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Abstract

We present an informal review of results on asymptotics of orthogonal polynomials, stressing their spectral
aspects and similarity in two cases considered. They are polynomials orthonormal on a finite union of disjoint
intervals with respect to the Szegö weight and polynomials orthonormal on R with respect to varying weights
and having the same union of intervals as the set of oscillations of asymptotics. In both cases we construct
double infinite Jacobi matrices with generically quasi-periodic coefficients and show that each of them is
an isospectral deformation of another. Related results on asymptotic eigenvalue distribution of a class of
random matrices of large size are also shortly discussed.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of the paper is to discuss a link between asymptotics of a class of orthogonal polyno-
mials, in particular, polynomials with respect to varying weights (see e.g. [39]), and the Jacobi ma-
trices with quasi-periodic coefficients, seen mostly as a particular case of ergodic finite-difference
operators. The theory of this class of operators owes a lot to B. Simon, starting from an early book
[13] till just appeared impressive [36]. The link became clear while the author was reflecting on
applications of the asymptotic formulas, found in the remarkable paper by Deift et al. [15], to
certain problems on the eigenvalue distribution of a class of random matrices, known as unitary
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invariant matrix models. This is why we would like to begin from a discussion of random matrices,
despite that the link can be described without a recourse to random matrices.

Consider n × n Hermitian random matrices

Mn = {Mjk ∈ C, Mkj = Mjk}nj,k=1, (1)

whose probability law is

P(dMn) = Z−1
n exp{−n Tr V (Mn)} dMn. (2)

Here Zn is the normalization constant, V : R → R+ is a continuous, bounded below and growing
at infinity function (think about a polynomial of an even degree, positive at infinity, see also (32)),
and

dMn =
n∏

j=1

dMjj

n∏
1� j<k �n

d�Mjk d�Mjk. (3)

This class of random matrices arises in a number of fields of mathematics and physics (see
e.g. reviews [16,18,20,25–27] and references therein). A considerable amount of corresponding
problems can be described in terms of the Normalized Counting Measure of eigenvalues (NCM),
defined as the relative to n number of eigenvalues of Mn, falling into a given set � ⊂ R:

Nn(�) = �{�(n)
l ∈ �, l = 1, . . . , n}/n, (4)

where

{�(n)
l }nl=1 (5)

are eigenvalues of Mn.
We note that similar measures arise in spectral theory of ergodic operators, and B. Simon did

a lot of excellent work on the measures, whose limit as n → ∞ is known there as the Integrated
Density of States.

It will be convenient to consider a bit more general object, known as a linear eigenvalue statistics
and defined via a test function � : R → R and eigenvalues (5):

Nn[�] = n−1
n∑

l=1

�(�(n)
l ). (6)

We obtain (4) by setting � = ��, where �� is the indicator of �.
Here are three basic quantities of the Random Matrix Theory, related to eigenvalue statistics

and widely studied, especially as n → ∞.

(i) Expectation of Nn with respect to (2)–(3):

Nn[�] = E{Nn[�]}. (7)

(ii) Covariance of Nn for two test functions �1.2:

Cov{Nn[�1], Nn[�2]}
= E{Nn[�1]Nn[�2]} − E{Nn[�1]}E{Nn[�2]}. (8)
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(iii) Gap probability

En(�) = P{Nn(�) = 0}. (9)

It is a remarkable observation by Gaudin, Mehta, and Dyson of the early 60s (see e.g. [25]) that
the above quantities can be expressed via the orthonormal polynomials {p(n)

l }l �0 with respect to
the weight

wn(�) = e−nV (�), (10)∫
wn(�)p

(n)
l p(n)

m d� = �lm, l, m = 0, 1, . . . . (11)

Here and below integrals without limits denote integrals over R. We will call V potential. Denote

�(n)
l (�) = w

1/2
n (�)p

(n)
l (�) (12)

and

Kn(�, �) =
n−1∑
l=0

�(n)
l (�)�(n)

l (�). (13)

Kn is called the reproducing kernel of the orthonormal system {�(n)
l (�)}l �0, and (Kn(�, �))−1 is

known in the approximation theory as the Christoffel function [3,34,39].
To distinguish these polynomials from the traditional ones for which the weight does not

contain the large parameter n, the polynomials (10)–(12) are called the orthogonal polynomials
with respect to varying weights (see e.g. [39]).

We have for (7)–(9):

Nn[�] =
∫

�(�)�n(�) d�, �n(�) = n−1Kn(�, �), (14)

see [25],

Cov{Nn[�1], Nn[�2]} = 1

2n2

∫ ∫
��1

��

��2

��
K2

n(�1, �2) d�1 d�2, (15)

where

��

��
= �(�1) − �(�2)

�1 − �2
, (16)

see [30], and

En(�) = det(1 − Kn(�)), (17)

where Kn(�) is the integral operator

(Kn(�)f )(�) =
∫
�

Kn(�, �)f (�) d�, � ∈ �, (18)

see [25].
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We will need two more basic facts on orthonormal polynomials. The first is the Jacobi matrix
J (n), associated with the polynomials via the r.h.s. of the three term recurrence relation:

�p
(n)
l (�) = r

(n)
l p

(n)
l+1(�) + s

(n)
l p

(n)
l (�) + r

(n)
l−1p

(n)
l−1(�), r−1 = 0, (19)

i.e.,

J (n) = {J (n)
lm }∞l,m=0, J

(n)
lm = r

(n)
l �l+1,m + s

(n)
l �l,m + r

(n)
l−1�l−1,m. (20)

The second is the Christoffel–Darboux formula

Kn(�, �) = r
(n)
n−1

�(n)
n (�)�(n)

n−1(�) − �(n)
n−1(�)�(n)

n (�)

� − �
. (21)

Formulas (14)–(18) and (21) show that the asymptotic form of (7)–(9) as n → ∞ is determined
by that of �(n)

n−1 and �(n)
n . These were found by Deift et al. [15] in the case, where V is real analytic

(see also [8,9]). In the same paper the limit of (17) was found in the so-called local asymptotic
regime (see e.g. [27] for its definition, and [30] for another derivation of this result).

The author of this paper has applied the results of [15] to find an asymptotic form of the
covariance (8), and to prove an analog of the central limit theorem for linear eigenvalue statistics
(6). It turned out that this requires a bit more information on the asymptotic formulas of [15],
and leads to certain objects, related to spectral theory of quasi-periodic Jacobi matrices. This is
discussed in the paper. Asymptotics of covariance and an analog of the central limit theorem for
linear statistics of eigenvalues of random matrices (2)–(3) will be published elsewhere [28].

