manner:

∂1σ
11 = ∂2(−σ

12)⇒ ∃ϕ, σ11 = ∂2ϕ, σ
12 = −∂1ϕ, ∂2σ

22 = ∂1(−σ
21)⇒ ∃ψ, σ22 = ∂1ψ, σ

21 = −∂2ψ

σ12 = σ21 ⇒ ∂1ϕ = ∂2ψ ⇒ ∃φ, ϕ = ∂2φ, ψ = ∂1φ

We get the second order system:







σ11 ≡ ∂22φ = 0
−σ12 ≡ ∂12φ = 0
σ22 ≡ ∂11φ = 0

1 2
1 •
1 •

which is involutive with one equation of class 2, 2 equations of class 1 and it is easy to check that
the 2 corresponding first order CC are just the stress equations.
As we have a system with constant coefficients, we may use localization in order to transform the
2 PD equations into the 2 linear equations χ1σ

11 + χ2σ
12 = 0, χ1σ

21 + χ2σ
22 = 0 and get

σ11 = −
χ2

χ1
σ12 = −

(χ2)
2

χ1χ2
σ12, σ22 = −

χ1

χ2
σ12 = −

(χ1)
2

χ1χ2
σ12

Setting σ12 = −χ1χ2φ, we finally get σ11 = (χ2)
2φ, σ22 = (χ1)

2φ and obtain the previous
parametrization by delocalizing, that is replacing now χi by ∂i.

• n = 3: Things become quite more delicate when we try to parametrize the 3 PD equations:

∂1σ
11 + ∂2σ

12 + ∂3σ
13 = 0, ∂1σ

21 + ∂2σ
22 + ∂3σ

23 = 0, ∂1σ
31 + ∂2σ

32 + ∂3σ
33 = 0

Of course, localization could be used similarly by dealing with the 3 linear equations:

χ1σ
11 + χ2σ

12 + χ3σ
13 = 0, χ1σ

21 + χ2σ
22 + χ3σ

23 = 0, χ1σ
31 + χ2σ

32 + χ3σ
33 = 0

having rank 3 for 6 unknowns but, even if we succeed bringing all the fractions to the same de-
nominator as before after easy but painful calculus, there is an additional difficulty which is well
hidden. Indeed, coming back to the previous Example when a = cst, say a = 1, we should get
(d2 + d)y1 = (d2 − 1)y2 ⇒ χ(χ + 1)y1 = (χ + 1)(χ − 1)y2 ⇒ χy1 = (χ − 1)y2 ⇒ y1 = χ−1

χ
y2.

Hence, setting y2 = χy, y1 = (χ− 1)y, we only get a parametrization of the first order OD equa-
tion z ≡ ẏ1 − ẏ2 + y2 = 0 leading to ż + z = 0. Accordingly, localization does indeed provide a
parametrization, ... if we already know there exists a possibility to parametrize the given system
or if we are able to check that we have obtained such a parametrization by using involution, a way
to supersede the use of Janet or Gröbner bases as was proved for the case n = 2 ([34]). Also, if we
proceed along such a way, we should surely loose any geometric argument that could stay behind
such a procedure, ... if there is one !.

A direct computational approach has been provided by Eugenio Beltrami (1835-1900) in 1892
([3]), James Clerk Maxwell (1831-1879) in 1870 ([23]) and Giacinto Morera (1856-1909) in 1892
([24]) by introducing the 6 stress functions φij = φji through the parametrization obtained by
considering:

σ11 = ∂33φ22 + ∂22φ33 − 2∂23φ23

σ12 = σ21 = ∂13φ23 + ∂23φ13 − ∂33φ12 − ∂12φ33
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and the additional 4 relations obtained by using a cyclic permutation of (1, 2, 3). The correspond-
ing system:































σ11 ≡ ∂33φ22 + ∂22φ33 − 2∂23φ23 = 0
−σ12 ≡ ∂33φ12 + ∂12φ33 − ∂13φ23 − ∂23φ13 = 0
σ22 ≡ ∂33φ11 + ∂11φ33 − 2∂13φ13 = 0
σ13 ≡ ∂23φ12 + ∂12φ23 − ∂22φ13 − ∂13φ22 = 0
−σ23 ≡ ∂23φ11 + ∂11φ23 − ∂12φ13 − ∂13φ12 = 0
σ33 ≡ ∂22φ11 + ∂11φ22 − 2∂12φ12 = 0

1 2 3
1 2 3
1 2 3
1 2 •
1 2 •
1 2 •

is involutive with 3 equations of class 3, 3 equations of class 2 and no equation of class 1. The 3
CC are describing the stress equations which admit therefore a parametrization ... justifying the
localization approach ”a posteriori ” but without any geometric framework.

Surprisingly, the Maxwell parametrization is obtained by keeping φ11 = A, φ22 = B, φ33 = C
while setting φ12 = φ23 = φ31 = 0 in order to obtain the system:































σ11 ≡ ∂33B + ∂22C = 0
σ22 ≡ ∂33A+ ∂11C = 0
−σ23 ≡ ∂23A = 0
σ33 ≡ ∂22A+ ∂11B = 0
−σ13 ≡ ∂13B = 0
−σ12 ≡ ∂12C = 0

1 2 3
1 2 3
1 2 •
1 2 •
1 • •
1 • •

However, this system may not be involutive and no CC can be found ”a priori ” because the
coordinate system is surely not δ-regular. Indeed, effecting the linear change of coordinates
x1 → x1 + x3, x2 → x2 + x3, x3 → x3, we obtain the involutive system:































∂33C + ∂13C + ∂23C + ∂12C = 0
∂33B + ∂13B = 0
∂33A+ ∂23A = 0
∂23C − ∂13B − ∂13C − ∂12C + ∂22C = 0
∂23A− ∂22C + ∂13B + 2∂12C − ∂11C = 0
∂22A+ ∂22C − 2∂12C + ∂11B + ∂11C = 0

1 2 3
1 2 3
1 2 3
1 2 •
1 2 •
1 2 •

and it is easy to check that the 3 CC obtained just amount to the desired 3 stress equations when
coming back to the original system of coordinates. Again, if there is a geometrical background,
this change of local coordinates is hidding it totally. Moreover, we notice that the stress functions
kept in the procedure are just the ones on which ∂33 is acting. The reason for such an apparently
technical choice is related to very general deep arguments in the theory of differential modules that
will only be explained at the end of the paper.

Finally, the Morera parametrization is obtained by keeping now φ23 = L, φ13 = M,φ12 = N
while setting φ11 = φ22 = φ33 = 0 in order to obtain the system:































σ11 ≡ −2∂23L = 0
σ22 ≡ −2∂13M = 0
σ33 ≡ −2∂12N = 0
σ12 ≡ ∂13L+ ∂23M − ∂33N = 0
σ23 ≡ ∂12M + ∂13N − ∂11L = 0
σ13 ≡ ∂23N + ∂12L− ∂22M = 0

which is involutive because convenient δ-regular coordinates can be similarly exhibited and provide
again the 3 desired stress equations (exercise) (Compare to [53]).

• n ≥ 4: As already explained, localization cannot be applied directly as we don’t know if a
parametrization may exist and in any case no analogy with the previous situations n = 1, 2, 3
could be used. Moreover, no known differential geometric background could be used at first sight
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in order to provide a hint towards the solution. Now, if ω is the Minkowski metric and φ = GM/r
is the gravitational potential, then φ/c2 ≪ 1 and a perturbation Ω ∈ S2T

∗ of ω may satisfy in
vacuum the 10 second order Einstein equations for the 10 Ω:

Eij ≡ ω
rs(dijΩrs + drsΩij − driΩsj − dsjΩri)− ωij(ω

rsωuvdrsΩuv − ω
ruωsvdrsΩuv) = 0

by introducing the corresponding second order Einstein operator S2T
∗ Einstein
−→ S2T

∗ : Ω → E
when n = 4 ([11]). Though it is well known that the corresponding second order Einstein operator
is parametrizing the stress equations, the challenge of parametrizing Einstein equations has been
proposed in 1970 by J. Wheeler for 1000 $ and solved negatively in 1995 by the author who only
received 1 $. We shall see that, exactly as before and though it is quite striking, the key ingredient
will be to use the linearized Riemann tensor considered as a second order operator ([29],[32]). As
an even more striking fact, we shall discover that the condition n ≥ 4 has only to do with Spencer
cohomology for the symbol of the conformal Killing equations.

EXAMPLE 1.4: PD Control Theory
The aim of this last example is to prove that the possibility to exhibit two different parametriza-
tions of the stress equations which has been presented in the previous example has surely nothing
to do with the proper mathematical background of elasticity theory !.
For this, let us consider the (trivially involutive) inhomogeneous PD equations with two indepen-
dent variables (x1, x2), two unknown functions (η1, η2) and a second member ζ:

∂2η
1 − ∂1η

2 + x2η2 = ζ

Multiplying on the left by a test function λ and integrating by parts, the corresponding inhomo-
geneous system of PD equations is:

{

η1 → −∂2λ = µ1

η2 → ∂1λ+ x2λ = µ2

Using crossed derivatives, we get λ = ∂2µ
2 + ∂1µ

1 + x2µ1 and substituting, we get the two CC:

{

−∂22µ2 − ∂12µ1 − x2∂2µ1 − 2µ1 = ν1

∂12µ
2 + ∂11µ

1 + 2x2∂1µ
1 + x2∂2µ

2 + (x2)2µ1 − µ2 = ν2

The corresponding generating CC for the second member (ν1, ν2) is:

∂2ν
2 + ∂1ν

1 + x2ν1 = 0

Therefore ν2 is differentially dependent on ν1 but ν1 is also differentially dependent on ν2.
Multiplying the first equation by the test function ξ1, the second equation by the test function ξ2,
adding and integrating by parts, we get the canonical parametrization (ξ1, ξ2)→ (η1, η2):

{

µ2 → −∂22ξ1 + ∂12ξ
2 − x2∂2ξ2 − 2ξ2 = η2

µ1 → −∂12ξ1 + x2∂2ξ
1 − ξ1 + ∂11ξ

2 − 2x2∂1ξ
2 + (x2)2ξ2 = η1

1 2
1 •

of the initial system with zero second member. The system (up to sign) is involutive and the kernel
of this parametrization has differential rank equal to 1.
Keeping ξ1 = ξ while setting ξ2 = 0, we get the first minimal parametrization ξ → (η1, η2):

{

−∂22ξ = η2

−∂12ξ + x2∂2ξ − ξ = η1
1 2
1 •

The system is again involutive (up to sign) and the parametrization is minimal because the kernel
of this parametrization has differential rank equal to 0.
Setting now ξ1 = 0 while keeping ξ2 = ξ′, we get the second minimal parametrization ξ′ → (η1, η2):

{

∂11ξ
′ − 2x2∂1ξ

′ + (x2)2ξ′ = η1

∂12ξ
′ − x2∂2ξ′ − 2ξ′ = η2
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with a similar comment.

EXAMPLE 1.5: PD Optimal Control Theory
Let us revisit briefly the foundation of n-dimensional elasticity theory as it can be found today in
any textbook, restricting our study to n = 2 for simplicity. If x = (x1, x2) is a point in the plane
and ξ = (ξ1(x), ξ2(x)) is the displacement vector, lowering the indices by means of the Euclidean
metric, we may introduce the ”small” deformation tensor ǫ = (ǫij = ǫji = (1/2)(∂iξj + ∂jξi)) with
n(n + 1)/2 = 3 (independent) components (ǫ11, ǫ12 = ǫ21, ǫ22). If we study a part of a deformed
body, for example a thin elastic plane sheet, by means of a variational principle, we may introduce
the local density of free energy ϕ(ǫ) = ϕ(ǫij |i ≤ j) = ϕ(ǫ11, ǫ12, ǫ22) and vary the total free energy
Φ =

∫

ϕ(ǫ)dx with dx = dx1 ∧ dx2 by introducing σij = ∂ϕ/∂ǫij for i ≤ j in order to obtain
δΦ =

∫

(σ11δǫ11+σ
12δǫ12+σ

22δǫ22)dx. Accordingly, the ”decision” to define the stress tensor σ by
a symmetric matrix with σ12 = σ21 is purely artificial within such a variational principle. Indeed,
the usual Cauchy device (1828) assumes that each element of a boundary surface is acted on by
a surface density of force ~σ with a linear dependence ~σ = (σir(x)nr) on the outward normal unit
vector ~n = (nr) and does not make any assumption on the stress tensor. It is only by an equilib-
rium of forces and couples, namely the well known phenomenological static torsor equilibrium, that
one can ” prove ” the symmetry of σ. However, even if we assume this symmetry, we now need the
different summation σijδǫij = σ11δǫ11 + 2σ12δǫ12 + σ22δǫ22 = σir∂rδξi. An integration by parts
and a change of sign produce the integral

∫

(∂rσ
ir)δξidx leading to the stress equations ∂rσ

ir = 0
already considered. This classical approach to elasticity theory, based on invariant theory with
respect to the group of rigid motions, cannot therefore describe equilibrium of torsors by means
of a variational principle where the proper torsor concept is totally lacking. It is however widely
used through the technique of ” finite elements ” where it can also be applied to electromagnetism
(EM) with similar quadratic (piezoelectricity) or cubic (photoelasticity) lagrangian integrals. In

this situation, the 4-potential A of EM is used in place of ξ while the EM field dA = F = ( ~B, ~E)
is used in place of ǫ and the Maxwell equations dF = 0 are used in place of the Riemann CC for ǫ.

