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Abstract: We introduce a novel scheme for dynamic line-by-line pulse 

shaping with GHz update rates. Four lines of an optical frequency comb 

source are used to injection-lock four individual VCSEL, which are 

subsequently electrically modulated at 0.4 to 1GHz through current 

modulation. This concept could be considered a completely new way of 

pulse shaping as the light is not simply modified, but rather regenerated 

with the desired properties. We also discuss an important drawback of line-

by-line pulse shapers that ultimately limits the modulation speed capability. 

©2010 Optical Society of America 

OCIS codes: (320.5540) Pulse shaping; (140.7090) Ultrafast Lasers; (140.3520) Lasers, 

injection-locked 
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1. Introduction 

Ability to generate large-bandwidth, arbitrarily-shaped waveforms in optical and microwave 

domains serve many applications, among which are bandwidth-efficient telecommunications, 

parallel signal processing and pattern recognition, remote sensing, and physical sciences. To 

date, the most mature and versatile way to generate large-bandwidth arbitrary waveforms is 

through line-by-line ultrafast optical pulse shaping [1]. In this technique, an arbitrary, 

complex optical filter function H(ω) is designed and applied to individual lines or groups of 

lines of a optical frequency comb source in order to yield the desired waveform in time-

domain. A variety of periodic arbitrary waveforms have been generated with line-by-line 

pulse shapers based on liquid-crystal based spatial light modulators [1] and resistive-heating 

of waveguides [2]. Nevertheless these techniques are limited to ~kHz update rates which 

restricts their use. Recently, fast dynamic pulse shaping schemes based on hybrid, on-chip 

electro-optic waveguides were shown [3–5]. However, these schemes suffer from practical 

limitations in scalability due to increasing complexity of fabrication and electrical/optical 

cross-connects as the number of comb lines, hence the waveform bandwidth, increase. 

In this paper, we introduce a novel scheme for line-by-line pulse shaping with GHz update 

rates, and straight forward scalability to large number of lines. The concept is based on 

injection-locking of semiconductor lasers. The individual lines of a frequency comb source 

are used to injection-lock individual Vertical Cavity Surface Emitting Lasers (VCSELs). The 

VCSELs subsequently are current-injection-modulated in order to regenerate the lines of the 

frequency comb with the desired amplitude and phase functions. In fact, this concept could be 

considered a completely new type of pulse shaping, where the source light is not simply 

modified, but rather regenerated with the desired properties. Owing to the large current-

modulation bandwidth of VCSELs, potentially tens of GHz update rates could be achieved. 

We experimentally show line-by-line pulse shaping through injection-locking of 4 

individual VCSELs with a frequency comb source with 12.5 GHz repetition rate. Each 

regenerated line was sine-wave modulated at 0.4 to 1 GHz, generating an arbitrary optical 

waveform with a 5 ns period and 37.5 GHz bandwidth. The modulation speed was mainly 

limited by the passband of the dispersive optical element in the line-by-line pulse shaper. We 

believe that this limitation is one of the biggest hurdles in increasing the modulation speed of 

any continuous spectral-dispersion based arbitrary waveform generation architecture. 

2. Injection-Locking concept and experimental results 

Injection-locking is commonly used to generate coherent laser sources that share a phase 

relationship. When a free-running slave laser cavity is injected with the light from a master 

laser, the slave cavity locks its frequency to the master laser. Moreover, the relative phase of 

the slave laser obeys Adler’s equation (for small injection): 

 arcsin s m

B

ω ω
φ

− =  
 

  (1) 

where φ is the optical phase difference of the slave and master lasers, ωs and ωm are free-

running slave and master laser frequencies, and B is the half locking bandwidth. It is evident 

from Eq. (1) that, once the injection-locking occurs, any perturbation of the slave cavity will 

result in a relative phase change. Especially for semiconductor lasers, this perturbation could 

be through current-injection, which in turn yields a high-speed, intrinsically nonlinear phase 

modulator with applications in optical sampling and telecommunications [6]. 