The paper is organized as follows: in Section 2 asymptotic formulas for the “ordinary” poly-
nomials orthogonal with respect to weights whose support is a union of q �1 disjoint intervals
are shortly discussed, following papers [2,7,33,40]. We then present asymptotics found in [15]
for polynomials, orthogonal with respect to varying weights for the case, where their oscillatory
part is the same union of q intervals. In Section 3 we introduce quasi-periodic Jacobi matrices,
associated with the both asymptotics and discuss links between the matrices. We argue that they
are so-called “finite-band” Jacobi matrices, widely known in the theory of integrable systems,
that they are related by an isospectral deformation, and consider a particular case of polynomial
potentials in (10), where corresponding Jacobi matrices are periodic. In Section 4, we present a
collection of facts on asymptotic eigenvalue distributions of random matrices, that can be written
in the terms of the above Jacobi matrices. In Appendix we give a direct proof of the isospectrality
of the Jacobi matrices related to asymptotics of both classes of orthogonal polynomials.

2. Asymptotics of orthogonal polynomials

2.1. Ordinary orthogonal polynomials

Consider first the case, where the weight w does not depend on n. In this case all the quantities,
related to orthonormal polynomials, do not depend on the super-index (n). We will denote the
polynomials and related quantities by the same symbols as in (11)–(13) and (19)–(21) but without
the super-index (n). Assume that the support � of the weight is a finite union of disjoint finite
intervals:

� =
q⋃

l=1

[al, bl], −∞ < a1 < b1 < · · · < aq < bq < ∞. (22)
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Denote M1(�) the set of non-negative unit measures on � and consider the quadratic functional

E�[m] = −
∫
�×�

log |� − �|m(d�)m(d�), m ∈ M1(�). (23)

The functional possesses a unique minimizer 	 (the equilibrium measure for �):

min
m∈M1(�)

E�[m] = E�[	].

This is a standard variational problem of potential theory, that admits a simple electrostatic inter-
pretation in which m is a distribution of positive charges on a conductor � and 	 is the equilibrium
distribution of charges.

It is known (see e.g. [34]) that the problem is equivalent to the relations:

− 2
∫
�

log |� − �|	(d�) = −l�, � ∈ �, (24)

− 2
∫
�

log |� − �|	(d�)� − l�, � ∈ R \ �, (25)

that are the Euler–Lagrange equations for (23). The quantity −l�/2 is known as the Robin constant,
and el�/2 is the logarithmic capacity of �.

Set

	(�) = 	((�, ∞)) (26)

and


 = {
l}q−1
l=1 , 
l = 	(al+1). (27)

With this notation the asymptotic formulas of [7, Theorem 1] (see also [2,5,33,40]) for analogs
of orthonormalized functions (12), corresponding to a n-independent weights w, can be written
as follows.

Assume that the weight satisfies the Szegö condition

log w ∈ L1(�, 	). (28)

Then there exist the functions D� : � × Tq−1 → R+, and G� : � × Tq−1 → R such that if �
belongs to the interior of �, we have

�n(�) = (2D�(�, n
))1/2 × cos
(
�n	(�) + G�(�, n
)

)
+ o(1), n → ∞, (29)

where the remainder vanishes in the L2(�)-norm as n → ∞, and

n
 = (n
1, . . . n
q−1). (30)

Besides, there exist functions R� : Tq−1 → R+, and S� : Tq−1 → R, such that the coefficients
{rl, sl}l �0 of the corresponding Jacobi matrix J� (20), that does not depend on the super-index n

in this case, have the following asymptotic form:

rn = R�(n
) + o(1), sn = S�(n
) + o(1), n → ∞. (31)

Note that to find (31) one needs weaker asymptotics of pn(�), those for � outside �.
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Functions D�, G�, R�, and S� can be expressed via the (q − 1)-dimensional Riemann theta-
function (see e.g. formula (A.8) below), associated with the two-sheeted Riemann surface. The
surface is obtained by gluing together two copies of the complex plane slit along the gaps
(b1, a2), . . . , (bq−1, aq), (bq, a1) of the support of the measure 	, the last gap goes through the
infinity [7]. For another form of D�, G�, R�, and S� see [33,35].

The case q = 1 in (22) of polynomials orthogonal on a single interval dates back to Bernstein,
Szegö and Akhiezer [37].

The components of the vector 
 = {
l}q−1
l=1 are rationally independent generically in �, thus the

sequences {D�(�, n
)}n∈Z, and {G�(�, n
)}n∈Z for any fixed � and the sequences {R�(n
)}n∈Z,
and {S�(n
)}n∈Z are quasi-periodic in n (see [7,17,22,35]). As an early precursor of this fact we
mention a result by Akhiezer [1], according to which if � consists of two intervals, then a certain
characteristic of corresponding extremal polynomials of degree n can be expressed via the Jacobi
elliptic functions as n → ∞. As a result the characteristic does not converge as n → ∞ but has
a set of limit points that fill a specific interval generically in the intervals lengths in (22).

2.2. Orthogonal polynomials with respect to varying weights

Let V : R → R+ be real analytic and such that

lim
|�|→∞

V (�)
/

log(�2 + 1) = ∞. (32)

Consider orthonormal polynomials (10)–(12). To describe their asymptotics we introduce the
functional (cf. (23)):

EV [m] = −
∫ ∫

log |� − �|m(d�)m(d�) +
∫

V (�)m(d�), (33)

defined on the set M1(R) of non-negative unit measures on R.
The functional (33) possesses a unique minimizer N

min
m∈M1(R)

EV [m] = EV [N ]. (34)

The variational problem, defined by (33), goes back to Gauss and is called the minimum energy
problem in the external field V (see recent book [34] for a rather complete account of results and
references concerning the problem). The unit measure N minimizing (33) is called the equilibrium
measure in the external field V because of its evident electrostatic interpretation as the equilib-
rium distribution of linear charges on the ideal conductor occupying the axis R and confined by
the external electric field of potential V . We stress that the corresponding variational problem
determines both the (compact) support � of the measure and the form of the measure.

The problem is equivalent to the relations [34]

�(�) = −lV , � ∈ �, (35)

�(�)� − lV , � ∈ R \ �, (36)

where

�(�) = V (�) − 2
∫
�

log |� − �|N(d�). (37)

This should be compared with the variational problem (23) of potential theory, where the external
field is absent but the support � is given. This problem can be viewed as a particular case of (33),
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corresponding to a sequence of potentials approaching V = �−1
� − 1, where �� is the indicator

of �.
The minimum energy problem in the external field arises in various domains of analysis and

its applications [14,34,39]. We will use here a link with Random Matrix Theory. It was argued
by Wigner in the 50th (see [25] for references and discussions), and is shown in [10,19] that the
measure Nn of (7) converges weakly as n → ∞ to the unique minimizer N in (34). Moreover,
the random measure (4) converges weakly to N with probability 1 as n → ∞.