However, there exists another equivalent procedure dealing with a variational calculus with con-
straint. Indeed, as we shall see later on, the deformation tensor is not any symmetric tensor as it
must satisfy n2(n2−1)/12 compatibility conditions (CC), that is only ∂22ǫ11+∂11ǫ22−2∂12ǫ12 = 0
when n = 2. In this case, introducing the Lagrange multiplier λ, we have to vary the new integral
∫

[ϕ(ǫ) + λ(∂22ǫ11 + ∂11ǫ22 − 2∂12ǫ12)]dx for an arbitrary ǫ. Setting λ = −φ, a double integration
by parts now provides the parametrization σ11 = ∂22φ, σ

12 = σ21 = −∂12φ, σ22 = ∂11φ of the
stress equations by means of the Airy function φ and the formal adjoint of the Riemann CC, on
the condition to observe that we have in fact 2σ12 = −2∂12φ as another way to understand the
deep meaning of the factor ”2” in the summation. The same variational calculus with constraint
may thus also be used in order to ” shortcut ” the introduction of the EM potential.
Finally, using the constitutive relations of the material establishing an isomorphism σ ←→ ǫ, one
can also introduce a local free energy ψ(σ) in a similar variational problem having for constraint
the stress equations, with the same comment as above (See [32], p 915, for more details). The well

known Minkowski constitutive relations ( ~B, ~E)←→ ( ~H, ~D) can be similarly used for EM.

In arbitrary dimension, the above compatibility conditions are nothing else but the linearized
Riemann tensor in Riemannian geometry, a crucial mathematical tool in the theory of general
relativity and a good reason for studying the work of Cornelius Lanczos (1893-1974) as it can be
found in ([18],[19],[20]) or in a few modern references ([2],[7]-[10],[22],[27],[49]). The starting point
of Lanczos has been to take EM as a model in order to introduce a Lagrangian that should be
quadratic in the Riemann tensor (ρkl,ij ⇒ ρij = ρri,rj = ρji ⇒ ρ = ωijρij) while considering it
independently of its expression through the second order derivatives of a metric (ωij) with inverse
(ωij) or the first order derivatives of the corresponding Christoffel symbols (γkij). According to the
previous paragraph, the corresponding variational calculus must involve PD constraints made by
the Bianchi identities and the new lagrangian to vary must therefore contain as many Lagrange
multipliers as the number of Bianchi identities that can be written under the form:

∇rρ
k
l,ij +∇iρ

k
l,jr +∇jρ

k
l,ri = 0⇒ ∇rρ

r
l,ij = ∇iρlj −∇jρli

Meanwhile, Lanczos and followers have been looking for a kind of parametrization of the Bianchi
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identities, exactly like the Lagrange multiplier has been used as an Airy potential for the stress
equations. However, we shall prove that the definition of a Riemann candidate and the answer
to this question cannot be done without the knowledge of the Spencer cohomology. Moreover, we
have pointed out the existence of well known couplings between elasticity and electromagnetism,
namely piezoelectricity and photoelasticity, which are showing that, in the respective Lagrangians,
the EM field is on equal footing with the deformation tensor and not with the Riemann tensor.
This fact is showing the shift by one step that must be used in the physical interpretation of the
differential sequences involved and cannot be avoided. Meanwhile, the ordinary derivatives ∂i can
be used in place of the covariant derivatives ∇i when dealing with the linearized framework as the
Christoffel symbols vanish when Euclidean or Minkowskian metrics are used.
The next tentative of Lanczos has been to extend his approach to the Weyl tensor:

τkl,ij = ρkl,ij −
1

(n− 2)
(δki ρlj − δ

k
j ρli + ωljω

ksρsi − ωliω
ksρsj) +

1

(n− 1)(n− 2)
(δki ωlj − δ

k
j ωli)ρ

The main problem is now that the Spencer cohomology of the symbols of the conformal Killing
equations, in particular the 2-acyclicity, will be absolutely needed in order to study the Vessiot
structure equations providing the Weyl tensor and its relation with the Riemann tensor. It will
follow that the CC for the Weyl tensor are not first order contrary to the CC for the Riemann
tensor made by the Bianchi identities, another reason for justifying the shift by one step already
quoted. In order to provide an idea of the difficulty involved, let us define the following tensors:

Schouten = (σij = ρij −
1

2(n− 1)
ωijρ)⇒ Cotton = (σk,ij = ∇iσkj −∇jσki)

An elementary but tedious computation allows to prove the formula:

∇rτ
r
k,ij =

(n− 3)

(n− 2)
σk,ij

Then, of course, if Einstein equations in vacuum are valid, the Schouten and Cotton tensors vanish
but the left member is by no way a differential identity for the Weyl tensor as care must be taken
when mixing up mathematics with physics.

Finally, comparing the various parametrizations already obtained in the previous examples, it
seems that the procedures are similar, even when dealing with systems having variable coefficients.
The purpose of the paper is to prove that, in order to obtain a general algorithm, we shall need a
lot of new tools involving at the same time commutative algebra, homological algebra, differential
algebra and differential geometry that will be recalled in the next sections. Moreover, we want
to point out the fact that the use of differential modules is necessary as it is the only possibility
to avoid any functional background like the concept of ”solutions” that must be introduced when
dealing with differential operators. Finally, like in any good crime story, it is only at the real end
of the paper that we shall be able to revisit and compare all these examples in a unique framework.

2) MODULE THEORY

Before entering the heart of this section dealing with extension modules, we need a few technical
definitions and results from commutative algebra ([17],[33],[50]).

DEFINITION 2.1: A ring A is a non-empty set with two associative binary operations called
addition and multiplication, respectively sending a, b ∈ A to a + b ∈ A and ab ∈ A in such a way
that A becomes an abelian group for the multiplication, so that A has a zero element denoted by
0, every a ∈ A has an additive inverse denoted by −a and the multiplication is distributive over
the addition, that is to say a(b + c) = ab+ ac, (a+ b)c = ac+ bc, ∀a, b, c ∈ A.
A ring A is said to be unitary if it has a (unique) element 1 ∈ A such that 1a = a1 = a, ∀a ∈ A
and commutative if ab = ba, ∀a, b ∈ A.
A non-zero element a ∈ A is called a zero-divisor if one can find a non-zero b ∈ A such that ab = 0
and a ring is called an integral domain if it has no zero-divisor.
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DEFINITION 2.2: A ring K is called a field if every non-zero element a ∈ K is a unit, that is
one can find an element b ∈ K such that ab = 1 ∈ K.

DEFINITION 2.3: AmoduleM over a ring A or simply an A-module is a set of elements x, y, z, ...
which is an abelian group for an addition (x, y)→ x+ y with an action A×M →M : (a, x)→ ax
satisfying:
• a(x+ y) = ax+ ay, ∀a ∈ A, ∀x, y ∈M
• a(bx) = (ab)x, ∀a, b ∈ A, ∀x ∈M
• (a+ b)x = ax+ bx, ∀a, b ∈ A, ∀x ∈M
• 1x = x, ∀x ∈M
The set of modules over a ring A will be denoted by mod(A). A module over a field is called a
vector space.

DEFINITION 2.4: A map f : M → N between two A-modules is called a homomorphism over
A if f(x + y) = f(x) + f(y), ∀x, y ∈ M and f(ax) = af(x), ∀a ∈ A, ∀x ∈ M . We successively
define:
• ker(f) = {x ∈M |f(x) = 0}
• coim(f) =M/ker(f)
• im(f) = {y ∈ N |∃x ∈M, f(x) = y}
• coker(f) = N/im(f)
with an isomorphism coim(f) ≃ im(f) induced by f .

DEFINITION 2.5: We say that a chain of modules and homomorphisms is a sequence if the
composition of two successive such homomorphisms is zero. A sequence is said to be exact if the
kernel of each map is equal to the image of the map preceding it. An injective homomorphism
is called a monomorphism, a surjective homomorphism is called an epimorphism and a bijective
homomorphism is called an isomorphism. A short exact sequence is an exact sequence made by a
monomorphism followed by an epimorphism.

The proof of the following proposition is left to the reader as an exercise:

PROPOSITION 2.6: If one has a short exact sequence:

0 −→M ′ f
−→M

g
−→M ′′ −→ 0

then the following conditions are equivalent:
• There exists an epimorphism u :M →M ′ such that u ◦ f = idM ′ .
• There exists a monomorphism v :M ′′ →M such that g ◦ v = idM ′′ .
• There are maps u : M → M ′ and v : M ′′ → M such that f ◦ u + v ◦ g = idM and this relation
provides an isomorphism (u, g) :M →M ′ ⊕M ′′ with inverse f + v :M ′ ⊕M”→M .

DEFINITION 2.7: In the above situation, we say that the short exact sequence splits and u(v)
is called a lift for f(g). The short exact sequence 0→ Z→ Q→ Q/Z→ 0 cannot split over Z.

DEFINITION 2.8: A left (right) ideal a in a ring A is a submodule of A considered as a left
(right) module over itself. When the inclusion a ⊂ A is strict, we say that a is a proper ideal of A.

LEMMA 2.9: If a is an ideal in a ring A, the set of elements rad(a) = {a ∈ A|∃n ∈ N, an ∈ a}
is an ideal of A containing a and called the radical of a. An ideal is called perfect or radical if it is
equal to its radical.

DEFINITION 2.10: For any subset S ⊂ A, the smallest ideal containing S is called the ideal
generated by S. An ideal generated by a single element is called a principal ideal and a ring is
called a principal ideal ring if any ideal is principal. The simplest example is that of polynomial
rings in one indeterminate over a field. When a and b are two ideals of A, we shall denote by a+ b

(ab) the ideal generated by all the sums a+ b (products ab) with a ∈ a, b ∈ b.
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DEFINITION 2.11: An ideal p of a ring A is called a prime ideal if, whenever ab ∈ p (aAb ∈ p

in the non-commutative case) then either a ∈ p or b ∈ p. The set of proper prime ideals of A is
denoted by spec(A) and called the spectrum of A.

DEFINITION 2.12: The annihilator of a module M in A is the ideal annA(M) of A made by
all the elements a ∈ A such that ax = 0, ∀x ∈M .

From now on, all rings considered will be unitary integral domains, that is rings containing 1
and having no zero-divisor as we shall deal mainly with rings of partial differential operators. For
the sake of clarity, as a few results will also be valid for modules over non-commutative rings, we
shall denote by AMB a bimodule M which is a left module for A with operation (a, x) → ax and
a right module for B with operation (x, b) → xb. In the commutative case, lower indices are not
needed. If M = AM and N = AN are two left A-modules, the set of A-linear maps f : M → N
will be denoted by homA(M,N) or simply hom(M,N) when there will be no confusion and there
is a canonical isomorphism hom(A,M) ≃ M : f → f(1) with inverse x → (a → ax). When A is
commutative, hom(M,N) is again an A-module for the law (bf)(x) = f(bx) as we have indeed:

(bf)(ax) = f(bax) = f(abx) = af(bx) = a(bf)(x).

In the non-commutative case, things are much more complicate and we have:

LEMMA 2.13: Given AM and ANB, then homA(M,N) becomes a right module over B for the
law (fb)(x) = f(x)b.

Proof: We just need to check the two relations:

(fb)(ax) = f(ax)b = af(x)b = a(fb)(x),

((fb′)b”)(x) = (fb′)(x)b” = (f(x)b′)b” = f(x)(b′b′′) = (f(b′b′′))(x).

Q.E.D.

A similar result can be obtained with AMB and AN , where homA(M,N) now becomes a left
module over B for the law (bf)(x) = f(xb).

THEOREM 2.14: If M,M ′,M ′′ are A-modules, the sequence:

M ′ f
→M

g
→M ′′ → 0

is exact if and only if the sequence:

0→ hom(M ′′, N)→ hom(M,N)→ hom(M ′, N)

is exact for any A-module N .

Proof: Let us consider homomorphisms h : M → N , h′ : M ′ → N , h′′ : M ′′ → N such that
h′′ ◦ g = h, h ◦ f = h′. If h = 0, then h′′ ◦ g = 0 implies h′′(x′′) = 0, ∀x′′ ∈ M ′′ because g is
surjective and we can find x ∈ M such that x′′ = g(x). Then h′′(x′′) = h′′(g(x)) = h′′ ◦ g(x) = 0.
Now, if h′ = 0, we have h ◦ f = 0 and h factors through g because the initial sequence is exact.
Hence there exists h′′ :M ′′ → N such that h = h′′ ◦ g and the second sequence is exact.
We let the reader prove the converse as an exercise.

Q.E.D.

COROLLARY 2.15: The short exact sequence:

0→M ′ →M →M ′′ → 0

splits if and only if the short exact sequence:

0→ hom(M ′′, N)→ hom(M,N)→ hom(M ′, N)→ 0
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is exact for any module N .

DEFINITION 2.16: If M is a module over a ring A, a system of generators of M over A is a
family {xi}i∈I of elements of M such that any element of M can be written x =

∑

i∈I aixi with
only a finite number of nonzero ai. An A-module is called noetherian if every submodule of M
(and thus M itself) is finitely generated.

One has the following standard technical result:

PROPOSITION 2.17: In a short exact sequence of modules, the central module is noetherian
if and only if the two other modules are noetherian. As a byproduct, if A is a noetherian ring and
M is a finitely generated module over A, then M is noetherian.

Accordingly, if M is generated by {x1, ..., xr}, there is an epimorphism Ar →M : (1, 0, ..., 0)→
x1, ..., (0, ..., 1) → xr. The kernel of this epimorphism is thus also finitely generated, say by
{y1, ..., ys} and we therefore obtain the exact sequence As → Ar → M → 0 that can be extended
inductively to the left. Such a property will always be assumed in the sequel.

DEFINITION 2.18: In this case, we say that M is finitely presented.

We now turn to the definition and brief study of tensor products of modules over rings that
will not be necessarily commutative unless stated explicitly.
Let M = MA be a right A-module and N = AN be a left A-module. We may introduce the free
Z-module made by finite formal linear combinations of elements of M ×N with coefficients in Z.