Normally, bias current is utilized to tune the frequency of semiconductor lasers at high 

speeds. However, as the injection-locking process fixes the frequency (defined by the master 

laser), the bias current ends up tuning the optical phase. The phase of an injection-locked 

semiconductor laser can be tuned for a full π through the bias current. The bias current range 

for this tuning is called as – referred by the free-running slave laser frequency change- the 
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injection-locking bandwidth. Injection-locking bandwidth depends on the master/slave optical 

injection power ratio. Additionally, the response speed of the phase tuning process goes from 

DC to a few tens of GHz based on the semiconductor device structure and electrical 

connections. We have previously demonstrated such operation of a VCSEL up to a few GHz 

as shown in [6]. Since the VCSEL cavities are very sensitive to bias current, the full π phase 

swing can be achieved with a very small bias current range, without any significant additional 

amplitude modulation. Obviously, this requires a very small master/slave optical injection 

power ratio (usually below −25 dB). If necessary, stronger bias current modulation can be 

achieved (without the slave laser falling out of injection-lock) by increasing the master laser 

optical injection power. However, this results in additional direct intensity modulation of the 

slave laser output along with the phase modulation from the injection-locking process. In this 

paper, we utilize these high-speed phase and intensity modulation schemes for dynamic line-

by-line pulse shaping. 

The pulse-shaper setup is shown in Fig. 1. A 1538nm single-frequency laser was 

modulated with a 12.5 GHz sine-wave by cascaded electro-optic intensity modulators in order 

to generate a frequency comb source with ~5 comb lines of equal power (Fig. 1). 

Alternatively, a frequency-stabilized 12.5 GHz repetition-rate modelocked laser could be used 

as the source [7]. The signal was then amplified and fed into a fiber-pigtailed Virtually-

Imaged Phase Array (VIPA) based spectral demultiplexer with 6.25 GHz channel separation 

and 100 GHz free spectral range. Four odd channel outputs of the demultiplexer (frequency 

separation of 12.5 GHz each) were connected to 4 individual commercial fiber-pigtailed 

single-mode VCSELs at ~1538nm center wavelength. No effort was spent on actively 

stabilizing VCSEL temperatures, fiber lengths and polarization fluctuations. The VCSELs 

were tuned with DC-current to fall within the locking bandwidth of the corresponding 

injecting comb line, and directly-modulated with various RF power levels at 0.4GHz, 0.6GHz, 

0.8GHz, and 1GHz with sine-wave generators that share a common reference clock. The 

peak-to-peak optical intensity modulation depth of the VCSELs ranged from 2% to 20% with 

various RF power levels, and the optical injection ratio varied from −23dB to −17dB. The 

VCSEL optical outputs were isolated from the input demultiplexer with circulators in order to 

prevent the reflections from flat fiber tips that could destabilize the injection-locking process. 

An output spectral multiplexer that is identical to the input demultiplexer was used in the 

VCSEL output signal path to observe the resultant shaped arbitrary waveforms. The 

waveforms were characterized with a high-resolution Optical Spectrum Analyzer (OSA), 

Radio Frequency (RF) spectrum analyzer, a sampling oscilloscope and two different speed 

real-time oscilloscopes. Although simple sine-wave modulation was implemented here as a 

proof-of-principle, work is ongoing with complex modulation waveforms involving high-

speed bit pattern generators. 

 

Fig. 1. Experiment Setup for GHz Update Rate Line-by-Line Pulse Shaping 

The measured high resolution optical spectra and RF spectra are shown in Fig. 2 with and 

without injection-locking for −25dBm, −30dBm, and −35dBm RF modulation powers. It can 

be easily seen from the RF traces that there was no phase relationship between free-running 

VCSELs before injection-locking, however injection-locked traces show clear tones with high 
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Signal to Noise Ratio (SNR). Furthermore, the high resolution optical spectrum trace confirms 

that the linewidths of the VCSELs were narrowed by injection-locking as expected. 

 

Fig. 2. (a) High Resolution Optical Spectra, and (b) RF Spectra. Both shown with and without 

injection-locking for various RF modulation power levels. 

Initially, we tried to observe the time-domain waveform with a high-speed sampling 

oscilloscope. Although certain periodicity of the generated waveform could be seen on the 

sampling scope traces, clear waveforms could not be observed due to the slow triggering 

speed of the scope relative to the environmental fluctuations of the VCSEL pigtail fibers. The 

time-domain data from a two different speed real-time oscilloscopes are shown in Fig. 3 for 

−25dBm and −30dBm RF modulation power levels. A 1GHz, 5Gs/s real-time oscilloscope 

was used to obtain the overall time envelope data, which was subsequently Fourier-

transformed to yield clean RF frequencies with >30dB SNR (Fig. 3(d)) confirming the RF 

spectrum analyzer measurement of Fig. 2. Additionally, a 16GHz, 40Gs/s real-time 

oscilloscope (LeCroy WaveMaster 816zi) was utilized to observe a periodic arbitrary 

waveform with 5ns period, which corresponds to the lowest common multiple of the 

individual VCSEL modulation periods (Fig. 3(a)). Again, the noise in the time-domain trace is 

attributed to the environmental fluctuations of the VCSEL pigtail fibers causing fast phase and 

polarization fluctuations. Nevertheless, subsequent Fourier-transform of the data yields clean 