Assume that V is such that the support of N is a union of q disjoint intervals as in (22). Introduce
the non-increasing function (cf. (26))

N(�) = N((�, ∞)) (38)

and the (q − 1)-dimensional vector (cf. (27))

� = {�l}q−1
l=1 , �l = N(al+1). (39)

With this notation the asymptotics for orthogonal polynomials with varying weights found in [15,
Theorem 1.1], can be written as follows. There exist continuous functions DV : �×T q−1 → R+,
and GV : � × T q−1 → R, and 0 < �1 such that if � belongs to the interior of the support �
(22) of N , we have (cf. (29)):

�(n)
n (�) = (2DV (�, n�))1/2

×cos
(
�nN(�) + GV (�, n�)

)
+ O(n−), n → ∞, (40)

where �(n)
l (�) is defined in (12), and n� = (n�1, . . . , n�q−1). If � belongs to the exterior of �,

then �(n)
n decays exponentially in n as n → ∞.

Similar asymptotic formulas are valid for coefficients of the Jacobi matrix J (n) of (20). Namely,
according to [15, formula (1.64)], there exist continuous functions RV : Tq−1 → R+ and SV :
Tq−1 → R such that we have (cf. (31))

r(n)
n = RV (n�) + O(n−), s(n)

n = SV (n�) + O(n−), n → ∞. (41)

It will be argued below that the functions DV , GV , RV , and SV differ from the functions D�, G�,

R� and S� of formulas (30) and (31) of the previous subsection only by a shift in the argument.
Hence the main difference in asymptotic formulas of the previous and this subsection is that
in the former the “rotation number” and the frequencies are determined by the measure 	 (see
(26)–(27)), minimizing the functional (23), while in the latter these quantities (see (38)–(39)) are
determined by the measure N , minimizing the functional (33).

3. Quasi-periodic Jacobi matrices

3.1. Ordinary orthogonal polynomials

Consider orthonormal polynomials with respect to the weight, whose support is a union of q

disjoint intervals (22). Denote J� the semi-infinite Jacobi matrix, associated with the polynomials
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and let {rl, sl}l �0 be the non-zero coefficients of J� (see (19)–(20), in which the super-index (n)

is omitted). Introduce the double-infinite Jacobi matrix J�,n, setting

rk,n =
{

rk+n, k� − n,

0, k < −n,
sl,n =

{
sk+n, k� − n,

0, k < −n.
(42)

We will denote by the same symbol J�,n the self-adjoint operator in l2(Z), defined by the matrix.
Now the asymptotics (31) allow us to define a family of “limiting” double-infinite Jacobi

matrices and corresponding self-adjoint operators in l2(Z). Assume for the sake of definiteness
that the components of the (q − 1)-dimensional vector 
 of (27) are rationally independent. Then
for any x = (x1, . . . , xq−1) ∈ Tq−1 there exists a subsequence {ni(x)}i �1, such that

lim
i→∞ {ni(x)
l} = xl, l = 1, . . . , q − 1, (43)

where {t} denotes the fractional part of t ∈ R. This and (31) imply that for any k ∈ Z we have

lim
i→∞ rni(x)+k = R�(k
 + x), lim

i→∞ sni(x)+k = S�(k
 + x). (44)

In other words the sequence {J�,ni (x)}i �1 of self-adjoint operators, defined in l2(Z) by the double
infinite Jacobi matrices with coefficients (42), converges strongly to the operator in l2(Z), defined
by the double-infinite Jacobi matrix J�(x) with coefficients

R�(k
 + x), S�(k
 + x), k ∈ Z. (45)

The matrices J�(x) arise in spectral theory and integrable systems [17,22,38] and is known there
as finite band Jacobi matrices.

Write the three-term recursion relation for J�,n:

rn+k�n+k+1 + sn+k�n+k + rn+k−1�n+k−1 = ��n+k, k� − n, � ∈ �.

Setting here n = ni(x), using asymptotics (29), and taking into account that in the obtained
asymptotic equality the coefficients in front of “fast oscillating” expressions cos(�nj (x)	(�)) and
sin(�nj (x)	(�)) should be both zero at the limit i → ∞, we find that for any �, belonging to the
interior of �, the sequences

{(D�(�, k
 + x))1/2 cos(�	(�)k + G�(k
 + x))}k∈Z (46)

and

{(D�(�, k
 + x))1/2 sin(�	(�)k + G�(k
 + x))}k∈Z (47)

satisfy the limiting three term recurrence relations, defined by the coefficients (45). In other words,
sequences (46) and (47) are generalized eigenfunctions of J�(x) for every �, belonging to the
interior of �.

Note now that by general principles [3] the resolution of identity EJ� of the initial Jacobi matrix
J� is

(EJ�(d�))jk = �j (�)�k(�) d�, j, k�0, (48)



L. Pastur / Journal of Approximation Theory 139 (2006) 269–292 277

in particular∫
�
(EJ�(d�))jk = �jk. (49)

Hence, the resolution of identity EJ�,n of J�,n, defined by (42), is

(EJ�,n (d�))jk =
{

�n+j (�)�n+k(�) d�, j, k� − n,

0 otherwise.

This and asymptotics (29) yield for the weak limit of the above projection-valued measure, the
resolution of identity EJ�(x) of J�(x):

(EJ�(x)(d�))jk = ��(�)(D�(�, j
 + x)D�(�, k
 + x))1/2

×cos
(
�	(�)(j − k) + G�(j
 + x) − G�(k
 + x)

)
d�, j, k ∈ Z, (50)

where �� is the indicator of �. Denoting �j (x) = �	(�)j + G(j
 + x), j ∈ Z, we can write the
cosine above as cos �j (x) cos �k(x) + sin �j (x) sin �k(x). This shows that the r.h.s. of (50) is
the linear combination of (46)–(47). Besides, the equality∫

�
(EJ�(x)(d�))jk = �jk, j, k ∈ Z

that can also be proved by the limiting transition ni(x) → ∞ in (49), implies that the union of
the sequences (46)–(47) for all � of the interior of � forms a complete system in l2(Z).