DEFINITION 2.19: The tensor product of M and N over A is the Z-module M⊗AN obtained
by quotienting the above Z-module by the submodule generated by the elements of the form:

(x+ x′, y)− (x, y)− (x′, y), (x, y + y′)− (x, y)− (x, y′), (xa, y)− (x, ay)

and the image of (x, y) will be denoted by x⊗ y.

It follows from the definition that we have the relations:

(x+ x′)⊗ y = x⊗ y + x′ ⊗ y, x⊗ (y + y′) = x⊗ y + x⊗ y′, xa⊗ y = x⊗ ay

and there is a canonical isomorphismM⊗AA ≃M,A⊗AN ≃ N . When A is commutative, we may
use left modules only and M⊗AN becomes a left A-module.

EXAMPLE 2.20: If A = Z,M = Z/2Z and N = Z/3Z, we have (Z/2Z)⊗Z(Z/3Z) = 0 because
x⊗ y = 3(x⊗ y)− 2(x⊗ y) = x⊗ 3y − 2x⊗ y = 0− 0 = 0.

We present the technique of localization in order to introduce rings and modules of fractions.
We shall define the procedure in the non-commutative case but the reader will discover that, in
the commutative case, localization is just the formal counterpart superseding Laplace transform.
However, it is essential to notice that only the localization technique can be applied to systems
with variable coefficients. We start with a basic definition:

Definition 2.21: A subset S of a ring A is said to be multiplicatively closed if ∀s, t ∈ S ⇒ st ∈ S
and 1 ∈ S.

In a general way, whenever A is a non-commutative ring, that is ab 6= ba when a, b ∈ A, we
shall set the following definition:

Definition 2.22: By a left ring of fractions or left localization of a noncommutative ring A with
respect to a multiplicatively closed subset S of A, we mean a ring denoted by S−1A with a
monomorphism A→ S−1A : a→ 1−1a or simply a such that:
1) s is invertible in S−1A, with inverse s−11 or simply s−1, ∀s ∈ S.
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2) Each element of S−1A or fraction has the form s−1a for some s ∈ S, a ∈ A.
A right ring of fractions or right localization can be similarly defined.

In actual practice, we have to distinguish carefully s−1a from as−1. We shall recover the stan-
dard notation a/s of the commutative case when two fractions a/s and b/t can be reduced to
the same denominator st = ts. The following proposition is essential and will be completed by a
technical lemma that will be used for constructing localizations.

Proposition 2.23: If there exists a left localization of A with respect to S, then we must have
Sa ∩As 6= ∅, ∀a ∈ A, ∀s ∈ S.

Proof: As S−1A must be a ring, the element as−1 in S−1A must be of the form t−1b for some
t ∈ S, b ∈ A. Accordingly, as−1 = t−1b⇒ ta = bs with t ∈ S, b ∈ A.

Q.E.D.

Definition 2.24: A set S satisfying this condition is called a left Ore set.

Lemma 2.25: If S is a left Ore set in a ring A, then As ∩At ∩ S 6= ∅, ∀s, t ∈ S and two fractions
can be brought to the same denominator.

Proof: From the left Ore condition, we can find u ∈ S and a ∈ A such that us = at ∈ S. More
generally, we can find u, v ∈ A such that us = vt ∈ S and we successively get:

(us)−1(ua) = s−1u−1ua = s−1a, (vt)−1(vb) = t−1v−1vb = t−1b

so that the two fractions s−1a and t−1b can be brought to the same denominator us = vt.
Q.E.D.

We are now in position to construct the ring of fractions S−1A whenever S satifies the two
conditions of the last proposition. For this, using the preceding lemma, let us define an equivalence
relation on S ×A by saying that (s, a) ∼ (t, b) if one can find u, v ∈ S such that us = vt ∈ S and
ua = vb. Such a relation is clearly reflexive and symmetric, thus we only need to prove that it is
transitive. So let (s1, a1) ∼ (s2, a2) and (s2, a2) ∼ (s3, a3). Then we can find u1, u2 ∈ A such that
u1s1 = u2s2 ∈ S and u1a1 = u2a2. Also we can find v2, v3 ∈ A such that v2s2 = v3s3 ∈ S and
v2a = v3a3. Now, from the Ore condition, one can find w1, w3 ∈ A such that w1u1s1 = w3v3s3 ∈ S
and thus w1u2s2 = w3v2s2 ∈ S, that is to say (w1u2 − w3v2)s2 = 0. As A is an integral do-
main, we have w1u2 − w3v2 = 0 ⇒ w1u2 = w3v2 ⇒ w1u1a1 = w1u2a2 = w3v2a2 = w3v3a3 as
wished. We finally define S−1A to be the quotient of S×A by the above equivalence relation with
θ : A→ S−1A : a→ 1−1a. The sum (s, a) + (t, b) will be defined to be (us = vt, ua+ vb) and the
product (s, a) × (t, b) will be defined to be (s−1a)(t−1b) = s−1(at−1)b = s−1u−1cb = (us)−1(cb)
whenever ua = ct .

A similar approach can be used in order to define and construct modules of fractions whenever
S satifies the two conditions of the last proposition. For this we need a preliminary lemma:

LEMMA 2.26: If S is a left Ore set in a ring A and M is a left module over A, the set:

tS(M) = {x ∈M |∃s ∈ S, sx = 0}

is a submodule of M called the S-torsion submodule of M .

Proof: If x, y ∈ tS(M), we may find s, t ∈ S such that sx = 0, ty = 0. Now, we can find u, v ∈ A
such that us = vt ∈ S and we successively get us(x+ y) = usx+ vty = 0⇒ x+ y ∈ tS(M). Also,
∀a ∈ A, using the Ore condition for S, we can find b ∈ A, t ∈ S such that ta = bs and we get
tax = bsx = 0⇒ ax ∈ tS(M).

Q.E.D.
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DEFINITION 2.27: By a left module of fractions or left localization of M with respect to S, we
mean a left module S−1M over S−1A both with a homomorphism θ = θS : M → S−1M : x →
1−1x = s−1sx such that:
1) Each element of S−1M has the form s−1x for s ∈ S, x ∈M .
2) ker(θS) = tS(M).

In order to construct S−1M , we shall define an equivalence relation on S ×M by saying that
(s, x) ∼ (t, y) if there exists u, v ∈ A such that us = vt ∈ S and ux = vy. Checking that this re-
lation is reflexive, symmetric and transitive can be done as before (exercise) and we define S−1M
to be the quotient of S ×M by this equivalence relation. The main property of localization is
expressed by the following theorem:

Theorem 2.28: If one has an exact sequence:

M ′ f
−→M

g
−→M ′′

then one also has the exact sequence:

S−1M ′ S−1f
−→ S−1M

S−1g
−→ S−1M ′′

where S−1f(s−1x) = s−1f(x).

Proof: As g ◦ f = 0, we also have S−1g ◦ S−1f = 0 and thus im(S−1f) ⊆ ker(S−1g).
In order to prove the reverse inclusion, let s−1x ∈ ker(S−1g). We have therefore s−1g(x) = 0
in S−1M ′′ and there exists t ∈ S such that tg(x) = g(tx) = 0 in M ′′. As the initial se-
quence is exact, we can find x′ ∈ M ′ such that tx = f(x′). Accordingly, in S−1M we have
s−1x = s−1t−1tx = (ts)−1tx = (ts)−1f(x′) = S−1f((ts)−1x′) and thus ker(S−1g) ⊆ im(S−1f).

Q.E.D.

As a link between tensor product and localization, we notice that the multiplication map
S−1A ×M → S−1M given by (s−1a, x) → s−1ax induces an isomorphism S−1A⊗AM → S−1M
of modules over S−1A when S−1A is considered as a right module over A with (s−1a)b = s−1ab
and M as a left module over A. In particular, when A is a commutative integral domain and
S = A − {0}, the field K = Q(A) = S−1A is called the field of fractions of A and we have the
short exact sequence:

0 −→ A −→ K −→ K/A −→ 0

If now M is a left A-module, we may tensor this sequence by M on the right with A ⊗M = M
but we do not get in general an exact sequence. The defect of exactness on the left is nothing else
but the torsion submodule t(M) = {x ∈ M |∃0 6= s ∈ A, sx = 0} ⊆ M and we have the long exact
sequence:

0 −→ t(M) −→M −→ K⊗AM −→ K/A⊗AM −→ 0

as we may describe the central map as follows:

x −→ 1⊗ x = s−1s⊗ x = s−1 ⊗ sx , ∀0 6= s ∈ A

As we saw in the Introduction, such a result allows to understand why controllability has to do with
localization which is introduced implicitly through the transfer matrix in control theory. In partic-
ular, a moduleM is said to be a torsion module if t(M) =M and a torsion-free module if t(M) = 0.

DEFINITION 2.29: A module in mod(A) is called a free module if it has a basis, that is a system
of generators linearly independent over A. When a module F is free, the number of generators
in a basis, and thus in any basis, is called the rank of F over A and is denoted by rankA(F ). In
particular, if F is free of finite rank r, then F ≃ Ar.

More generally, if M is any module over a ring A and F is a maximum free submodule of M ,
then M/F = T is a torsion module. Indeed, if x ∈ M,x /∈ F , then one can find a ∈ A such that
ax ∈ F because, otherwise, F ⊂ {F, x} should be free submodules of M with a strict inclusion. In
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that case, the rank of M is by definition the rank of F over A. When A is commutative, one has
equivalently :

LEMMA 2.30: rkA(M) = dimK(K⊗AM).

Proof: Taking the tensor product by K over A of the short exact sequence 0→ F →M → T → 0,
we get an isomorphism K⊗AF ≃ K⊗AM because K⊗AT = 0 (exercise) and the lemma follows
from the definition of the rank.

Q.E.D.

We now provide two proofs of the additivity property of the rank:

PROPOSITION 2.31: If 0→M ′ f
→M

g
→M ′′ → 0 is a short exact sequence of modules over a

ring A, then we have rkA(M) = rkA(M
′) + rkA(M

′′).

Proof 1: In the commutative case, using a localization with respect to the multiplicatively closed
subset S = A − {0}, this proposition is just a straight consequence of the definition of rank and
the fact that localization preserves exactness.
Proof 2: Let us consider the following diagram with exact left/right columns and central row:

0 0 0
↓ ↓ ↓

0→ F ′ → F ′ ⊕ F ′′ → F ′′ → 0
↓ i′ ↓ i ↓ i′′

0→ M ′ f
→ M

g
→ M ′′ → 0

↓ p′ ↓ p ↓ p′′

0→ T ′ → T → T ′′ → 0
↓ ↓ ↓
0 0 0

where F ′(F ′′) is a maximum free submodule of M ′(M ′′) and T ′ = M ′/F ′(T ′′ = M ′′/F ′′) is a
torsion module. Pulling back by g the image under i′′ of a basis of F ′′, we may obtain by lin-
earity a map σ : F ′′ → M and we define i = f ◦ i′ ◦ π′ + σ ◦ π′′ where π′ : F ′ ⊕ F ′′ → F ′ and
π′′ : F ′ ⊕ F ′′ → F ′′ are the canonical projections on each factor of the direct sum. We have
i|F ′ = f ◦ i′ and g ◦ i = g ◦ σ ◦ π′′ = i′′ ◦ π′′. Hence, the diagram is commutative and thus exact
with rkA(F

′ ⊕ F ′′) = rkA(F
′) + rkA(F

′′) trivially. Finally, if T ′ and T ′′ are torsion modules, it is
easy to check that T is a torsion module too and F ′ ⊕ F ′′ is thus a maximum free submodule of
M .

Q.E.D.

DEFINITION 2.32: If f : M → N is any morphism, the rank of f will be defined to be
rkA(f) = rkA(im(f)).

We provide a few additional properties of the rank that will be used in the sequel. For this we
shall setM∗ = homA(M,A) and, for any morphism f :M → N we shall denote by f∗ : N∗ →M∗

the corresponding morphism which is such that f∗(h) = h ◦ f, ∀h ∈ homA(N,A).

PROPOSITION 2.33: When A is a commutative integral domain and M is a finitely presented
module over A, then rkA(M) = rkA(M

∗).

Proof: Applying homA(•, A) to the short exact sequence in the proof of the preceding lemma
while taking into account T ∗ = 0, we get a monomorphism 0 → M∗ → F ∗ and obtain therefore
rkA(M

∗) ≤ rkA(F
∗). However, as F ≃ Ar with r < ∞ because M is finitely generated, we get

F ∗ ≃ Ar too because A∗ ≃ A. It follows that rkA(M
∗) ≤ rkA(F

∗) = rkA(F ) = rkA(M) and thus
rkA(M

∗) ≤ rkA(M).

Now, if F1
d1→ F0 →M → 0 is a finite presentation ofM , applying homA(•, A) to this presentation,

we get the ker/coker exact sequence:

15



0← N ← F ∗
1

d∗

1← F ∗
0 ←M∗ ← 0

Applying homA(•, A) to this sequence while taking into account the isomorphisms F ∗∗
0 ≃ F0, F

∗∗
1 ≃

F1, we get the ker/coker exact sequence:

0→ N∗ → F1
d1→ F0 →M → 0

Counting the ranks, we obtain:

rkA(N)− rkA(M
∗) = rkA(F

∗
1 )− rkA(F

∗
0 ) = rkA(F1)− rkA(F0) = rkA(N

∗)− rkA(M)

and thus:

(rkA(M)− rkA(M
∗)) + (rkA(N)− rkA(N

∗)) = 0

As both two numbers in this sum are non-negative, they must be zero and we finally get rkA(M) =
rkA(M

∗), rkA(N) = rkA(N
∗).

Q.E.D.

COROLLARY 2.34: Under the condition of the proposition, we have rkA(f) = rkA(f
∗).