RF frequencies at 0.4,0.6,0.8,1 GHz, and 12.5 ± 0.4,0.6,0.8,1 GHz (Fig. 3(b)). Moreover, 
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intermixing products and higher order RF beats are also observed up to 20 GHz, limited by 

the 10 GHz photodetector and 16 GHz oscilloscope bandwidth. A sample simulation of the 

system is also shown in Fig. 3(c). that is qualitatively similar the observed waveform. We 

believe that the stronger portion of the modulation was due to the direct intensity modulation 

of the lines with moderate modulation depth, while some portion came from the phase 

modulation. In fact, injection-locking bandwidth, intensity modulation bandwidth, and phase 

modulation depth are all functions of the power injection ratio, and we are working on 

identifying these parameters in order to calibrate and model our system more accurately. 

 

Fig. 3. (a) 16GHz real-time scope traces, (b) Corresponding Fourier-transforms, (c) Sample 

simulation, (d) Fourier-transform of 1GHz real-time scope trace (inset). 

3. Discussion 

In this work, we used direct current-modulation of the VCSELs to achieve intensity and phase 

modulation. Additionally, one can carefully modulate the VCSELs with a very small depth as 

to achieve phase-only modulation as in [6]. Furthermore, combination of a portion of the 

original master signal with the injection-locked phase-only modulated slave signal can yield 

precisely controlled intensity and phase modulation. 

Another, more preferred implementation of our pulse shaping scheme can be realized with 

a 1-Dimensional free space VCSEL array. This would eliminate the non-common fiber pigtail 

paths and improve the long term stability. However, in this case, alignment of the pulse shaper 

becomes more challenging due to the increased number of dimensions. Namely, every source 

frequency line should overlap with the individual VCSEL frequency injection-locking band, 

and individual VCSEL spatial location. Besides the alignment challenges, this implementation 

allows straightforward scaling of the number of VCSELs, especially via 2-Dimensional 

VCSEL arrays and 2-Dimensional pulse shaping [8]. Fabrication and electrical cross-connect 

wiring of 2-Dimensional VCSEL arrays are well-established techniques in the industry [9]. 

One advantage of the two dimensions is that scaling from a single channel to N channels 

requires a maximum of N
1/2

 increase in the physical dimensions of the system, therefore 

enabling scaling to hundreds of channels with minimized engineering challenges. 
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Fig. 4. Regular Reflective Diffraction Grating Based Pulse Shaper - Only one modulated 

Frequency Line is shown. 

It is evident in Fig. 2 and Fig. 3 that, as the modulation frequency was increased, the 

sideband power ratio diminished in the dynamic pulse shaper. This evidence points to a upper 

limitation of the modulation frequency of the optical comb lines. The commercial VCSELs 

used in the experiment had a free-running rise time of ~100ps, and the injection-locking 

process is expected to reduce the rise time even more to reach tens of GHz modulation 

bandwidth [10]. Thus, the main limitation of the upper modulation frequency of the optical 

comb lines is not the VCSELs, but rather the spectral multiplexer. In order to explain this, 

let’s assume a standard, reflective, “zero-dispersion 4-f” diffraction grating based line-by-line 

pulse shaper setup (Fig. 4). The pulse shaper includes two lenses for imaging the input light to 

the plane of the optical modulator array. In Fig. 4, for simplicity, only a single modulator 

pixel is shown corresponding to a single optical frequency comb line. The grating equation for 

a single comb line at the optical frequency of ν0 can be written as (Eq. (2)): 

 ( )
0

arcsin sin
in d

cG
θ θ

ν
 

= − 
 

  (2) 

where c is the speed of light, G is the groove density, θin is the input angle of the beam, and θd 

is the diffraction angle of the comb line of interest. The individual pixels of the spatial light 

modulator in a regular “static” pulse shaper are passive, and do not change the optical 

frequencies - they just introduce a static optical phase. However, in the case of active VCSELs 

along with modulation, new frequencies are generated. For a VCSEL injection-locking to the 

input optical frequency of ν0, a simple small-signal sine-wave modulation at fm generates the 

frequency components “ν0- fm” and “ν0+ fm”. The intensities of these components will depend 

on the strengths of phase modulation and intensity modulation of the VCSEL. The problem 

arises from the fact that, these new frequencies are emitted by the same VCSEL aperture that 

regenerates the original ν0 signal. Therefore, on the return path, the diffraction grating directs 

“ν0- fm” and “ν0+ fm” at slightly different angles (θ- and θ+) compared to ν0. Consequently, the 

newly generated frequencies do not couple back into the pulse shaper input aperture with the 

same efficiency as ν0. The angles θ- and θ+ are given by Eq. (3): 