Introducing

�j (�, x) = ei�	(�)j uj (�, x), (51)

where

uj (�, x) = U(�, j
 + x), U(�, x) = D1/2
� (�, x)eiG�(�,x), (52)

we conclude from the above that the union of sequences

{�j (�, x)}j∈Z, {�j (�, x)}j∈Z (53)

for all � of the interior of � also forms a complete system of generalized eigenfunctions of the
“limiting” self-adjoint operator J�(x), acting in l2(Z). The system is known in spectral theory as
the quasi-Bloch generalized eigenfunctions, because in the case of periodic coefficients (see e.g.
(84)) they are well-known Floquet–Bloch solutions of corresponding finite-difference equation.
In this context 	(�) is called the quasi-momentum as the function of spectral parameter.

Recall now that if A = {A(x)}
x∈Tq−1 is a self-adjoint quasi-periodic operator in l2(Z), then its

Integrated Density of States can be defined as

kA(�) =
∫

Tq−1
(EA(x)((�, ∞))00 dx, (54)

where EA(x) is the resolution of identity of A(x) (see [13,29] for this and a more general case of
ergodic operators).
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By using the above definition and (48), we find

kJ�(·)(d�) =
(∫

Tq−1
D�(�, x) dx

)
d�, (55)

where kJ�(·)(d�) is the measure, corresponding to the non-increasing function kJ�(·)(�)

in (54).
Another definition of the Integrated Density of States is as follows. Consider the restriction

An(x) of A(x) to a finite interval [1, n], imposing certain self-adjoint boundary conditions at the
endpoints of the interval. The spectrum of An(x) is a finite set and we can introduce its Normalizes
Counting Measure of eigenvalues kn as the divided by n number of eigenvalues of An(x) in the
interval (�, ∞) (cf. (4)). It is known (see e.g. [13,29]) that kn converges weakly to (54) for any
x ∈ Tq−1.

In the case of operators J�(x), possessing the complete family of quasi-Bloch generalized
eigenfunctions (46)–(47), it can be shown that kJ�(·) = 	, i.e. that the Integrated Density of States
of J�(·) coincides with its quasi-momentum as the function of the spectral parameter, and we
have from (55)

kJ�(·)(d�) = 	(d�)

=
(∫

Tq−1
D�(�, x) dx

)
d�. (56)

We found, in particular, a relation between two quantities of asymptotics (29).
Another important characteristics of quasi-periodic (more generally, ergodic) operators is the

Lyapunov exponent �A(�), defined as the rate of exponential growth of the Cauchy solutions of
the corresponding finite difference equation of second order. The Lyapunov exponent and the
Integrated Density of States are related by the Thouless formula (see e.g. [29, formula (11.82)]).
In the case of the quasi-periodic Jacobi matrix J�(x) the formula is

�J�(·)(�) = −
∫

Tq−1
R�(x) dx +

∫
�

log |� − �|kJ�(·)(d�). (57)

Since the generalized functions of J�(x) are bounded and do not decay at infinity (see (46)–(47)
or (51)–(52)), we have

�J�(·)(�) = 0, � ∈ �.

Hence, the l.h.s. of (57) is zero if � ∈ �. In view of (55) the obtained relation is just the Euler–
Lagrange equation (24) for the functional (23).

3.2. Orthogonal polynomials with respect to varying weights

We will present here constructions, similar to those of the previous subsection but for orthogonal
polynomials with respect to varying weights. To this end it is useful to make explicit the amplitude
of the potential V in (10), i.e. to replace V by V/g, g > 0. In what follows we will keep V

fixed and vary g. Thus orthonormal polynomials (11) and related quantities will depend on g. To
control this dependence we will use results of papers [12,21].
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Note first that if the potential is real analytic, then the minimizer N of (33) possesses a density
� supported on a finite union of finite intervals � [10,14].

According to [15] asymptotics (40)–(41) are most precise and well behaving if a real analytic
potential, satisfying (32), is regular (see [15, formulas (1.12) and (1.13)]). This condition implies,
in particular, that the density of the measure N in (34) is strictly positive on the interior of its
support �, and vanishes as a square root at each edge of �. Furthermore, following [21], we say
that g is regular for V if V/g is a regular potential. If g0 is regular for V , and

�g0 =
q⋃

l=1

[al(g0), bl(g0)]

is the support of the equilibrium measure Ng0 corresponding to V/g0, then there exists an open
neighborhood of g0, consisting of regular values g for V and

�g =
q⋃

l=1

[al(g), bl(g)] (58)

with the same number q of intervals. Besides, al and bl are real analytic, al is strictly decreasing
and bl is strictly increasing in g.

We will also need the following formula, relating Ng and 	g , minimizing correspondingly (33)
with V/g instead of V and (23) with �g instead of � [12]:

Ng = g−1
∫ g

0
	g′ dg′. (59)

The formula was proved in [12] in a fairly general setting, including piece-wise continuous V ’s.
Its particular cases are given in [11,26], where its spectral and asymptotic meaning made explicit,
related to a kind of “adiabatic” regime in g for corresponding Jacobi matrix (20) (see also the
derivation of formula (87) below).

Now we can give an analog of constructions of previous subsection, i.e. the “limiting” Jacobi
matrix with quasi-periodic coefficients. We confine ourselves again to the case of rationally
independent components of vector � of (39), a generic case in g.

Consider the coefficients r
(n)
l of the Jacobi matrix (20), associated with orthonormal polyno-

mials {p(n)
l }l �0 with varying weight. Introducing explicitly the dependence of coefficients on g

and writing in view of (10) with V/g instead of V

n
V

g
= l

V

gl/n
, (60)

we obtain

r
(n)
l (g) = r

(l)
l (gl/n). (61)

Setting here l = ni(x) + k, where now (cf. (43))

lim
i→∞ {ni(x)�l} = xl, l = 1, . . . , q − 1, (62)
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x = {xl}q−1
l=1 is a point of Tq−1, and k is an arbitrary fixed integer, we obtain in view of (41) and

the continuity of RV in g and x, and of � in g:

lim
i→∞ r

(ni (x))
ni (x)+k(g) = lim

i→∞ RV

(
ni(x) + k

ni(x)
g, (ni(x) + k)�

(
ni(x) + k

ni(x)
g

))
= RV (g, k̃
(g) + x) , (63)

where


̃(g) = (g�(g))′. (64)

Analogous relation is valid for the diagonal entries of J (n):

lim
i→∞ s

(ni (x))
ni (x)+k(g) = SV (g, k̃
(g) + x) .