Proof: Introducing the ker/coker exact sequence:

0→ K →M
f
→ N → Q→ 0

we have: rkA(f) + rkA(Q) = rkA(N). Applying homA(•, A) and taking into account Theorem
3.1.14, we have the exact sequence:

0→ Q∗ → N∗ f∗

→M∗

and thus : rkA(f
∗) + rkA(Q

∗) = rkA(N
∗). Using the preceding proposition, we get rkA(Q) =

rkA(Q
∗) and rkA(N) = rkA(N

∗), that is to say rkA(f) = rkA(f
∗).

Q.E.D.

3) HOMOLOGICAL ALGEBRA

We now need a few definitions and results from homological algebra ([32],[33],[50]). In all
that follows, A,B,C, L,M,N,R, S, T, ... are modules over a ring A or vector spaces over a field
k and the linear maps are making the diagrams commutative. We start recalling the well known
Cramer’s rule for linear systems through the exactness of the ker/coker sequence for modules.
When f : M → N is a linear map (homomorphism), we introduce the so-called ker/coker long
exact sequence:

0 −→ ker(f) −→M
f
−→ N −→ coker(f) −→ 0

In the case of vector spaces over a field k, we successively have rk(f) = dim(im(f)), dim(ker(f)) =
dim(M)− rk(f), dim(coker(f)) = dim(N) − rk(f) = nb of compatibility conditions, and obtain
by substraction:

dim(ker(f))− dim(M) + dim(N)− dim(coker(f)) = 0

In the case of modules, we may replace the dimension by the rank and obtain the same relations
because of the additive property of the rank. The following theorem is essential:

SNAKE THEOREM 3.1: When one has the following commutative diagram resulting from
the two central vertical short exact sequences by exhibiting the three corresponding horizontal

16



ker/coker exact sequences:

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓f ↓f ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
↓ ↓g ↓g′ ↓

0 −→ M −→ C −→ C′ −→ S −→ 0
↓ ↓ ↓
0 0 0

then there exists a connecting map M −→ Q both with a long exact sequence:

0 −→ K −→ L −→M −→ Q −→ R −→ S −→ 0.

Proof: We start constructing the connecting map by using the following succession of elements:

a · · · a′ −→ q
... ↓
b −→ b′

↓
...

m −→ c · · · 0

Indeed, starting with m ∈ M , we may identify it with c ∈ C in the kernel of the next horizontal
map. As g is an epimorphism, we may find b ∈ B such that c = g(b) and apply the next horizontal
map to get b′ ∈ B′ in the kernel of g′ by the commutativity of the lower square. Accordingly, there
is a unique a′ ∈ A′ such that b′ = f ′(a′) and we may finally project a′ to q ∈ Q. The map is well
defined because, if we take another lift for c in B, it will differ from b by the image under f of a
certain a ∈ A having zero image in Q by composition. The remaining of the proof is similar. The
above explicit procedure called ” chase ” will not be repeated.

Q.E.D.

We may now introduce cohomology theory through the following definition:

DEFINITION 3.2: If one has a sequence L
f
−→ M

g
−→ N , that is if g ◦ f = 0, then one may

introduce the submodules coboundary = B = im(f) ⊆ ker(g) = cocycle = Z ⊆ M and define the
cohomology at M to be the quotient H = Z/B.

THEOREM 3.3: The following commutative diagram where the two central vertical sequences
are long exact sequences and the horizontal lines are ker/coker exact sequences:

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓f ↓f ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
· · · · · · ↓ · · · ↓g · · · ↓g′ · · · ↓ · · · · · · · · · cut
0 −→ M −→ C −→ C′ −→ S −→ 0

↓ ↓h ↓h′ ↓
0 −→ N −→ D −→ D′ −→ T −→ 0

↓ ↓ ↓
0 0 0

induces an isomorphism between the cohomology at M in the left vertical column and the kernel
of the morphism Q→ R in the right vertical column.
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Proof: Let us “cut” the preceding diagram along the dotted line. We obtain the following two
commutative and exact diagrams with im(g) = ker(h), im(g′) = ker(h′):

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓f ↓f ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
↓ ↓g ↓g′

0 −→ cocycle −→ im(g) −→ im(g′)
↓ ↓
0 0

0 0 0
↓ ↓ ↓

0 −→ cocycle −→ ker(h) −→ ker(h′)
↓ ↓ ↓

0 −→ M −→ C −→ C′

↓ ↓h ↓h′

0 −→ N −→ D −→ D′

↓ ↓
0 0

Using the snake theorem, we successively obtain the following long exact sequences:

=⇒ ∃ 0 −→ K −→ L
g
−→ cocycle −→ Q −→ R

=⇒ ∃ 0 −→ coboundary −→ cocycle −→ ker (Q −→ R) −→ 0
=⇒ cohomology atM ≃ ker (Q −→ R)

Q.E.D.

We now introduce the extension modules in an elementary manner, using the standard notation
homA(M,A) = M∗. For this, we shall use a free resolution of an A-module M , that is to say a
long exact sequence:

...
d2−→ F1

d1−→ F0 −→M −→ 0

where F0, F1, ...are free modules, namely modules isomorphic to powers of A andM = coker(d1) =
F0/im(d1). We may take out M and obtain the deleted sequence:

...
d2−→ F1

d1−→ F0 −→ 0

which is of course no longer exact. We may apply the functor homA(•, A) and obtain the sequence:

...
d∗

2←− F ∗
1

d∗

1←− F ∗
0 ←− 0

in order to state:

DEFINITION 3.4: We set:

ext0(M) = ext0A(M,A) = ker(d∗1) =M∗, exti(M) = extiA(M,A) = ker(d∗i+1)/im(d∗i ), ∀i ≥ 1

The extension modules have the following three main properties, the first and second only being
classical ([5],[32],[50]):

PROPOSITION 3.5: The extension modules do not depend on the resolution of M chosen.

PROPOSITION 3.6: If 0→M ′ →M →M ′′ → 0 is a short exact sequence of A-modules, then
we have the following connecting long exact sequence:

0→M”∗ →M∗ →M ′∗ → ext1(M ′′)→ ext1(M)→ ext1(M ′)→ ext2(M”)→ ext2(M)→ ...
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of extension modules.

We provide two different proofs of the following proposition:

PROPOSITION 3.7: exti(M) is a torsion module, ∀i ≥ 1.

Proof 1: Let F be a maximal free submodule of M . From the short exact sequence:

0 −→ F −→M −→M/F −→ 0

where M/F is a torsion module, we obtain the long exact sequence:

...→ exti−1(F )→ exti(M/F )→ exti(M)→ exti(F )→ ...

As F is free, we obtain exti(F ) = 0, ∀i ≥ 1 and thus exti(M) ≃ exti(M/F ), ∀i ≥ 2. Now, we have
seen that the tensor product by K of any exact sequence is again an exact sequence. Accordingly,
as K⊗A(M/F ) = 0, we have from the definitions:

K⊗Aext
i
A(M/F,A) ≃ extiA(M/F,K) ≃ extiK(K⊗AM/F,K) = 0, ∀i ≥ 1

and we finally obtain from the above sequence K⊗Aext
i(M) = 0⇒ exti(M) torsion, ∀i ≥ 1.

Proof 2: Having in mind that Bi = im(d∗i ) and Zi = ker(d∗i+1), we obtain rk(Bi) = rk(d∗i ) = rk(di)
and rk(Zi) = rk(F ∗

i )− rk(d
∗
i+1) = rk(Fi)− rk(di+1). However, we started from a resolution, that

is an exact sequence in which rk(di)+ rk(di+1) = rk(Fi). It follows that rk(Bi) = rk(Zi) and thus
rk(Hi) = rk(Zi)− rk(Bi) = 0, that is to say exti(M) is a torsion module for i ≥ 1, ∀M ∈ mod(A).

Q.E.D.

The next theorem and its corollary constitute the main results that will be used for applications
through a classification of modules ([4],[15],[32],[33],[40],[45],[46]):

THEOREM 3.8: The following long exact sequence:

0 −→ ext1(N) −→M
ǫ
−→M∗∗ −→ ext2(N) −→ 0

is isomorphic to the ker/coker long exact sequence for the central morphism ǫ which is defined by
ǫ(x)(f) = f(x), ∀x ∈M, ∀f ∈M∗.

Proof: Introducing K = im(d∗1), we may obtain two short exact sequences, a left one starting with
K and a right one finishing with K as follows:

0← N ←− F ∗
1

d∗

1←− F ∗
0 ←− M∗ ← 0

տ ւ
K

ւ տ
0 0

Using the two corresponding long exact connecting sequences, we get ext1(K) ≃ ext2(N) from the
one starting with N∗ which is also providing the left exact column of the next diagram and the
exact central row of this diagram from the one starting with K∗. The Theorem is finally obtained
by a chase proving that the full diagram is commutative and exact:

F1 = F1

↓ ↓ d1

0→ K∗ d1−→ F0 −→ M∗∗ −→ ext2(N) → 0
↓ ↓ ր

0→ ext1(N) −→ M
↓ ↓
0 0
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Q.E.D.

COROLLARY 3.9: t(M) = ext1(N) = ker(ǫ).

Proof: As ext1(N) ⊆M is a torsion module, we have therefore ext1(N) ⊆ t(M). Now, if x ∈ t(M),
we may find 0 6= a ∈ A such that ax = 0 and ǫ(x)(f) = f(x)⇒ f(ax) = af(x) = 0⇒ f(x) = 0 be-
causeA is an integral domain, that is t(M) ⊆ ker(ǫ) = ext1(N) and thus t(M) = ext1(N) = ker(ǫ).

Q.E.D.

DEFINITION 3.10: A moduleM will be called torsion-free if ext1(N) = t(M) = 0 and reflexive
if ext1(N) = 0, ext2(N) = 0. Going further on in specifying the properties ofM can be done but is
out of the scope of this paper (See [4],[32] for more details and the Poincaré sequence below for an
example) (Hint: Using the connecting long exact sequence, we get ext2+r(N) = extr(M∗), ∀r ≥ 1).

Despite all these results, a major difficulty still remains. Indeed, we haveM = coker(d1) = AM
as a left module over A but, using the bimodule structure of A = AAA and Lemma 2.13, it follows
that M∗ = ker(d∗1) = M∗

A is a right module over A and thus N = coker(d∗1) = NA is also a right
module over A. However, as we shall see, all the differential modules used through applications
will be left modules over the ring of differential operators and it will therefore not be possible to
use dual sequences as we did without being able to ” pass from left to right and vice-versa ”. For
this purpose we now need many delicate results from differential geometry, in particular a way to
deal with the formal adjoint of an operator as we did many times in the Introduction.

4) SYSTEM THEORY

If E is a vector bundle over the base manifold X with projection π and local coordinates
(x, y) = (xi, yk) projecting onto x = (xi) for i = 1, ..., n and k = 1, ...,m, identifying a map
with its graph, a (local) section f : U ⊂ X → E is such that π ◦ f = id on U and we write
yk = fk(x) or simply y = f(x). For any change of local coordinates (x, y)→ (x̄ = ϕ(x), ȳ = A(x)y)
on E, the change of section is y = f(x) → ȳ = f̄(x̄) such that f̄ l(ϕ(x) ≡ Al

k(x)f
k(x). The

new vector bundle E∗ obtained by changing the transition matrix A to its inverse A−1 is called
the dual vector bundle of E. Differentiating with respect to xi and using new coordinates yki
in place of ∂if

k(x), we obtain ȳlr∂iϕ
r(x) = Al

k(x)y
k
i + ∂iA

l
k(x)y

k. Introducing a multi-index
µ = (µ1, ..., µn) with length | µ |= µ1 + ... + µn and prolonging the procedure up to order q, we
may construct in this way, by patching coordinates, a vector bundle Jq(E) over X , called the jet
bundle of order q with local coordinates (x, yq) = (xi, ykµ) with 0 ≤| µ |≤ q and yk0 = yk. We
have therefore epimorphisms πq+r

q : Jq+r(E) → Jq(E), ∀q, r ≥ 0. For a later use, we shall set
µ+ 1i = (µ1, ..., µi−1, µi + 1, µi+1, ..., µn) and define the operator jq : E → Jq(E) : f → jq(f) on
sections by the local formula jq(f) : (x) → (∂µf

k(x) | 0 ≤| µ |≤ q, k = 1, ...,m). Finally, a jet
coordinate ykµ is said to be of class i if µ1 = ... = µi−1 = 0, µi 6= 0.

DEFINITION 4.1: A system of PD equations of order q on E is a vector subbundle Rq ⊂ Jq(E)
locally defined by a constant rank system of linear equations for the jets of order q of the
form aτµk (x)ykµ = 0. Its first prolongation Rq+1 ⊂ Jq+1(E) will be defined by the equations

aτµk (x)ykµ = 0, aτµk (x)ykµ+1i + ∂ia
τµ
k (x)ykµ = 0 which may not provide a system of constant rank as

can easily be seen for xyx − y = 0⇒ xyxx = 0 where the rank drops at x = 0.

The next definition of formal integrability (FI) will be crucial for our purpose.

DEFINITION 4.2: A system Rq is said to be formally integrable if the Rq+r are vector bundles
∀r ≥ 0 (regularity condition) and no new equation of order q + r can be obtained by prolonging
the given PD equations more than r times, ∀r ≥ 0 or, equivalently, we have induced epimorphisms
πq+r+1
q+r : Rq+r+1 → Rq+r, ∀r ≥ 0 allowing to compute ” step by step ” formal power series solutions.

A formal test has been first sketched by C. Riquier in 1910 ([48]), then improved by M. Janet in
1920 ([12],[29]) and by E. Cartan in 1945 ([6]), finally rediscovered in 1965, totally independently,
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by B. Buchberger who introduced Gröbner bases, using the name of his thesis advisor. However
all these tentatives have been largely superseded and achieved in an intrinsic way, again totally
independently of the previous approaches, by D.C. Spencer in 1965 ([29],[31],[52]).