 
( )

( )

( )
( )

0

0

arcsin sin

arcsin sin

d

m

d

m

cG

f

cG

f

θ θ
ν

θ θ
ν

−

+

 
= −  − 

 
= −  + 

  (3) 

If we assume a thin-lens with focal length FL1 at distance d, a single mode fiber with core 

diameter 2a as the aperture, and perfect coupling of the ν0 component back into the single 

#131060 - $15.00 USD Received 6 Jul 2010; revised 1 Aug 2010; accepted 3 Aug 2010; published 10 Aug 2010
(C) 2010 OSA 16 August 2010 / Vol. 18,  No. 17 / OPTICS EXPRESS  18289



mode fiber, the power coupling ratio of the new frequencies can be simply estimated in dB-

scale, shown below as P- and P+. Here, we show simplified analytical derivations of the 

phenomena, while a more generalized and detailed study can be found in [11]. We assume a 

flat beam profile for simplicity of the analytical derivation, however this can easily be 

extended to a Gaussian beam profile by the use of “Error Function” in the overlap integral 

calculations. In fact, the flat beam profile assumption gives a rather optimistic estimate of the 

coupling efficiencies compared to a Gaussian beam profile. Additionally, the numerical 

aperture (NA) of the single mode fiber is not considered due to the difference between (θ- and 

θ+) and θin being much smaller than the NA for practical implementations. 

 

{ }

[ ]

{ }
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  (4) 

It can be seen from Eq. (4) that, the modulation depth is reduced for the center line 

frequency ν0 due to the non optimal spectral multiplexing. In fact, for a 3-dB reduction and 

total cutoff of the new frequency components, the maximum modulation frequencies can be 

calculated as (the cosine term in the denominator ≈1): 

 

( )
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3 0

1

0
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sin arctan sin

2
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m dB

in d
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f
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f
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θ θ

ν
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−

−

 
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 = ± −    + +      

 
 
 = ± −    + +      

  (5) 

A plot showing the power coupling ratio for practical numbers of ν0 = 193.55 THz (1550 

nm wavelength), G = 1200 lines/mm, θin = 72.5°, a = 5µm,, d = 20cm and two cases of FL1 = 

4cm and FL1 = 20cm is displayed in Fig. 5. For a given focal length FL1, the power coupling 

ratio for the positive and negative sidebands are essentially equal as seen by overlapping lines 

in Fig. 5. The 3-dB modulation frequencies are calculated from Eq. (5) as ~3.91 GHz and 

~0.78 GHz for 4 cm and 20 cm focal lengths respectively. Almost no optical power couples 

back into the fiber for modulation frequencies beyond ~7.82 GHz and ~1.56 GHz for each 

case. Although the modulation speed is increased for smaller values of FL1, it should be noted 

that the spectral resolution (thus the generated waveform fidelity) of the pulse shaper is 

directly proportional to FL1 [1]. Consequently, there is a tradeoff between dynamic line-by-

line modulation speed and waveform fidelity. 

Similar equations can be derived for continuously dispersing VIPA and Arrayed 

Waveguide Grating (AWG) based pulse shapers. We believe this simple mechanism will be 
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the fundamental speed limitation of any pulse shaper that utilizes a continuous spectral-

disperser and high speed line-by-line modulation. 

Recently, new AWG designs yielding raised cosine filter functions were proposed for line-

by-line pulse shaping [12]. These AWGs are optimized for fixed discrete channels, and the 

filter function of each channel has a large overlap with adjacent channels. For standard high 

speed line-by-line modulation, these overlaps would cause crosstalk between channels, and 

limit modulation speed in a similar fashion as above. In order to avoid the crosstalk, more 

complicated modulation schemes such as I/Q modulation and pre-emphasis are required. 

Although this combination alleviates the problem, it increases the system complexity and cost, 

therefore we believe that it is not the best solution. 
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Fig. 5. Power Coupling Ratio into Input Aperture vs. Modulation Frequency for Uniform Beam 

Shape. 

4. Conclusion 

In conclusion, we have introduced a novel line-by-line pulse shaping scheme that enables 

potentially tens of GHz update rates with straight forward scalability for channel count. We 

have experimentally shown 4 individual lines sine-wave modulated at 0.4 to 1 GHz, 

generating an arbitrary waveform with a 5 ns period and 37.5 GHz bandwidth. We also 

discuss a simple fundamental mechanism that ultimately limits the modulation speed 

capability of any line-by-line pulse shaper that is based on continuous spectral dispersion. 
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