Now, by using formula (59), we find an important relation


̃(g) = 
(g), (65)

where 
(g) is defined by (27) with 	g instead of 	. We conclude from the above that limiting
coefficients are (cf. (44))

lim
i→∞ r

(ni (x))
ni (x)+k(g) = RV (g, k
(g) + x) , k ∈ Z,

lim
i→∞ s

(ni (x))
ni (x)+k(g) = SV (g, k
(g) + x) , k ∈ Z. (66)

As a result we obtain a quasi-periodic Jacobi matrix JV/g(x), defined by the coefficients (cf. (45))

RV (g, k
(g) + x) , SV (g, k
(g) + x) , k ∈ Z, (67)

and having the frequencies (
1(g), . . . , 
q−1(g)), obtained from (26)–(27) in which 	 is 	g , hence
� is the support �g of Ng . Note that JV/g(x) is the limit in the sense (62) in the strong operator

topology of l2(Z) of matrices J
(n)
V/g,n, whose coefficients are defined by formulas (42) with r

(n)
n+k

and s
(n)
n+k instead of rn+k and sn+k .

Applying the same limiting argument to asymptotic formula (40), and by using (62) and (59),
we obtain for any fixed k ∈ Z

�(n)
ni (x)+k(�) = (2DV (�, g, k
(g) + x))1/2 cos

(
�ni(x)Ng(�)

+�k	g(�) + GV (�, g, k
(g) + x)
)

+ o(1), ni(x) → ∞. (68)

By using these formulas, the exponential decay of �(n)
n+k(�) outside �g , and the limit (62), we

obtain the complete system of generalized eigenfunctions and the resolution of identity EJV/g(x)

of JV/g(x), given by (46)–(47) (or (53)) and (48), in which subindex � is replaced by the subindex
V/g. In particular, we have for the diagonal entries of EJV/g(x):(EJV/g(x)

)
kk

(d�) = ��g
(�)DV (�, g, k
(g) + x), k ∈ Z, (69)
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where �� is the indicator of � (cf. (50) with j = k). The limit here is the weak limit of measures.
The support in � of the r.h.s. of this formula is the support �g of the equilibrium measure Ng .This
implies that the spectrum of the quasi-periodic matrix JV/g(x) is �g . Note that the spectrum of

the “initial” double infinite matrix J
(n)
n , defined analogously (42) but via r

(n)
n+k and s

(n)
n+k , is R for

all n < ∞.
Besides, arguing as in obtaining (55), we find for the Integrated Density of States measure

kJV/g(·) of JV/g(x):

kJV/g(·)(d�) = 	g(d�)

=
(∫

Tq−1
DV (�, g, x) dx

)
d�. (70)

Comparing the first equality of this formula with the first equality of (56) in which � is replaced
by �g , we conclude that J�g (x) and JV/g(x) have the same spectrum and the same Integrated
Density of States.

The coincidence of spectra of J�g (x) and JV/g(x) implies (see [17,22,38]) that each of them
is an isospectral deformation of another, i.e. that the coefficients (45) of J�g (x) differ from the
coefficients (67) of JV/g(x) just by a shift of their argument. This fact can also be checked
directly, by comparing explicit formulas for both sets of coefficients, given in [7,17,38] and in
[15] correspondingly, and by using again the trick with infinitesimal variation of the amplitude
of potential (see Appendix).

Here is one more link between two classes of polynomials and spectral theory. It concerns
the Lyapunov exponents of J�g (x) and JV/g(x) and the potential. It can be shown [12] that the
Lyapunov exponents of the both matrices coincide and if �g(�) is their common value, then

V (�) = 2
∫ g

0
�g′(�) dg′, � ∈ �g. (71)

3.3. Periodic Jacobi matrices

Here we consider a class of polynomial potentials V in (10) for which corresponding Jacobi
matrices J�g (x) and JV/g(x) have periodic coefficients. Besides, several quantities related to the
matrices and orthogonal polynomials can be found explicitly. We follow [11].

Let v be a polynomial of degree q with real coefficients and with the leading term zq . Assume
that there exists g > 0 such that all zeros of the polynomial v2 − 4g are real and simple and set

V (�) = v2(�)

2q
. (72)

We will show that in this case coefficients of J�g (x) and JV/g(x) are q-periodic and their spectrum
is

�g = {� : v2(�) − 4g�0}. (73)

We show first that the equilibrium measures Ng and 	g for (33) and (23) are:

Ng(d�) = �g(�) d�, �g(�) = |v′(�)|
2�gq

|v2(�) − 4g|1/2��g
(�) (74)
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and

	g(d�) = dg(�) d�, dg(�) = |v′(�)|
�q

|v2(�) − 4g|−1/2��g
(�). (75)

Indeed, it is a matter of direct calculations to find that if �g is given by (74), then

wV/g(z) := −
∫
�g

log(z − �)�g(�) d� = 1

q

[
u(z)

√
u2(z) − 1

− log
(
u(z) +

√
u2(z) − 1

)
− u2(z)

]
− (2q)−1 log g/e. (76)

where u = v/2
√

g, and we use the branch of logarithm with the cut (−∞, 0) and the argument �
on the upper edge of the cut and the branch of

√
u2 − 1, such that

√
u2 − 1 = u+o(1), u → ∞.

On the other hand

�wV/g(� + i0) = −
∫
�g

log |� − �|�g(�) d�

is the logarithmic potential of Ng(d�) = �g(�) d�. Now, analyzing the values of � of (37) in this
case

�g(�) = V (�)

g
+ 2�wV/g(� + i0) (77)

with V from (72), we can check directly the validity of (35)–(36) (with V/g instead of V ) with
the strict inequality in (36) and lV = (2q)−1 log g/e. This proves that Ng of (74) is the minimizer
of (33) with V/g instead of V .

It can also be proved that 	g of (75) is the minimizer of (23) with �g of (73) instead of �. We
can use either (59) or the above scheme, computing (cf. (76))

w�g (z) := −
∫
�g

log(z − �)dg(�) d�

= − 1

q
log

(
u(z) +

√
u2(z) − 1

)
− 1

2q
log g

and then checking directly (24)–(25).
We will use, however, another argument to prove (74) and (75). The argument is based on a

representation, important in the inverse problem for periodic operators of second order [23,24].
Let u be a polynomial of degree q with real coefficients and such that all zeros of u2 − 1 are

real and simple. Then u can be written in the form

u(z) = cos �(z), (78)

in which �(z) is the conformal map of the open upper half-plane C+ = {z ∈ C : Im z > 0} onto
the domain

{� : q1� < �� < q2�, �� > 0}
\

⋃
q1<l<q2,

{� : �� = l�, q1 < l < q2, 0 < ���hl}. (79)

Here q1 < q2 are integers, q2 − q1 = q, 0�hl < ∞ and �(∞) = ∞. In fact, the r.h.s. of (78) is
a polynomial of degree q if and only if −∞ < q1 < q2 < ∞, q2 − q1 = q [24]. Function �(z) is
analytic in C+ and continuous in the closed upper half-plane C+. When z = � + i0 varies from
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−∞ to ∞, the limiting value �(�+ i0) runs along the boundary (the “comb”) of the domain (79),
so that either ��(� + i0) varies from (q1 + l − 1)� to (q1 + l)� and ��(� + i0) = 0, if � varies
through the lth “band”, or ��(� + i0) ≡ 0 (mod �) and ��(� + i0) = �, 0���hl , if � varies
through the lth “gap”.