DEFINITION 4.3: The family gq+r of vector spaces over X defined by the purely linear equa-
tions aτµk (x)vkµ+ν = 0 for | µ |= q, | ν |= r is called the symbol at order q+r and only depends on gq.

The following procedure, where one may have to change linearly the independent variables if
necessary, is the key towards the next definition which is intrinsic even though it must be checked
in a particular coordinate system called δ-regular (See [29] and [32] for more details):

• Equations of class n: Solve the maximum number βn
q of equations with respect to the jets of

order q and class n. Then call (x1, ..., xn) multiplicative variables.

−−− −−−−−−−−−−−−−

• Equations of class i: Solve the maximum number of remaining equations with respect to the
jets of order q and class i. Then call (x1, ..., xi) multiplicative variables and (xi+1, ..., xn) non-
multiplicative variables.

−−−−−−−−−−−−−−−−−

• Remaining equations equations of order ≤ q − 1: Call (x1, ..., xn) non-multiplicative variables.

DEFINITION 4.4: The above multiplicative and non-multiplicative variables can be visualized
respectively by integers and dots in the corresponding Janet board. A system of PD equations is
said to be involutive if its first prolongation can be achieved by prolonging its equations only with
respect to the corresponding multiplicative variables. The following numbers are called characters:

αi
q = m(q + n− i− 1)!/((q − 1)!(n− i)!)− βi

q, ∀1 ≤ i ≤ n ⇒ α1
q ≥ ... ≥ α

n
q

For an involutive system, (yβ
n
q +1, ..., ym) can be given arbitrarily.

For an involutive system of order q in the above solved form, we shall use to denote by ypri
the principal jet coordinates, namely the leading terms of the solved equations in the sense of
involution. Accordingly, any formal derivative of a principal jet coordinate is again a principal jet
coordinate. The remaining jet coordinates will be called parametric jet coordinates and denoted
by ypar. We shall use a ”trick” in order to study the parametric jet coordinates. Indeed, the
symbol of jq is the zero symbol and is thus trivially involutive at any order q. Accordingly, if
we introduce the multiplicative variables x1, ..., xi for the parametric jets of order q and class i,
the formal derivative or a parametric jet of strict order q and class i by one of its multiplicative
variables is uniquely obtained and cannot be a principal jet of order q + 1 which is coming from a
uniquely defined principal jet of order q and class i. We have thus obtained the following technical
Proposition which is very useful in actual practice:

PROPOSITION 4.5: The principal and parametric jets of strict order q of an involutive system
of order q have the same Janet board if we extend it to all the classes that may exist for both sets,
in particular the respective empty classes.

The following technical lemmas are straightforward consequences of the definition of an invo-
lutive system and allow to construct all the possible sets of principal or parametric jet coordinates
when m,n and q are given (See [29] p 123-125 for more details).

LEMMA 4.6: If ykµ ∈ ypri and y
l
ν ∈ ypar appear in the same equation of class i in solved form,

then ν is of class ≤ i and l > k when ν is also of class i.

LEMMA 4.7: If ykµ is a principal jet coordinate of strict order q, that is | µ |= q with

µ1 = 0, ..., µi−1 = 0, µi > 0, then ∀j > i, ykµ−1i+1j is a principal jet coordinate and this nota-
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tion has a meaning because µi > 0.

LEMMA 4.8: If there exists an equation of class i, there exists also an equation of class i + 1.
Accordingly, the classes of the solved equations of an involutive symbol are an increasing chain of
consecutive integers ending at n.

LEMMA 4.9: The indices µi of the principal jet coordinates of strict order q and class i are an
increasing chain of consecutive integers starting from 1.

PROPOSITION 4.10: Using the Janet board and the definition of involutivity, we get:

dim(gq+r) =
∑n

i=1

(r + i− 1)!

r!(i − 1)!
αi
q ⇒ dim(Rq+r) = dim(Rq−1) +

∑n

i=1

(r + i)!

r!i!
αi
q

Let T be the tangent vector bundle of vector fields onX , T ∗ be the cotangent vector bundle of 1-
forms onX and ∧sT ∗ be the vector bundle of s-forms onX with usual bases {dxI = dxi1∧...∧dxis}
where we have set I = (i1 < ... < is). Also, let SqT

∗ be the vector bundle of symmetric q-
covariant tensors. Moreover, if ξ, η ∈ T are two vector fields on X , we may define their bracket
[ξ, η] ∈ T by the local formula ([ξ, η])i(x) = ξr(x)∂rη

i(x) − ηs(x)∂sξ
i(x) leading to the Jacobi

identity [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0, ∀ξ, η, ζ ∈ T . We may finally introduce the exterior
derivative d : ∧rT ∗ → ∧r+1T ∗ : ω = ωIdx

I → dω = ∂iωIdx
i ∧ dxI with d2 = d ◦ d ≡ 0 in the

Poincaré sequence:

∧0T ∗ d
−→ ∧1T ∗ d

−→ ∧2T ∗ d
−→ ...

d
−→ ∧nT ∗ −→ 0

In a purely algebraic setting, one has ([29],[52]):

PROPOSITION 4.11: There exists a map δ : ∧sT ∗⊗Sq+1T
∗⊗E → ∧s+1T ∗⊗SqT

∗⊗E which
restricts to δ : ∧sT ∗ ⊗ gq+1 → ∧s+1T ∗ ⊗ gq and δ2 = δ ◦ δ = 0.

Proof: Let us introduce the family of s-forms ω = {ωk
µ = vkµ,Idx

I} and set (δω)kµ = dxi ∧ωk
µ+1i .

We obtain at once (δ2ω)kµ = dxi ∧ dxj ∧ ωk
µ+1i+1j = 0.

Q.E.D.

The kernel of each δ in the first case is equal to the image of the preceding δ but this may no
longer be true in the restricted case and we set (See [31], p 85-88 for more details):

DEFINITION 4.12: We denote by Bs
q+r(gq) ⊆ Zs

q+r(gq) and Hs
q+r(gq) = Zs

q+r(gq)/B
s
q+r(gq)

respectively the coboundary space, cocycle space and cohomology space at ∧sT ∗ ⊗ gq+r of the
restricted δ-sequence which only depend on gq and may not be vector bundles. The symbol gq is
said to be s-acyclic if H1

q+r = ... = Hs
q+r = 0, ∀r ≥ 0, involutive if it is n-acyclic and finite type if

gq+r = 0 becomes trivially involutive for r large enough. For a later use, we notice that a symbol
gq is involutive and of finite type if and only if gq = 0. Finally, SqT

∗⊗E is involutive ∀q ≥ 0 if we
set S0T

∗ ⊗ E = E.

FI CRITERION 4.13: If πq+1
q : Rq+1 → Rq is an epimorphism of vector bundles and gq is

2-acyclic (involutive), then Rq is formally integrable (involutive).

EXAMPLE 4.14: The system R2 defined by the three PD equations

y33 = 0, y23 − y11 = 0, y22 = 0

is homogeneous and thus automatically formally integrable but g2 is not involutive though finite
type because g4 = 0. Elementary computations of ranks of matrices shows that the δ-map:

0→ ∧2T ∗ ⊗ g3
δ
−→ ∧3T ∗ ⊗ g2 → 0
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is a 3 × 3 isomorphism and thus g3 is 2-acyclic with dim(g3) = 1, a crucial intrinsic property
totally absent from any ”old” work and quite more easy to handle than its Koszul dual.

The main use of involution is to construct differential sequences that are made up by successive
compatibility conditions (CC) of order one. In particular, when Rq is involutive, the differential

operator D : E
jq
→ Jq(E)

Φ
→ Jq(E)/Rq = F0 of order q with space of solutions Θ ⊂ E is said to be

involutive and one has the canonical linear Janet sequence ([31], p 144):

0 −→ Θ −→ E
D
−→ F0

D1−→ F1
D2−→ ...

Dn−→ Fn −→ 0

where each other operator is first order involutive and generates the CC of the preceding one with
the Janet bundles Fr = ∧rT ∗⊗Jq(E)/(∧rT ∗⊗Rq+δ(∧r−1T ∗⊗Sq+1T

∗⊗E)). As the Janet sequence
can be ”cut at any place”, that is can also be constructed anew from any intermediate operator,
the numbering of the Janet bundles has nothing to do with that of the Poincaré sequence for the
exterior derivative, contrary to what many physicists still believe (n = 3 with D = div provides the
simplest example). Moreover, the fiber dimension of the Janet bundles can be computed at once
inductively from the board of multiplicative and non-multiplicative variables that can be exhibited
for D by working out the board for D1 and so on. For this, the number of rows of this new board
is the number of dots appearing in the initial board while the number nb(i) of dots in the column i
just indicates the number of CC of class i for i = 1, ..., n with nb(i) < nb(j), ∀i < j. When Rq is not
involutive but formally integrable and the r-prolongation of its symbol gq becomes 2-acyclic, it is
known that the generating CC are of order r+1 (See [31], Example 6, p 120 and previous Example).

EXAMPLE 4.15: ([21],§38, p 40 is providing the first intuition of formal integrability) The
second order system y11 = 0, y13 − y2 = 0 is neither formally integrable nor involutive. Indeed,
we get d3y11 − d1(y13 − y2) = y12 and d3y12 − d2(y13 − y2) = y22, that is to say each first and
second prolongation does bring a new second order PD equation. Considering the new system
y22 = 0, y12 = 0, y13 − y2 = 0, y11 = 0, the question is to decide whether this system is involutive
or not. In such a simple situation, as there is no PD equation of class 3, the evident permutation
of coordinates (1, 2, 3) → (3, 2, 1) provides the following involutive second order system with one
equation of class 3, 2 equations of class 2 and 1 equation of clas 1:















Φ4 ≡ y33 = 0
Φ3 ≡ y23 = 0
Φ2 ≡ y22 = 0
Φ1 ≡ y13 − y2 = 0

1 2 3
1 2 •
1 2 •
1 • •

We have α3
2 = 0, α2

2 = 0, α1
2 = 2 and the corresponding CC system is easily seen to be the following

involutive first order system:















Ψ4 ≡ d3Φ3 − d2Φ4 = 0
Ψ3 ≡ d3Φ

2 − d2Φ
3 = 0

Ψ2 ≡ d3Φ1 − d1Φ4 +Φ3 = 0
Ψ1 ≡ d2Φ1 − d1Φ3 +Φ2 = 0

1 2 3
1 2 3
1 2 3
1 2 •

The final CC system is the involutive first order system:

{

Ω ≡ d3Ψ1 − d2Ψ2 + d1Ψ
4 −Ψ3 = 0 1 2 3

We get therefore the Janet sequence:

0 −→ Θ −→ 1 −→ 4 −→ 4 −→ 1 −→ 0

We finally check that each Φ1,Φ2,Φ3 is separately differentially dependent on Φ4 because we have
successively d3Φ

3 − d2Φ4 = 0, d33Φ
2 − d22Φ4 = 0, d33Φ

1 − d13Φ4 + d2Φ
4 = 0, that is Φ1,Φ2,Φ3

become torsion elements when Φ4 = 0. Similarly, Ψ1 is differentially dependent on Ψ2,Ψ3,Ψ4,
that is Ψ1 becomes a torsion element when Ψ2 = Ψ3 = Ψ4 = 0.
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5) DIFFERENTIAL MODULES

Let K be a differential field, that is a field containing Q with n commuting derivations
{∂1, ..., ∂n} with ∂i∂j = ∂j∂i = ∂ij , ∀i, j = 1, ..., n such that ∂i(a + b) = ∂ia + ∂ib, ∂i(ab) =
(∂ia)b + a∂ib, ∀a, b ∈ K and ∂i(1/a) = −(1/a2)∂ia, ∀a ∈ K. Using an implicit summation
on multi-indices, we may introduce the (noncommutative) ring of differential operators D =
K[d1, ..., dn] = K[d] with elements P = aµdµ such that | µ |< ∞ and dia = adi + ∂ia. The
highest value of |µ| with aµ 6= 0 is called the order of the operator P and the ring D with multi-
plication (P,Q) −→ P ◦Q = PQ is filtred by the order q of the operators. We have the filtration
0 ⊂ K = D0 ⊂ D1 ⊂ ... ⊂ Dq ⊂ ... ⊂ D∞ = D. Moreover, it is clear that D, as an algebra, is
generated by K = D0 and T = D1/D0 with D1 = K ⊕ T if we identify an element ξ = ξidi ∈ T
with the vector field ξ = ξi(x)∂i of differential geometry, but with ξi ∈ K now. It follows that
D = DDD is a bimodule over itself, being at the same time a left D-module DD by the composition
P −→ QP and a right D-module DD by the composition P −→ PQ with DrDs = Dr+s, ∀r, s ≥ 0.

If we introduce differential indeterminates y = (y1, ..., ym), we may extend diy
k
µ = ykµ+1i to

Φτ ≡ aτµk ykµ
di−→ diΦ

τ ≡ aτµk ykµ+1i + ∂ia
τµ
k ykµ for τ = 1, ..., p. Therefore, setting Dy1 + ...+Dym =

Dy ≃ Dm and calling I = DΦ ⊂ Dy the differential module of equations, we obtain by residue
the differential module or D-module M = Dy/DΦ, denoting the residue of ykµ by ȳkµ when there
can be a confusion. Introducing the two free differential modules F0 ≃ Dm0 , F1 ≃ Dm1 , we obtain

equivalently the free presentation F1
d1−→ F0 → M → 0 of order q when m0 = m,m1 = p and

d1 = D = Φ ◦ jq. We shall moreover assume that D provides a strict morphism, namely that the
corresponding system Rq is formally integrable. It follows that M can be endowed with a quotient
filtration obtained from that of Dm which is defined by the order of the jet coordinates yq in Dqy.
We have therefore the inductive limit 0 = M−1 ⊆ M0 ⊆ M1 ⊆ ... ⊆ Mq ⊆ ... ⊆ M∞ = M with
diMq ⊆ Mq+1 but it is important to notice that DrDq = Dq+r ⇒ DrMq = Mq+r, ∀q, r ≥ 0 ⇒
M = DMq, ∀q ≥ 0 in this particular case. It also follows from noetherian arguments and involution
that DrIq = Iq+r, ∀r ≥ 0 though we have in general only DrIs ⊆ Ir+s, ∀r ≥ 0, ∀s < q. As K ⊂ D,
we may introduce the forgetful functor for : mod(D)→ mod(K) : DM → KM .

