88 research outputs found

    Asymptotic behaviour of total generalised variation

    Full text link
    The recently introduced second order total generalised variation functional TGVβ,α2\mathrm{TGV}_{\beta,\alpha}^{2} has been a successful regulariser for image processing purposes. Its definition involves two positive parameters α\alpha and β\beta whose values determine the amount and the quality of the regularisation. In this paper we report on the behaviour of TGVβ,α2\mathrm{TGV}_{\beta,\alpha}^{2} in the cases where the parameters α,β\alpha, \beta as well as their ratio β/α\beta/\alpha becomes very large or very small. Among others, we prove that for sufficiently symmetric two dimensional data and large ratio β/α\beta/\alpha, TGVβ,α2\mathrm{TGV}_{\beta,\alpha}^{2} regularisation coincides with total variation (TV\mathrm{TV}) regularisation

    Underreported in-water behaviours of the loggerhead sea turtle: Getting buried in the sand

    Get PDF

    A function space framework for structural total variation regularization with applications in inverse problems

    Get PDF
    In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable total variation type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted total variation for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction

    Analysis and optimisation of a variational model for mixed Gaussian and Salt & Pepper noise removal

    Get PDF
    We analyse a variational regularisation problem for mixed noise removal that was recently proposed in [14]. The data discrepancy term of the model combines L1 and L2 terms in an infimal convolution fashion and it is appropriate for the joint removal of Gaussian and Salt & Pepper noise. In this work we perform a finer analysis of the model which emphasises on the balancing effect of the two parameters appearing in the discrepancy term. Namely, we study the asymptotic behaviour of the model for large and small values of these parameters and we compare it to the corresponding variational models with L1 and L2 data fidelity. Furthermore, we compute exact solutions for simple data functions taking the total variation as regulariser. Using these theoretical results, we then analytically study a bilevel optimisation strategy for automatically selecting the parameters of the model by means of a training set. Finally, we report some numerical results on the selection of the optimal noise model via such strategy which confirm the validity of our analysis and the use of popular data models in the case of "blind'' model selection

    Analytical aspects of spatially adapted total variation regularisation

    Get PDF
    In this paper we study the structure of solutions of the one dimensional weighted total variation regularisation problem, motivated by its application in signal recovery tasks. We study in depth the relationship between the weight function and the creation of new discontinuities in the solution. A partial semigroup property relating the weight function and the solution is shown and analytic solutions for simply data functions are computed. We prove that the weighted total variation minimisation problem is well-posed even in the case of vanishing weight function, despite the lack of coercivity. This is based on the fact that the total variation of the solution is bounded by the total variation of the data, a result that it also shown here. Finally the relationship to the corresponding weighted fidelity problem is explored, showing that the two problems can produce completely different solutions even for very simple data functions
    corecore