By using the terminology of mathematical physics we can say that �(z)/�q is an analytic
continuation of the quasi-momentum as a function of energy in the extended band scheme.

We set u = v/2
√

g in (78). Then the zeros of u2 − 1 are the band edges −∞ < a1 < b1 <

· · · < aq < bq, �(bq) = 0, q1 = −q, q2 = 0 and �(� + i0) varies from (−q + l − 1)� to
(−q + l)�, l = 1, . . . , q when � varies from al to bl in the lth band. By using (78) and (79) we
can rewrite (35)–(37), (77) as

�(�) = − 1

q
log g/e +

{
0 if � ∈ [al, bl], l = 1, . . . , q,

g(�l (�)) if � ∈ [bl, al+1], l = 1, . . . , q,
(80)

where aq+1 = a1,

g(�) := 2

q

(
sinh 2�

2
− �

)
= 4

q

∫ �

0
sinh2 t dt > 0, � > 0

and �l (�) varies from 0 and hl > 0, when � varies through the gap (bl, al+1). This yields
(35)–(37), thereby a proof that (74) is the density of the equilibrium measure Ng , corresponding
to the potential (72). Moreover, since the inequality in (36) is strict in this case, the corresponding
value of g is regular for the potential (72).

It follows from (76) that

Ng(�) = −�−1�wV/g(� + i0)

and then (78) implies that

Ng(�) = 1

�q

(
�+(�) − sin 2�+(�)

2

)
(81)

and similarly

	g(�) = 1

�q
�+(�), (82)

where �+(�) = ��(� + i0), and �(z) is defined in (78). In view of the above properties of this
function, we have

Ng(al+1) = 	g(al+1) = q − l

q
, l = 1, . . . , q − 1, (83)

and then (27) and (39) imply


l = �l = q − l

q
, l = 1, . . . , q − 1. (84)
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Hence, the coefficients (45) of the matrix J�g (x) and the coefficients (67) of the matrix JV/g(x)

are q-periodic in this case. Moreover, we need not to consider in this case the whole torus Tq−1

as the set of values of x in (43) and (62), but just the set of vertices of the regular q-polygon.
This is similar to a standard procedure of the theory of almost periodic functions, where the
corresponding set is the closure of all limiting points of sequences (43) or (62), hence depends
on arithmetic properties of the frequency vector 
 or �.

Consider simple cases of potentials (72). The case q = 1 corresponds to v(�) = −� and yields

�g = [−2
√

g, 2
√

g],

�g(�) = 1

2�g
(4g − �2)1/2��g

(�),

dg(�) = 1

�
(4g − �2)−1/2��g

(�).

The first density corresponds to the well-known semicircle law by Wigner for the Gaussian Unitary
Ensemble [25]. The role of polynomials p

(n)
l play hl(�

√
n/2g)(n/2g)1/4, where {hl}l �0 are the

orthonormal Hermite polynomials. The second density is the Density of States of the Jacobi matrix
with constant coefficients rl = √

g, sl = 0, l ∈ Z. The matrix plays here the role of both limiting
matrices J�g and JV/g .

The case q = 2 corresponds to v(�) = �2 + v0, v0 < −2
√

g, and yields

�g = [−b(g), −a(g)] ∪ [a(g), b(g)],

a(g) = (|v0| − 2
√

g)1/2, b(g) = (|v0| + 2
√

g)1/2,

�g(�) = |�|
2�g

(
(b2 − �2)(�2 − a2)

)1/2
��g

(�),

dg(�) = |�|
�

(
(b2 − �2)(�2 − a2)

)−1/2
��g

(�).

Asymptotics of corresponding orthogonal polynomials were considered in [8]. Matrices J�g and
JV/g are both of period 2 and their Density of States is given above.

For a general two interval case, where the corresponding matrices are quasi-periodic and their
coefficients can be expressed via the Jacobi elliptic functions see [2,5,32] (ordinary polynomials)
and [9] (polynomials with varying weights).

The fact that in the case of ordinary polynomials the limiting finite band Jacobi matrix is periodic
if its spectrum is the inverse image of a polynomial map (see (73)) is known (see e.g. [31,38] and
references therein). It is of interest that the same property holds also for polynomials with varying
weights and that the corresponding potential (72) is also polynomial and can be explicitly related
to the map.

We mention one more link of asymptotics of orthonormal polynomials and periodic Jacobi
matrices [11] that concerns the Hill discriminant (or the Lyapunov function) of J�g (x) and JV/g(x)

and the polynomial v of (72). Recall that the Hill discriminant �(�) is defined as 1
2 of the trace

of the monodromy (transfer) matrix of corresponding finite-difference equation of second order
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with periodic coefficients and plays an important role in spectral theory (see e.g. [23,36]). It can
be shown [11] that both matrices have the same Hill discriminant �g and that

�g = v(�)/2
√

g.

We discussed above the case, where the polynomial v in (72) is such that all zeros of v2 − 4g

are real and simple. Admitting non-simple (but still real) zeros, we include the case, where two
adjacent bands touch one another or a band is going to appear inside a gap.

4. Eigenvalue distribution of random matrices

Here we discuss briefly certain aspects of eigenvalue distributions of ensembles (1)–(3), related
to the above results, in particular to the matrix JV (x).

4.1. Expectation of linear statistics

According to [10,19] we have for any bounded and continuous �

lim
n→∞ E{Nn[�]} =

∫
�
�(�)N(d�),

where N is the minimizer of (33). Combining this with (59), (69), and (70), we obtain for the
r.h.s. of this formula∫

�
�(�) d�

∫ 1

0
	g(d�) dg =

∫ 1

0
dg

∫
Tq−1

(�(JV/g(x)))00 dx.