More generally, introducing the successive CC as in the preceding section while changing slightly
the numbering of the respective operators, we may finally obtain the free resolution of M , namely

the exact sequence ...
d3−→ F2

d2−→ F1
d1−→ F0 −→ M −→ 0. In actual practice, one must never

forget that D = Φ ◦ jq acts on the left on column vectors in the operator case and on the right on
row vectors in the module case. Also, with a slight abuse of language, when D = Φ ◦ jq is involu-
tive as in section 2 and thus Rq = ker(Φ) is involutive, one should say that M has an involutive
presentation of order q or that Mq is involutive.

DEFINITION 5.1: Setting P = aµdµ ∈ D
ad
←→ ad(P ) = (−1)|µ|dµa

µ ∈ D, we have ad(ad(P )) =
P and ad(PQ) = ad(Q)ad(P ), ∀P,Q ∈ D. Such a definition can be extended to any matrix of
operators by using the transposed matrix of adjoint operators and we get:

< λ,Dξ >=< ad(D)λ, ξ > + div (...)

from integration by part, where λ is a row vector of test functions and <> the usual contraction.
We quote the useful formulas [ad(ξ), ad(η)] = ad(ξ)ad(η) − ad(η)ad(ξ) = −ad([ξ, η]), ∀ξ, η ∈ T
(care about the minus sign) and rkD(D) = rkD(ad(D)) as in ([32], p 610-612).

REMARK 5.2: As can be seen from the examples of the Introduction, when D is involutive,
then ad(D) may not be involutive. Also, in the differential framework, we may set diff rk(D) =
m− αn

q = βn
q . Comparing to similar concepts used in differential algebra, this number is just the

maximum number of differentially independent equations to be found in the differential module
I of equations. Indeed, pointing out that differential indeterminates in differential algebra are
nothing else than jet coordinates in differential geometry and using standard notations, we have
K{y} = limq→∞K[yq]. In that case, the differential ideal I automatically generates a prime differ-
ential ideal p ⊂ K{y} providing a differential extension L/K with L = Q(K{y}/p) and differential
transcendence degree diff trd(L/K) = αn

q , a result explaining the notations ([31]). Now, from the
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dimension formulas ofRq+r, we obtain at once rkD(M) = αn
q and thus rkD(D) = m−rkD(M) = βn

q

too in any free presentation of M starting with D. However, as we already said, D acts on the left
in differential geometry but on the right in the theory of differential modules. In the case of an
operator of order zero, we just recognize the fact that the rank of a matrix is eqal to the rank of
the transposed matrix.

PROPOSITION 5.3: If f ∈ aut(X) is a local diffeomorphisms on X , we may set x = f−1(y) =
g(y) and we have the identity:

∂

∂yk
(

1

∆(g(y))
∂if

k(g(y)) ≡ 0.

If we have an operator E
D
−→ F , we obtain therefore an operator ∧nT ∗ ⊗ E∗ ad(D)

←− ∧nT ∗ ⊗ F ∗.

Now, with operational notations, let us consider the two differential sequences:

ξ
D
−→ η

D1−→ ζ

ν
ad(D)
←− µ

ad(D1)
←− λ

where D1 generates all the CC of D. Then D1 ◦D ≡ 0⇐⇒ ad(D) ◦ ad(D1) ≡ 0 but ad(D) may not
generate all the CC of ad(D1). Passing to the module framework, we just recognize the definition
of ext1D(M). Now, exactly like we defined the differential module M from D, let us define the dif-
ferential module N from ad(D). Then ext1D(N) = t(M) does not depend on the presentation ofM .

Having in mind that D is a K-algebra, that K is a left D-module with the standard action
(D,K) −→ K : (P, a) −→ P (a) : (di, a) −→ ∂ia and that D is a bimodule over itself, we have only
two possible constructions leading to the following two definitions:

DEFINITION 5.4: We may define the inverse system R = homK(M,K) of M and set Rq =
homK(Mq,K) as the inverse system of order q.

DEFINITION 5.5: We may define the right differential module M∗ = homD(M,D).

The first definition is leading to the inverse systems introduced by Macaulay in ([21]) (See
[37],[43] for more details). As for the second, we have (See [4, p 21] and [32, p 483-495] and [51]
for more details):

THEOREM 5.6: When M and N are left D-modules, then homK(M,N) and M⊗KN are left
D-modules. In particular R = homK(M,K) is also a left D-module for the Spencer operator.
Moreover, the structures of left D-modules existing therefore on M⊗AN and homA(N,L) are now
coherent with the adjoint isomorphism for mod(D):

ϕ : homD(M⊗AN,L)
≃
−→ homD(M,homA(N,L)) , ∀L,M,N ∈ mod(D)

Proof: For any f ∈ homK(M,N), let us define:

(af)(m) = af(m) = f(am) ∀a ∈ K, ∀m ∈M

(ξf)(m) = ξf(m)− f(ξm) ∀ξ = ξidi ∈ T, ∀m ∈M

It is easy to check that ξa = aξ+ξ(a) in the operator sense and that ξη−ηξ = [ξ, η] is the standard
bracket of vector fields. We have in particular with d in place of any di:

((da)f)(m) = (d(af))(m) = d(af(m))− af(dm) = (∂a)f(m) + ad(f(m))− af(dm)
= (a(df))(m) + (∂a)f(m)
= ((ad+ ∂a)f)(m)

For any m⊗ n ∈M⊗KN with arbitrary m ∈M and n ∈ N , we may then define:

a(m⊗ n) = am⊗ n = m⊗ an ∈M⊗AN
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ξ(m⊗ n) = ξm⊗ n+m⊗ ξn ∈M⊗AN

and conclude similarly with:

(da)(m ⊗ n) = d(a(m⊗ n)) = d(am⊗ n)
= d(am)⊗ n+ am⊗ dn
= (∂a)m⊗ n+ a(dm)⊗ n+ am⊗ dn
= (ad+ ∂a)(m⊗ n)

Using K in place of N , we finally get (dif)
k
µ = (dif)(y

k
µ) = ∂if

k
µ−f

k
µ+1i that is we recognize exactly

the Spencer operator and thus:

(di(djf))
k
µ = ∂ijf

k
µ − (∂if

k
µ+1j + ∂jf

k
µ+1i) + fk

µ+1i+1j ⇒ di(djf) = dj(dif) = dijf

In fact, R is the projective limit of πq+r
q : Rq+r → Rq in a coherent way with jet theory ([18],[19]).

The next result is entrelacing the two left structures that we have just provided through the for-
mula (g(m))(n) = f(m⊗n) ∈ N defining the map ϕ whenever f ∈ homD(M⊗AN,L) is given and
ϕ(f) = g. Using any ξ ∈ T , we get successively in L:

(ξ(g(m)))(n) = ξ((g(m))(n)) − (g(m))(ξn)
= ξ(f(m⊗ n))− f(m⊗ ξn)
= f(ξ(m⊗ n))− f(m⊗ ξn)
= f(ξm⊗ n+m⊗ ξn)− f(m⊗ ξn)
= f(ξm⊗ n)
= (g(ξm))(n)

and thus ξ(g(m)) = g(ξm), ∀m ∈M or simply ξ ◦ g = g ◦ ξ.
Q.E.D.

COROLLARY 5.7: If M and N are right D-modules, then homK(M,N) is a left D-module.
Moreover, if M is a left D-module and N is a right D-module, then M⊗KN is a right D-module.

Proof: If M and N are right D-modules, we just need to set (ξf)(m) = f(mξ) − f(m)ξ, ∀ξ ∈
T, ∀m ∈M and conclude as before. Similarly, if M is a left D-module and N is a right D-module,
we just need to set (m⊗ n)ξ = m⊗ nξ − ξm⊗ n.

Q.E.D.

REMARK 5.8: When M = DM ∈ mod(D) and N = ND, , then homK(N,M) cannot be en-
dowed with any left or right differential structure. Similarly, when M = MD and N = ND, then
M⊗KN cannot be endowed with any left or right differential structure (See [4], p 24 for more
details).

As D = DDD is a bimodule, then M∗ = homD(M,D) is a right D-module according to Lemma

2.13 and the module N defined by the ker/coker sequence 0←− N ←− F ∗
1

D∗

←− F ∗
0 ←−M

∗ ←− 0
is thus a right module ND.

COROLLARY 5.9: We have the side changing procedure ND → N = DN = homK(∧nT ∗, ND)
with inverse M = M →MD = ∧nT ∗⊗KM whenever M,N ∈ mod(D).

Proof: According to the above Theorem, we just need to prove that ∧nT ∗ has a natural right
module structure over D. For this, if α = adx1 ∧ ... ∧ dxn ∈ T ∗ is a volume form with coefficient
a ∈ K, we may set α.P = ad(P )(a)dx1 ∧ ... ∧ dxn when P ∈ D. As D is generated by K and T ,
we just need to check that the above formula has an intrinsic meaning for any ξ = ξidi ∈ T . In
that case, we check at once:

α.ξ = −∂i(aξ
i)dx1 ∧ ... ∧ dxn = −L(ξ)α

by introducing the Lie derivative of α with respect to ξ, along the intrinsic formula L(ξ) = i(ξ)d+
di(ξ) where i() is the interior multiplication and d is the exterior derivative of exterior forms.
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According to well known properties of the Lie derivative, we get :

α.(aξ) = (α.ξ).a − α.ξ(a), α.(ξη − ηξ) = −[L(ξ),L(η)]α = −L([ξ, η])α = α.[ξ, η].

Q.E.D.

Collecting all the results so far obtained, if a differential operator D is given in the frame-
work of differential geometry, we may keep the same notation D in the framework of differential
modules which are left modules over the ring D of linear differential operators and apply dual-
ity, provided we use the notation D∗ and deal with right differential modules or use the notation
ad(D) and deal again with left differential modules by using the left↔ right conversion procedure.

DEFINITION 5.10: If a differential operator ξ
D
−→ η is given, a direct problem is to find (gen-

erating) compatibility conditions (CC) as an operator η
D1−→ ζ such that Dξ = η ⇒ D1η = 0.

Conversely, given η
D1−→ ζ, the inverse problem will be to look for ξ

D
−→ η such that D1 generates

the CC of D and we shall say that D1 is parametrized by D if such an operator D is existing.

REMARK 5.11: Of course, solving the direct problem (Janet, Spencer) is necessary for solving
the inverse problem. However, though the direct problem always has a solution, the inverse prob-
lem may not have a solution at all and the case of the Einstein operator is one of the best non-trivial
PD counterexamples (Compare [33] to [54]). It is rather striking to discover that, in the case of
OD operators, it took almost 50 years to understand that the possibility to solve the inverse prob-
lem was equivalent to the controllability of the corresponding control system (Compare [14] to [33]).

As ad(ad(P )) = P, ∀P ∈ D, any operator is the adjoint of a certain operator and we get:

FORMAL TEST 5.12: The double duality test needed in order to check whether t(M) = 0 or
not and to find out a parametrization if t(M) = 0 has 5 steps which are drawn in the following
diagram where ad(D) generates the CC of ad(D1) and D′

1 generates the CC of D:

ζ′ 5
D′

1

ր

4 ξ
D
−→ η

D1−→ ζ 1

3 ν
ad(D)
←− µ

ad(D1)
←− λ 2

THEOREM 5.13: D1 parametrized by D ⇔ D1 = D′
1 ⇔ t(M) = 0⇔ ext1(N) = 0.

REMARK 5.14: When an operator D1 can be parametrized by an operator D, we may ask
whether or not D can be again parametrized by an operator D−1 and so on. A good comparison
can be made with hunting rifles as a few among them, called double rifles, are equipped with a
double trigger mechanism, allowing to shoot again once one has already shot. In a mathematical
manner, the question is to know whether the differential module defined by D1 is torsion-free,
reflexive and so on. The main difficulty is that these intrinsic properties highly depend on the
choice of the parametrizing operator. The simplest example is provided by the Poincaré sequence
for n = 3 made by the successive grad, curl, div operators. Indeed, any student knows that
curl is parametrizing div and that grad is parametrizing curl. However, we may parametrize
∂1η

1 + ∂2η
2 + ∂3η

3 = 0 by choosing ∂3ξ
1 = η1, ∂3ξ

2 = η2,−∂1ξ1 − ∂2ξ2 = η3 with 2 potentials
(ξ1, ξ2) only instead of the usual 3 potentials (ξ1, ξ2, ξ3) and cannot proceed ahead as before. Other
important examples will be provided in the next section dealing with applications, in particular
the one involving Einstein equations when n = 4.

It remains to study a delicate question on which all the examples of the Introduction were
focussing. Indeed, if a parametrization of a given system of OD or PD equations is possible, that
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is, equivalently, if the corresponding differential module is torsion-free, it appears that different
parametrizations may exist with quite different numbers of potentials needed. Accordingly, it
should be useful to know about the possibility to have upper and lower bounds for these numbers
when n > 1, particularly in elasticity theory, because when n = 1, an OD moduleM with t(M) = 0
being automatically isomorphic to a free module E and the number of potentials needed is equal
to rkD(M) = rkD(E). We shall use the language of differential modules in order to revisit and
improve a few results already presented in ([45], Theorem 7+ Appendix).

THEOREM 5.15: Let F1
D1−→ F0 −→ M → 0 be a finite free presentation of the differential

module M = coker(D1) and assume we already know that t(M) = 0 by using the formal test. Ac-

cordingly, we have obtained the exact sequence F1
D1−→ F0

D
−→ E of free differential modules where

D is the parametrizing operator. Then, there exists other parametrizations F1
D1−→ F0

D′

−→ E′

called minimal parametrizations and such that coker(D′) is a torsion module.

Proof: We first explain the reason for using the word ” minimal ”. Indeed, we have rkD(M) =
rkD(F0) − rkD(im(D1)) = rkD(D) ≤ rkD(E) but also rkD(M) = rkD(D′) = rkD(E′) and thus
rkD(E′) = rkD(M) ≤ rkD(E) as a way to get a lower bound for the number of potentials but not
to get a differential geometric framework.
While applying the formal test, in the operator language ad(D) is describing the (generating) CC
of ad(D1) and we shall denote by ad(D−1) the (generating) CC of ad(D) as we did in Example 1.3.
In the module framework, going on with left differential modules, when F is a free left module,
we shall denote by F̃ the corresponding converted left differential module of the right differential
module F ∗. The reader not familiar with duality may look at the situations met in electromag-
netism and elasticity in ([32], p 492-495). If L = coker(ad(D−1)) ≃ im(ad(D)) ⊂ F̃0 and Ẽ′ is
the largest free differential submodule of L, then T = L/Ẽ′ is a torsion module and we have the
following commutative and exact diagram:

0 0
↓ ↓

0 −→ Ẽ′ = Ẽ′ → 0
↓ ↓ ւ ↓

Ẽ−1
ad(D−1)
−→ Ẽ → L → 0

‖ ↓ ↓
Ẽ−1 −→ Ẽ” → T → 0
↓ ↓ ↓
0 0 0

where the central vertical monomorphism Ẽ′ → Ẽ is obtained by pulling a basis of Ẽ′ back to Ẽ
as we did in the diagram of Proposition 2.31. As an illustration provided at the end of Example
4.15 where each Φ1,Φ2,Φ3 is separately differentially dependent on Φ4 in the first CC system, we
have the commutative and exact diagram:

0 0
↓ ↓

0 −→ D = D → 0
↓ ↓ ւ ↓
D4 −→ D4 → L → 0
‖ ↓ ↓
D4 −→ D3 → T → 0
↓ ↓ ↓
0 0 0

Coming back to the operators ad(D) and ad(D1), we get the following commutative and exact
diagram allowing to define ad(D′) by composition:
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F̃1
ad(D1)
←− F̃0

ad(D)
←− Ẽ

տ ւ
‖ L ↑
ւ տ

F̃0
ad(D′)
←− Ẽ′ ← 0

↑ տ
0 0

We have:

ad(D1) ◦ ad(D
′) ≡ 0⇒ D′ ◦ D1 ≡ 0⇒ ker(D) = im(D1) ⊆ ker(D

′) ⊂ F0

and obtain by duality the following commutative and exact diagram:

0
ր

0 M
↓ ր ↓ ց

0→ ker(D) → F0
D
−→ E
↓ 0
↓ ր

↓ ‖ M ′ ↓
ր ↓ ց

0→ ker(D′) → F0
D′

−→ E′

↓
0

However, though the upper sequence F1
D1−→ F0 −→M → 0 is exact by definition, the lower in-

duced sequence F1
D1−→ F0 −→M ′ → 0 may not be exact. With rkD = rk for simplicity, t(M) = 0

and the induced epimorphism M →M ′ → 0, we obtain:

rk(D) = rk(ad(D)) = rk(F̃0)− rk(ad(D1)) = rk(F0)− rk(D1) = rk(M)

rk(D′) = rk(ad(D′)) = rk(Ẽ′) = rk(L) = rk(F̃0)− rk(ad(D1)) = rk(F0)− rk(D1) = rk(M ′)

⇒ rk(M) = rk(M ′)⇒ rk(ker(M →M ′)) = 0⇒ ker(M →M ′) ⊆ t(M) ⊆ (M)

⇒ ker(M →M ′) = 0⇒M ≃M ′

Accordingly, D′ is a minimal parametrization of D1 contrary to D in general.
Q.E.D.

6) APPLICATIONS

EXAMPLE 6.1: OD Control theory Revisited
The following result is well known and can be found in any textbook of algebra ([17],[50],[32]):

PROPOSITION 6.2: If A is a principal ideal domain, that is if any ideal in A is generated by
a single element, then any torsion-free module over A is free.

As this is just the case of the ring D = K[dx] when n = 1, we obtain the following corollary of
the preceding parametrizing Theorem, allowing to extend the Kalman test of controllability to sys-
tems with variable coefficients as we did in the Introduction (See [14],[33],[45],[46] for more details).

COROLLARY 6.3: If n = 1 and D1 is surjective, then t(M) = 0 if and only if ad(D1) is injective.
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Proof: If t(M) = 0, then M ≃ E is a free module according to the last Proposition. Also, as D1 is
surjective, we have the following short exact sequence:

0→ F1
D1−→ F0 −→ E → 0

Using a basis (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1), we may construct by linearity a morphism
E → F0 in such a way that this short exact sequence splits according to Proposition 2.6. Applying
duality and Corollary 2.15, we get the short exact sequence:

0← F ∗
1

D∗

1←− F ∗
0 ←− E

∗ ← 0

It follows that D∗
1 is surjective and the adjoint operator ad(D1) is injective because N = 0.

Conversely, if D1 is injective, then N = 0⇒ ext1(N) = 0⇒ t(M) = 0 according to Theorem 5.13.
Meanwhile, we have proved that, if n = 1 and t(M) = 0, it is always possible to find an injective
parametrization M ≃ E.

Q.E.D.

EXAMPLE 6.4: Classical Elasticity Revisited
The Killing operator D : T −→ S2T

∗ is a defined by ξ ∈ T → Dξ = L(ξ)ω = Ω = 2ǫ ∈ S2T
∗

wih ωrj∂iξ
r + ωir∂jξ

r + ξr∂rωij = Ωij = 2ǫij where ξ is the displacement vector, L(ξ)ω is the
Lie derivative of ω with respect to ξ and ǫ is the infinitesimal deformation tensor of textbooks. It
is a Lie operator because its solutions Θ ⊂ T satisfy [Θ,Θ] ⊂ Θ. The corresponding first order
Killing system R1 ⊂ J1(T ) is not involutive because its symbol g1 ⊂ T ∗⊗T is finite type with first
prolongation g2 = 0 and thus rk(D) = n. Accordingly, as ω is a flat constant metric, the second
order CC are described by an operator D1 coming from the linearization of the Riemann tensor
obtained in a standard way by setting ω → ω + tΩ with a small parameter t ≪ 1, dividing by t
and taking the limit when t→ 0.

• Airy parametrization of the stress equations when n = 2 gives rk(E′) = rk(E) = 1 and we have
thus 1 potential only. By duality, working out the corresponding adjoint operators, we obtain the
two exact sequences:

2
Killing
−→ 3

Riemann
−→ 1 → 0

0← 2
Cauchy
←− 3

Airy
←− 1

Accordingly, the canonical and the minimal parametrizations coincide when n = 2. We discover
that the Airy parametrization is nothing else than the formal adjoint of the Riemann CC for the
deformation tensor:

∂iξj + ∂jξi = Ωij ⇒ ∂22Ω11 + ∂11Ω22 − 2∂12Ω12 = 0

where the indices of the displacement vector (ξ1, ξ2) are lowered by means of the euclidean metric
of R2. We do not believe this result is known in such a general framework.

• Beltrami parametrization of the stress equations when n = 3 gives rk(E) = 6 and we have thus
6 potentials. However, Maxwell/Morera parametrizations of the stress equations when n = 3 both
give rk(E′) = 3 and we have thus 3 potentials only.

3
Killing
−→ 6

Riemann
−→ 6

Bianchi
−→ 3→ 0

0← 3
Cauchy
←− 6

Beltrami
←− 6 ←− 3

Maxwell
←− 3

Accordingly, the canonical parametrization has 6 potentials while any minimal parametrization
has 3 potentials. We finally notice that the Cauchy operator is parametrized by the Beltrami
operator which is again parametrized by the adjoint of the Bianchi operator obtained by lineariz-
ing the Bianchi identities existing for the Riemann tensor, a property not held by any minimal
parametrization.
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• For n = 4, we shall prove below that the Einstein parametrization of the stress equations is
neither canonical nor minimal in the following diagram:

4
Killing
−→ 10

Riemann
−→ 20

Bianchi
−→ 20 −→ 6 → 0

0← 4
Cauchy
←− 10 ←− 20 ←− 20

Einstein
←− 10

obtained by using the fact that the Einstein operator, linearization of the Einstein tensor at the
Minkowski metric, is self-adjoint, the 6 terms being exchanged between themselves. It follows
that the Einstein equations in vacuum cannot be parametrized as we have the following diagram of
operators (See [32] and [33] for more details or [54] for a computer algebra exhibition of this result):

Riemann 20
ր

4
Killing
−→ 10

Einstein
−→ 10

4
Cauchy
←− 10

Einstein
←− 10

• It remains therefore to compute all these numbers for an arbitrary dimension n ≥ 2. For this, we
notice that, as we have already described the morphism Φ with kernel Rq and ρ1(Φ) with kernel
Rq+1, then ρr(Φ) with kernel Rq+r may be obtained similarly ” step by step ”. Accordingly, the
link between the FI of Rq and the CC of D is expressed by the following diagram that may be
used inductively:

0 0 0 CC
↓ ↓ ↓

0→ gq+r → Sq+rT
∗ ⊗ E

σr(Φ)
−→ SrT

∗ ⊗ F0 → coker(σr(Φ)) → 0
↓ ↓ ↓ ↓

0→ Rq+r → Jq+r(E)
ρr(Φ)
−→ Jr(F0) → coker(ρr(Φ)) → 0

↓ ↓ πq+r
q+r−1 ↓ πr

r−1 ↓

0→ Rq+r−1 → Jq+r−1(E)
ρr−1(Φ)
−→ Jr−1(F0) → coker(ρr−1(Φ) → 0

↓ ↓ ↓
FI 0 0 0

The ” snake theorem ” ([32],[33],[50]) then provides the long exact connecting sequence:

0→ gq+r → Rq+r → Rq+r−1 → coker(σr(Φ))→ coker(ρr(Φ))→ coker(ρr−1(Φ))→ 0

If we use such a diagram for the first order Killing system with no zero or first order CC, we
have q = 1, E = T, F0 = J1(T )/R1 = S2T

∗ and R1 is formally integrable (R2 involutive) if and
only if ω has constant Riemannian curvature:

ρkl,ij = c(δki ωlj − δ
k
j ωli)

with c = 0 when ω is the flat Minkowski metric (12],[29],[31]). In this case, we may apply the
Spencer δ-map to the top row obtained with r = 2 in order to get the commutative diagram:

0 0 0
↓ ↓ ↓

0→ g3 → S3T
∗ ⊗ T → S2T

∗ ⊗ F0 → F1 → 0
↓ δ ↓ δ ↓ δ

0→ T ∗ ⊗ g2 → T ∗ ⊗ S2T
∗ ⊗ T → T ∗ ⊗ T ∗ ⊗ F0 → 0

↓ δ ↓ δ ↓ δ
0→ ∧2T ∗ ⊗ g1 → ∧2T ∗ ⊗ T ∗ ⊗ T → ∧2T ∗ ⊗ F0 → 0

↓ δ ↓ δ ↓
0→ ∧3T ∗ ⊗ T = ∧3T ∗ ⊗ T → 0

↓ ↓
0 0
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with exact rows and exact columns but the first that may not be exact at ∧2T ∗⊗ g1. We shall de-
note by B2(g1) the coboundary as the image of the central δ, by Z2(g1) the cocycle as the kernel of
the lower δ and by H2(g1) = Z2(g1)/B

2(g1) the Spencer δ-cohomology at ∧2T ∗⊗g1 as the quotient.

In the classical Killing system, g1 ⊂ T ∗ ⊗ T is defined by ωrj(x)ξ
r
i + ωir(x)ξ

r
j = 0 ⇒

ξrr = 0, g2 = 0, g3 = 0. Applying the previous diagram, we discover that the Riemann tensor
(ρkl,ij) ⊂ ∧

2T ∗ ⊗ T ∗ ⊗ T is a section of the bundle Riemann = F1 = H2(g1) = Z2(g1) with

dim(Riemann) = (n2(n+1)2/4)− (n2(n+1)(n+2)/6) = (n2(n− 1)2/4)− (n2(n− 1)(n− 2)/6) =
n2(n2−1)/12 by using the top row or the left column. We discover at once the two properties of the
(linearized) Riemann tensor through the chase involved, namely (Rk

l,ij) ∈ ∧
2T ∗⊗T ∗⊗T is killed by

both δ and σ0(Φ). However, we have no indices for F1 and cannot therefore exhibit the Ricci tensor
or the Einstein tensor of general relativity by means of the usual contraction or trace. We recall
briefly their standard definitions by stating Rij = Rji = Rr

i,rj ⇒ R = ωijRij ⇒ Eij = Rij−
1
2ωijR.

Similarly, going one step further, we get the (linearized) Bianchi identities with Bianchi = F2 =
H3(g1) = Z3(g1) ⇒ dim(Bianchi) = dim(∧4T ∗ ⊗ T )− dim(∧3T ∗ ⊗ g1) = n2(n2 − 1)(n − 2)/24.
This approach is relating for the first time the concept of Riemann tensor candidate, introduced
by Lanczos and others, to the Spencer δ-cohomology of the Killing symbols.