On the other hand we can always write (6) as

Nn[�] = n−1 Tr �(Mn),

and we obtain a kind of “functional correspondence”

lim
n→∞ E{n−1 Tr �(Mn)} =

∫ 1

0
dg

∫
Tq−1

(�(JV/g(x)))00 dx, (85)

reminiscent to that for ergodic operators, see [13, Theorem 9.6], and [29, Theorem 4.4].
Here is a heuristic argument, explaining the above formula. According to (14) the l.h.s. of the

formula includes the orthonormal functions �(n)
l of (12) for l = 0, . . . , n−1. Indicating explicitly

the dependence of these functions on g and using the relation (cf. (61)):

�(n)
l (�, g) = �(l)

l (�, gl/n), (86)

we obtain from (40) that the leading contribution to �n as n → ∞ is

1

n

n−1∑
l=0

DV (�, l/n, l�(l/n)) .
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Assuming that DV (�, g, x), and �(g) are continuous in g, we can say that the summand in this
formula is “slow varying” in l/n and “fast varying” in l. This observation results in the limiting
formula for the density �(�) of the measure N :

�(�) =
∫ 1

0
dg

∫
Tq−1

DV (�, g, x) dx. (87)

Using now (70) and (59), we obtain (85).

4.2. Covariance of linear statistics of eigenvalues

By using (21) we write (15) as

Cov{Nn[�1], Nn[�2]} = 1

n2

∫ ∫
��1

��

��2

��
Cn(�1, �2) d�1 d�2,

where ��/�� is defined in (16),

Cn(�1, �2) = (r
(n)
n−1)

2
(
e(n)
n,n(�1)e

(n)
n−1,n−1(�2) − e

(n)
n,n−1(�1)e

(n)
n,n−1(�2)

)
and

e
(n)
l,m(�) = �(n)

l (�)�(n)
m (�)

is the density of the resolution of identity {EJ (n) (d�)}∞l,m=0 of matrix (20) (cf. (48)). Thus, assuming

that �1,2 are bounded and of the class C1 and passing to a subsequence {ni(x)}i �1 that satisfies
(62), we obtain in view of (63)

lim
ni(x)→∞ ni(x)2Cov{Nni(x)[�1], Nni(x)[�2]} = R2

V (x − 
)

×
∫
�×�

��1

��

��2

��

(
e0,0(�1)e−1,−1(�2) − e0,−1(�1)e0,−1(�2)

)
d�1 d�2, (88)

where ej,k(�), j, k ∈ Z is the density of the (jk)th entry of the resolution of identity {EJV (x)

(d�)}l,m∈Z of the limiting Jacobi matrix JV (x), determined by (67).
This result seems rather unusual from the point of view of traditional probability concepts.

Indeed, the covariance of linear eigenvalue statistics (6) is of the order n−2 rather than of the
order n−1 as in the case of independent identically distributed random variables, or in a more
complex and close to our context case of the Schrodinger operator with random potential. In the
latter case it is a matter of routine spectral theory argument to show that, say for

�z(�) = (� − z)−1, �z �= 0, (89)

where

Nn[�z] = n−1 Tr(Hn − z)−1

and Hn is the discrete Schrodinger operator on the interval [1, n] with a random i.i.d. potential,
then

lim
n→∞ nCov{n−1 Tr(Hn − z1)

−1, n−1 Tr(Hn − z2)
−1} = C(z1, z2),

where C(z1, z2) is analytic for �z1,2 �= 0 and is not identical zero if the second moment of the
potential exists.
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On the other hand, it follows from (88) that if Mn is a random n × n random matrix, given by
(1)–(3), then

lim
ni(x)→∞ n2

i (x)Cov{ni(x)−1 Tr(Mn − z1)
−1, ni(x)−1 Tr(Mn − z2)

−1}

= R2
V (x − 
)

(
�G0,0(x)

�z

�G−1,−1(x)

�z
−
(

�G0,−1(x)

�z

)2
)

,

where

�Gj,k(x)

�z
= 1

z1 − z2

(
(JV (x) − z1)

−1 − (JV (x) − z2)
−1
)

j,k
.

Hence the covariance of Nn[�z] = n−1 Tr(Mn − z)−1 is of the order O(n−2).
This indicates that the Central Limit Theorem, if any, should be valid not for n1/2Nn[�z] as in

the case of i.i.d. random variables, but for nNn[�z], i.e. for the sum

Nn[�z] =
n∑

l=1

�(�(n)
l )

without a n-dependent factor in front.
This was indeed shown in [19] for the single interval case q = 1 and for a rather broad class

of test functions. However, as we have seen above (see also [6]), the case q = 1 is exceptional,
since it is only in this case asymptotic formulas (40) and (41) do not oscillate in n because of the
absence of the argument n� in corresponding coefficients of the formulas. Hence, for q �2 the
limiting normal law for Nn[�z], if it exists, could be different for subsequences in (43) having
different limits in Tq−1, because its variance depends on x ∈ Tq−1:

lim
ni(x)→∞ Var{Nni(x)[�z]}

= R2
V (x − 
)

(
g0,0(z, x)g−1,−1(z, x) − |g0,−1(z, x)|2

)
,

where

gjk(z, x) =
∫
�

(EJV (x)(d�))j,k

|� − z|2 .

However, as is shown in [28], the situation with the Central Limit Theorem for linear eigenvalue
statistics of random matrices (2)–(3) is more subtle. Namely, the above scheme of a family of the
Gaussian limiting law with the x-dependent variance for various subsequences in (62) proves to
be valid in the case, where the matrix JV (x) is periodic. In a generic case of quasi-periodic JV (x)

the limiting laws of subsequences {Nni(x)[�]}i �1 exist but are not Gaussian.

Appendix A.

Here we verify directly that the coefficients of the Jacobi matrices J�g (x) and JV/g(x) coincide
up to a shift in x. We will consider again the generic case, where the frequencies (27) and (39)
are rationally independent, hence x varies over the whole Tq−1. Besides, we consider only the
off-diagonal entries of J�g (x) of (45) and JV/g(x) of (67) (note that the diagonal entries are zero
if V is even).
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Recall that the coincidence follows also from general results on the inverse problem of spec-
tral analysis for “finite-band” potentials, known as the algebro-geometric approach (see e.g. [4]
[17,22,38]). Indeed, since the spectra J�g (x) and JV/g(x) coincide (see Section 3.2), J�g (x) is a
isospectral deformation of JV/g(x) and vice versa, hence, by the inverse problem, one of them
can be obtained by a shift in x of another [17,22,38]).

We begin a direct proof of this assertion by recalling necessary results of spectral theory of
finite band Jacobi matrices and related facts of complex analysis on Riemann surfaces (see e.g.
[4,7,17,22,38]).