Counting the differential ranks is now easy because R1 is formally integrable with finite type
symbol and thus R2 is involutive with symbol g2 = 0. We get:

rk(Killing) = rk(Cauchy) = n⇒ rk(Riemann) = dim(S2T
∗)−n = (n(n+1)/2)−n = n(n−1)/2

rk(Bianchi) = (n2(n2 − 1)/2)− (n(n− 1)/2) = n(n− 1)(n− 2)(n+ 3)/12

that is rk(Bianchi) = 3 when n = 3 and rk(Bianchi) = 14 = 20 − 6 when n = 4. Collecting all
the results, we obtain that the canonical parametrization needs n2(n2− 1)/12 potentials while the
minimal parametrization only needs n(n − 1)/2 potentials. The Einstein parametrization is thus
” in between ” because n(n− 1)/2 < n(n+ 1)/2 < n2(n2 − 1)/12, ∀n ≥ 4.

The conformal Killing system R̂1 ⊂ J1(T ) is defined by eliminating the function A(x) in the
system L(ξ)ω = A(x)ω. It is also a Lie operator D̂ with solutions Θ̂ ⊂ T satisfying [Θ̂, Θ̂] ⊂ Θ̂.
Its symbol ĝ1 is defined by the linear equations ωrjξ

r
i + ωirξ

r
j −

2
n
ωijξ

r
r = 0 which do not depend

on any conformal factor and is finite type when n ≥ 3 because g3 = 0 but ĝ2 is now 2-acyclic only
when n ≥ 4 and 3-acyclic only when n ≥ 5 ([29],[30],[44]). It is known that R̂2 and thus R̂1 too
(by a chase) are formally integrable if and only if ω has zero Weyl tensor:

τkl,ij ≡ ρ
k
l,ij −

1

(n− 2)
(δki ρlj − δ

k
j ρli + ωljω

ksρsi − ωliω
ksρsj) +

1

(n− 1)(n− 2)
(δki ωlj − δ

k
j ωli)ρ = 0

if we use the formula idM − f ◦ u = v ◦ g of Proposition 2.6 in the split short exact sequence
([30],[38],[41]):

0 −→ Ricci −→ Riemann −→Weyl −→ 0

according to the Vessiot structure equations, in particular if ω has constant Riemannian curvature
and thus ρij = ρri,rj = c(n − 1)ωij ⇒ ρ = ωijρij = cn(n − 1) ([29],[31],[41],[42]). Using the same

diagrams as before, we get Weyl = F̂1 = H2(ĝ1) 6= Z2(ĝ1) for defining any Weyl tensor candidate.

As a byproduct, the linearized Weyl operator is of order 2 with a symbol ĥ2 ⊂ S2T
∗⊗ F̂0 which is

not 2-acyclic by applying the δ-map to the short exact sequence:

0→ ĝ3+r −→ S3+rT
∗ ⊗ T

σ2+r(Φ)
−→ ĥ2+r → 0

and chasing through the commutative diagram thus obtained with r = 0, 1, 2. As ĥ3 becomes
2-acyclic after one prolongation of ĥ2 only, it follows that the generating CC for the Weyl operator
are of order 2, a result showing that the so-called Bianchi identities for the Weyl tensor are not
CC in the strict sense of the definition as they do not involve only the Weyl tensor. Of course,
these results could not have been discovered by Lanczos and followers because the formal theory
of Lie pseudogroups and the Vessiot structure equations are still not acknowledged today.
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For this reason, we provide a few hints in order to explain why the Vessiot structure equations
sometimes contain a few constants, sometimes none at all as we just saw (See [30],[31] and [39] for
more details). Isometries preserve the metric ω = (ωij = ωji) ∈ S2T

∗ while conformal isometries

preserve the symmetric tensor density ω̂ = (ω̂ij = ωij/(| det(ω) |
1
n )). The respective variations are

related by the similitude formula Ω̂ij ∼ Ωij −
1
n
ωijω

rsΩrs which only depends on ω and not on a

conformal factor. It follows that F0 = S2T
∗ and that F̂0 may be identified with the sub-bundle

{Ω̂ ∈ S2T
∗ | ωijΩ̂ij = 0} with the above well defined epimorphism F0 → F̂0 induced by the

inclusion R1 ⊂ R̂1. We set ([30],[31],[39]):

DEFINITION 6.5: We say that a vector bundle F is associated with a Lie operator D if, for
any solution ξ ∈ Θ ⊂ T of D, there exists a first order operator L(ξ) : F → F called Lie derivative
with respect to ξ and such that:
1) L(ξ + η) = L(ξ) + L(η) ∀ξ, η ∈ Θ
2) [L(ξ),L(η)] = L([ξ, η]) ∀ξ, η ∈ Θ
3) L(ξ)(fη) = fL(ξ)η + (ξ.f)η ∀ξ ∈ Θ, ∀f ∈ C∞(X), ∀η ∈ F
4) If E and F are two such associated vector bundles, then:

L(ξ)(η ⊗ ζ) = L(ξ)η ⊗ ζ + η ⊗ L(ξ)ζ, ∀ξ ∈ Θ, ∀η ∈ E, ∀ζ ∈ F

In such a case, we may introduce Υ = Υ(F ) = {η ∈ F | L(ξ)η = 0, ∀ξ ∈ Θ ⊂ T }.

PROPOSITION 6.6: Using capital letters for linearized objects, we have:
1) Υ(T ) = C(Θ) = {η ∈ T | [ξ, η] = 0, ∀ξ ∈ Θ} = centralizer of Θ in T .
2) Υ0 = Υ(F0) = Υ(S2T

∗) = {Ω = Aω ∈ S2T
∗ | A = cst}.

3) Υ1 = Υ(F1) = {Rk
l,ij = C(δki ωlj − δkj ωli) ∈ F1 | C = cst}.

4) Υ̂1 = Υ(F̂1) = 0 ⇒ Υ(Ricci) ≃ Υ(Riemann).
5) The Lie derivative commutes with the Janet operators D,D1, ...,Dn.
We have in particular D1 : Υ0 → Υ1 : A→ C = −cA (care to sign).

Proof: Two (nondegenerate) metrics ω, ω̄ ∈ S2T
∗ give the same Killing system R1 if and only

if ω̄ = aω with the multiplicative group parameter a = cst. Therefore, if R1 is FI, then the two
metrics have respective constant curvatures c and c̄ = c/a. Setting a = 1+tA+ ...⇒ c̄ = c+tC+ ...
while linearizing these finite transformations with t≪ 1 gives C = −cA when t→ 0.

Q.E.D.

However, we have yet not proved the most difficult result that could not be obtained without
homological algebra and the next example will explain this additional difficulty.

EXAMPLE 6.7: With ∂22ξ = η2, ∂12ξ = η1 for D, we get ∂1η
2 − ∂2η1 = ζ for D1. Then ad(D1)

is defined by µ2 = −∂1λ, µ1 = ∂2λ while ad(D) is defined by ν = ∂12µ
1 + ∂22µ

2 but the CC of
ad(D1) are generated by ν′ = ∂1µ

1 + ∂2µ
2. In the operator framework, we have the differential

sequences:

ξ
D
−→ η

D1−→ ζ

ν
ad(D)
←− µ

ad(D1)
←− λ

where the upper sequence is formally exact at η but the lower sequence is not formally exact at µ.
Passing to the module framework, we obtain the sequences:

D
D1−→ D2 D

−→ D −→M −→ 0

D
ad(D1)
←− D2 ad(D)

←− D

where the lower sequence is not exact at D2.

Therefore, we have to prove that the extension modules vanish, that is ad(D) generates the CC
of ad(D1) and, conversely, that D1 generates the CC of D. We also remind the reader that it has
not been easy to exhibit the CC of the Maxwell or Morera parametrizations when n = 3 and that
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a direct checking for n = 4 should be strictly impossible. It has been proved by L. P. Eisenhart in
1926 ([12]) that the solution space Θ of the Killing system has n(n+1)/2 infinitesimal generators
{θτ} linearly independent over the constants if and only if ω had constant Riemannian curvature,
namely zero in our case. As we have a Lie group of transformations preserving the metric, the
three theorems of Sophus Lie assert than [θρ, θσ] = cτρσθτ where the structure constants c define a
Lie algebra G. We have therefore ξ ∈ Θ ⇔ ξ = λτθτ with λτ = cst. Hence, we may replace the
Killing system by the system ∂iλ

τ = 0, getting therefore the differential sequence:

0→ Θ→ ∧0T ∗ ⊗ G
d
−→ ∧1T ∗ ⊗ G

d
−→ ...

d
−→ ∧nT ∗ ⊗ G → 0

which is the tensor product of the Poincaré sequence by G. Finally, it follows from Proposition
3.5 that the extension modules do not depend on the resolution used and thus vanish because
the Poincaré sequence is self adjoint (up to sign), that is ad(d) generates the CC of ad(d) at any
position, exactly like d generates the CC of d at any position. This (difficult) result explains why
the differential modules we have met were torsion-free, reflexive, ... and so on. We invite the reader
to compare with the situation of the Maxwell equations in electromagnetisme. However, we have
proved in ([32],[36],[41],[42],[44]) why neither the Janet sequence nor the Poincaré sequence can be
used in physics and must be replaced by another resolution of Θ called Spencer sequence ([16]).

EXAMPLE 6.8: PD Control Theory Revisited
Comparing with the Theorem allowing to construct a minimal parametrization, we started with
D1η = ζ and computed ad(D1)λ = µ with generating CC ad(D)µ = ν, obtaining therefore finally
the generating CC ad(D−1)ν = 0, that is ∂2ν

2 + ∂1ν
1 + x2ν1 = 0. In that case, the key diagram

providing the minimal parametrization is:

0 0
↓ ↓

0 −→ D = D → 0
↓ ↓ ւ ↓

D
ad(D−1)
−→ D2 → L → 0

‖ ↓ ↓
D −→ D → T → 0
↓ ↓ ↓
0 0 0

This result explains why we had the potentials (ξ1, ξ2) in the canonical parametrization and
(ξ1 = ξ, 0) or (0, ξ2 = ξ′) in the two minimal parametrizations exhibited. We do not believe it is
possible to imagine the underlying procedure, even on such a simple example.

EXAMPLE 6.9: OD/PD Optimal Control Revisited
Using the notations of the Formal Test 5.12, let us assume that the two differential sequences:

ξ
D
−→ η

D1−→ ζ

ν
ad(D)
←− µ

ad(D1)
←− λ

are formally exact, that is D1 generates the CC of D and ad(D) generates the CC of ad(D1), namely
ξ is a potential for D1 and λ is a potential for ad(D). We may consider a variational problem for
a cost function ϕ(η) under the linear OD or PD constraint described by D1η = 0.
• Introducing convenient Lagrange multipliers λ while setting dx = dx1 ∧ ... ∧ dxn for simplicity,
we must vary the integral:

Φ =

∫

[ϕ(η) + λD1η]dx⇒ δΦ =

∫

[(∂ϕ(η)/∂η)δη + λD1δη]dx

Integrating by parts, we obtain the EL equations:

∂ϕ(η)/∂η + ad(D1)λ = 0
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to which we have to add the constraint D1η = 0 obtained by varying λ. If ad(D1) is an injective
operator, in particular if D1 is formally surjective (no CC) and parametrized by D, then one can
obtain λ explicitly and eliminate it by substitution. Otherwise, using the CC ad(D) of ad(D1), we
have to study the formal integrability of the combined system:

ad(D)∂ϕ(η)/∂η = 0, D1η = 0

which may be a difficult task as we already saw through the examples of the Introduction.
• We may also transform the given variational problem with constraint into a variational problem
without any constraint if and only if the differential constraint can be parametrized. Using the
parametrization of D1 by D, we may vary the integral:

Φ =

∫

ϕ(Dξ)dx⇒ δΦ =

∫

(∂ϕ(η)/∂η)Dδξdx

whenever η = Dξ and integrate by parts for arbitrary δξ in order to obtain the EL equations:

ad(D)∂ϕ(η)/∂η = 0, η = Dξ

in a coherent way with the previous approach and Poincaré duality geometry ↔ physics.
As a byproduct, if the field equations D1η = 0 can be parametrized by a potential ξ through the
formula Dξ = η, then the induction equations ad(D)µ = ν can be obtained by duality in a coherent
way with the double duality test, on the condition to know what sequence must be used.
However, we have already proved in ([36],[38],[41],[42],[44]) that the Cauchy stress equations must
be replaced by the Cosserat couple-stress equations and that the Janet sequence (only used in this
paper) must be thus replaced by the Spencer sequence. Accordingly, it becomes clear that the work
of Lanczos and followers has been based on a double confusion between fields and inductions on
one side, but also between the Janet sequence and the Spencer sequence on the other side.

FUNDAMENTAL RESULT 6.10: The Janet and Spencer sequences for any Lie operator of
finite type are formally exact by construction, both with their corresponding adjoint sequences.
Lanczos has been trying to parametrize ad(D1) by ad(D2) when D1 parametrizes D2. On the
contrary, we have proved that one must parametrize ad(D) by ad(D1) when D parametrizes D1 as
in the famous infinitesimal equivalence problem ([29], p 332-336), with a shift by one step.

CONCLUSION

The effective usefulness of the double duality test seems absolutely magical in actual practice
but the reader may not forget about the amount of mathematics needed from different domains.
Unhappily, in our opinion based on a long experience in dealing with applications, the most difficult
part is concerned with formal integrability and involution needed in order to compute the various
differential ranks involved. However, the above methods, which are superseding the pioneering
approaches of Janet and Cartan, are still not known in mathematical physics and mechanics or
even in control theory despite many tentatives done twenty years ago. We hope that this paper will
help improving this situation in a near future, in particular when dealing with partial differential
optimal control, that is with variational calculus with OD or PD constraints along the way that has
been initiated by Lanczos for eliminating the corresponding Lagrange multipliers or using them as
potentials.
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