Given the set � of (22), denote � the two sheeted (hyperelliptic) Riemann surface, defined by
the equation

w2 = R(z), R(z) =
q∏

l=1

(z − al)(z − bl),

i.e. obtained by pasting together two copies of the complex plane along the union of the “gaps”
(b1, a2), . . . , (bq−1, aq), (bq, a1) of �, the last gap goes through the infinity point. Let i dp be the
normalized differential of the third kind with simple poles of residues ±1, at the infinity points
P± on each sheet of �, and let U = (U1, . . . , Uq−1) be the vector of b-periods of dp:

Ul = 1

2�

∫
bl

dp, l = 1, . . . , q − 1, (A.1)

where {bl}q−1
l=1 are the so-called b-cycles on �.

On the other hand, the integral∫ P

P0

i dp, P0, P ∈ �

with a properly chosen initial point P0 can be identified with the complex Green function G(z) of
C\� with the pole at infinity (see e.g. [7]). The real part g(z) = �G(z) is uniquely determined by
the requirements to vanish for its limiting values on � and to be harmonic in C\� for g(z)−log |z|.
It follows then that if 	 is the unique minimizer of (23), hence solves the corresponding Euler–
Lagrange equation (24), then

g(z) =
∫

s

log |z − �|	(d�) − l�/2.

This and (A.1) imply (27), where 
l − 
l+1 = 	([al+1, bl+1]), l = 1, . . . , q − 1 is the harmonic
measure at infinity of the (l + 1)th “band” [al+1, bl+1] of �.

Denote � : Tq−1 → C the Riemann �-function, associated with �. Then according to [7,33,40]
the leading coefficient �n of the polynomial pn, where {pl}l �0 are orthonormal polynomials on
� with respect to weighs, satisfying (28), is for n → ∞:

�2
n = A�enl�

[
�(n
 + u(∞) + d�)

�(n
 − u(∞) + d�)
+ o(1)

]
. (A.2)

Here l� is defined in (24),

u(z) =
∫ z

bq

�
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with the integral taken along a path on the first sheet and � = (�1, . . . ,�q−1) is the canonical
basis of the differential of the first kind on �, A� and d� do not depend on n but depend on �, the
weight, and the points �1, . . . , �q−1 of � that are the poles of the corresponding Baker–Akhiezer
function [17]. In the case, where 
l = ml/q with positive integers m1, . . . , mq , hence with a
q-periodic J�(x) (see e.g. Section 4), �′

1, . . . , �
′
q−1 are the eigenvalues of the Dirichlet problem

on the period for the corresponding finite-difference equation, distributed in a fixed way over the
edges of the gaps. These are in fact the parameters, indexing representatives of the isospectral
family. Another characterization of �′

1, . . . , �
′
q−1 is given in [7, Theorem W2].

Asymptotic formula (A.2) and the relation

rn = �n/�n+1, (A.3)

expressing the off-diagonal entries of a Jacobi matrix via the leading coefficients of associated
orthonormal polynomials, lead to the relation

r2
n = e−l�

�((n + 1)
 − u(∞) + d�)�(n
 + u(∞) + d�)

�((n + 1)
 + u(∞) + d�)�(n
 − u(∞) + d�)
+ o(1). (A.4)

Replacing here n by n + k, where k is an arbitrary fixed integer (in fact k = o(n)), and passing
to the limit (43), we obtain for the function R� of (45):

R�(x) = e−l�
�(x + 
 − u(∞) + d�)�(x + u(∞) + d�)

�(x + 
 + u(∞) + d�)�(x − u(∞) + d�)
. (A.5)

By using the formula


 + 2u(∞) = 0, (A.6)

that follows from the Riemann bilinear relations (see e.g [17, Section 6]), we can write

R�(x) = R(x + x�), (A.7)

where

R(x) = e−l�
�(x + 
)�(x − 
)

�2(x)
(A.8)

and

x� = −u(∞) + d�. (A.9)

Consider now the orthonormal polynomials {p(n)
l }l �0 with respect to varying weights (10)–(11).

Then we have for the leading coefficient of p
(n)
n according to [15, formula (1.63)]:(

�(n)
n

)2 = AV enlV

[
�(n� + u(∞) + dV )

�(n� − u(∞) + dV )
+ o(1)

]
, n → ∞, (A.10)

where lV is defined in (35)–(37), � is defined in (39), u(∞) is the same as in (A.2), and AV and
dV do not depend on n but depend on V and the points �′′

1, . . . , �
′′
q−1, that are zeros of a certain

analytic function on C \ � (see [15, formulas (1.26)–(1.27), (1.30)]).
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In view of the relations

r
(n)
n+k = �(n)

n+k/�
(n)
n+k+1 (A.11)

(cf. (A.3)) and (66) we need the coefficients �(n)
n+k, n → ∞, k ∈ Z fixed (see (63)) in order to find

the entries of JV (x). We will find them by using the same trick as in obtaining (63). According
to the trick the passage from n to n + k, n → ∞, k = o(n) can be carried out by passage from
the super-index n to n + k, which is equivalent to the infinitesimal change g → g + gk/n in
the inverse amplitude of the potential. Thus, replacing V by V/g in (A.10), using the above trick
and (64)–(65), we obtain (cf. (A.2)):(

�(n)
n+k

)2 = AV enlV +k(glV )′
[
�(n� + k
 + u(∞) + dV )

�(n� + k
 − u(∞) + dV )
+ o(1)

]
, n → ∞.

Now, comparing the Euler–Lagrange equations (35)–(37) for (33) and (24)–(25) for (23), we find
the relation (cf. (64)–(65)):

l�g = (glV/g)
′.

This and (A.11) yield for the asymptotics of the off-diagonal entries of matrix J (n) (20), associated
with {p(n)

l }l �0:(
r
(n)
n+k

)2 =
(
�(n)
n+k

)2 (
�(n)
n

)−2

= e−l�
�(n� + (k + 1)
 − u(∞) + dV )�(n� + k
 + u(∞) + dV )

�(n� + (k + 1)
 + u(∞) + dV )�(n� + k
 − u(∞) + dV )
+ o(1).

Passing here to the limit (62), we obtain for the function RV of (66), determining the off-diagonal
entries of the limiting matrix JV (x):

RV (k
 + x) := RV (1, l
(1) + x) = R(k
 + x + xV ),

i.e.,

RV (x) = R(x + xV ), (A.12)

where R is defined in (A.8), and (cf. (A.9))

xV = −u(∞) + dV/g. (A.13)

Comparing (A.7) and (A.12) we conclude that R� and RV differ by a shift of argument.
The assertion, formulated at the beginning of the Appendix is proved.
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