243 research outputs found

    Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses.

    No full text
    International audienceBioactive glasses prepared in SiO2-CaO-Na2O and P2O5 system are used as biomaterials in orthopaedic and maxillofacial surgery. Zn presents high physiological interest. It enhances physiological effects of implanted biomaterials. In this work, the thermal characteristics (Tg, Tc and Tf) of pure bioactive glass elaborated with different amounts of CaO, Na2O in pure glass and with different amounts of introduced Zn in glass (ranging from 0.1 to 10 in wt%), were studied. The excess entropy was calculated for different compounds. Glasses were prepared by the melting process. The thermal behaviour of obtained bioactive glasses was determined using differential thermal analysis. Therefore, the glass transition (Tg), the crystallization (Tc) and the melting temperatures (Tf) were revealed. Moreover, according to Dietzel formula, the thermal stability (TS) of the studied bioactive glasses has been calculated. The first results concerning the impact of different oxides, revealed a decrease of the TS, Tg, Tc and Tf when the SiO2/CaO increases and revealed an increase of these thermal characteristics when the SiO2/Na2O and CaO/Na2O ratios increase. Introducing Zn into the bioactive glasses induces a decrease of Tf and an increase of TS. Contrary to crystals, prepared glasses have entropy different to zero at T = 0 K and vary versus Tf. The excess entropy of pure glasses and Zn-doped glasses were calculated. The significant variations were registered

    New 92S6 mesoporous glass: Influence of surfactant carbon chain length on the structure, pore morphology and bioactivity

    No full text
    International audienceThe main objective of the present work was to investigate the effect of surfactant chain length on the structure, porosity and bioactivity of 92S6 (92% SiO2, 6% CaO, and 2% P2O5 mol%) mesoporous sol-gel glasses. The aim was to provide a basis for controlling the porosity of the glass to obtain a control of bioactive behavior. A series of mesoporous bioactive glasses were synthesized using three different surfactants (C10H20BrN, C19H42BrN, C22H48BrN). Surfactant type dependence on the textural properties, particularly porosity and bioactivity were studied. Result indicate that the bioactivity factors were improved by a short surfactant carbon length

    Evaluation of the kinetic and relaxation time of gentamicin sulfate released from hybrid biomaterial Bioglass-chitosan scaffolds

    No full text
    International audienceChitosan scaffolds, combined with bioactive glass 46S6, were prepared to serve as gentamicin sulfate delivery in situ systems for bone biomaterials. This work presents a study about the effect of the ratio chitosan/bioactive glass (CH/BG) on the release of gentamicin sulfate and on the bioactivity during in vitro experiments. SEM observations allowed understanding the bond between the glass grains and the chitosan matrix. In vitro results showed that scaffolds form a hydroxyapatite (HA) Ca10(PO4)6(OH)2 after 15 days of immersion in a simulated body fluid (SBF).The interest of this study is to see that the increase of the content of bioactive glass in the chitosan matrix slows the release of gentamicin sulfate in the liquid medium. Starting concentration of gentamicin sulfate has an influence on the relaxation time of the scaffolds. Indeed, an increasing concentration delays the return to a new equilibrium. Contents of chitosan and bioactive glass do not affect the relaxation time. Synthesized scaffolds could be adapted to a clinical situation: severity and type of infection, weight and age of the patient

    Thermal investigations of Ti and Ag-​doped bioactive glasses

    No full text
    International audienceThe purpose of this paper is to explore the effect of titanium and silver on the characteristic temperatures of 46S6 glass and the excess entropy. The results show that the adding of these metals in the chemical composition does not affect the amorphous character of glasses. The introduction of these elements greatly reduces the melting temperatures of glasses and involves similar variations on the crystallization and glass transition temperatures. These elements also increase the thermal stability of glasses. The excess entropy calculations show a decrease when the content of Ti or Ag increases. Contrary to crystals, synthesized glasses have entropy different to zero at T = 0 K

    Comparison of three types of physical aspects of a carbonated hydroxyapatite biomaterial: Study implantaion in vivo in rats of "Wistar" strain and physiological & physicochemical explorations

    Get PDF
    Currently, research on biomaterials must meet and demonstrate a set of therapeutic competence to level many health problems. The objective of our work is to normalize the technique of implantation of the biomaterial (carbonated hydroxyapatite: HAC). Three modes subcutaneous implantation was carried out. This technique consists to select the most tolerated by the body without toxicity. Thus, we have applied our biomaterial (HAC) in pellet form under pressure, under pressure sintering pellets and capsules for two weeks. Our results showed that the capsule did not disturb and mainted the equilibrium and balance or ferric ion phosphate balance, prevent against the toxicity of hepato-renal system by comparison with the pellets. These results demonstrated the tolerance, the biocompatibility and the integrity of apatite administered in capsule

    Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses

    No full text
    International audienceBioactive glasses belong to the ceramic family. They are good materials for implantation due to their excellent capacities to create an intimate bond with bones. Copper is known for its anti-inflammatory, antibacterial, and antifungal properties. Titanium is biocompatible and resistant to corrosion. These chemical elements can be introduced in bioactive glasses to provide a wide variety of uses and to enhance the physiological properties of implanted biomaterials. In this work, bioactive glasses doped with different contents of copper and titanium were synthesized by the melting method. The purpose is to study the effect of doping metal element on the thermal characteristics (T g, T c, and T f). The results revealed that the increase of the content of copper and titanium in the glass matrix decreases the melting temperature and induces an increase of the thermal stability. The excess entropies of pure and doped glasses were calculated. Obtained results highlighted the decrease of the excess entropy with the increase of metal elements contents

    Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds

    No full text
    International audienceScaffolds are implants used to deliver cells, drugs, and genes into the body in a local controlled release pattern which offers many advantages over systematic drug delivery. Composite scaffolds of polyvinyl alcohol (PVA) and quaternary bioactive glass (46S6 system) with different ratios of glass contents were prepared by the lyophilisation technique. The broad spectrum antibiotic ciprofloxacin (Cip) was impregnated to the scaffold during the fabrication in a concentration of 5, 10 and 20%. Biodegradation rate and in-vitro mineralization of the prepared scaffolds were performed by soaking the scaffolds in simulated body fluid (SBF). Phase identification, microstructure, porosity, bioactivity, mechanical properties and drug release pattern in PBS were characterized by XRD, SEM coupled with EDS, Hg-porosimeter, inductively coupled plasma-optical emission spectroscopy (ICP-OES), universal testing machine, fourier transform infrared (FTIR) and UV-spectrophotometer, respectively. A porous scaffold has been obtained with porosity up to 85%. By increasing the glass contents in the prepared scaffold the porosity and the degradation rate decrease however, the compressive strength was enhanced. A sustained drug release pattern was observed with a quasi-Fickian diffusion mechanism. The formulated ciprofloxacin loaded porous polyvinyl alcohol scaffold gave an acceptable physicochemical properties and was able to deliver the drug in a prolonged release pattern which offers a distinguish treatment for osteomylitis as well as local antibacterial effect

    Comparative Study of Nanobioactive Glass Quaternary System 46S6

    No full text
    International audienceDifferent bioactive glass systems have been prepared by sol-gel. However, the production of Na2O-containing bioactive glasses by sol-gel methods has proved to be difficult as the sodium nitrate used in the preparation could be lost from the glass structure during filtration and washing. The aim of this study was to prepare the quaternary system 46S6 of bioactive glass by modified sol-gel techniques with a decrease in the time of gelation. In addition, compare the behaviour of the prepared sol-gel bioactive glass system by its corresponding prepared by melting. The obtained glasses were characterized by using several physicochemical techniques; XRD, FTIR, TEM and SEM beside the effect of the glass particles on the viability of osteoblast like cells (Saos-2). Results show that nanopowders 40-60 nm of 46S6 glass system had been prepared by modified sol-gel (acid-base reaction) method at 600°C in just three days at 600°C. Cell viability by MTT assay confirmed the effectiveness of the prepared nanobioactive glass

    Study of bioactive glass ceramic for use as bone biomaterial in vivo: investigation by Nuclear Magnetic Resonance and Histology

    No full text
    International audienceThe performance of the porous glass ceramic doped with 10% wt Zinc and 2% wt TiN (46S6-10Zn),in the restoration of critical diaphyseal bone defect, was evaluated by several physicochemical methods and histological studies. The critical defect in rabbits was created and then filled with 46S6-10Zn. At different periods after implementation, animals were sacrificed. Samples were harvested for exploration. The nuclear magnetic resonance (MAS-NMR) of 31P and 29Si illustrates the progressive degradation of 46S6-10Zn in favor to of the formation and the development of biological apatite. Therefore, after one month of implementation, MAS- NMR 29Si proves the presence of Q2 (25%), Q3 (73%) and Q4 (2%). However, after six months, the disappearance of all these species was revealed and characterized by the 46S6-10Zn dissolution. Besides, MAS- NMR 31P demonstrates the presence of Qc° (4%), QHA° (55%) and Qa° (41%) after one month. Nevertheless, six months later, we observe the presence of QHA° (80%) and Qa° (20%). Histological study demonstrates an intimate contact of 46S6-10Zn surrounding bone after one month of implantation. However, after four months, mature bone matrix became calcified and the implanted 46S6-10Zn began to be degraded. Moreover, nine months later, 46S6-10Zn was nearly resorbed and replaced by a calcified tissue in the periphery and an osteoid tissue in the middle of bone defect

    Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: Responses to oxidative stress in ovariectomised rats.

    No full text
    The authors declare that they have no conflicts of interest concerning this article.International audienceNew synthetic biomaterials are constantly being developed for wound repair and regeneration. Bioactive glasses (BG) containing strontium have shown successful applications in tissue engineering account of their biocompatibility and the positive biological effects after implantation. This study aimed to assess whether BG-Sr was accepted by the host tissue and to characterize oxidative stress biomarker and antioxidant enzyme profiles during muscle and skin healing. Wistar rats were divided into five groups (six animals per group): the group (I) was used as negative control (T), after ovariectomy, groups II, III, IV and V were used respectively as positive control (OVX), implanted tissue with BG (OVX-BG), BG-Sr (OVX-BG-Sr) and presented empty defects (OVX-NI). Soft tissues surrounding biomaterials were used to estimate superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) concentration. Our results show that 60 days after operation, treatment of rats with BG-Sr significantly increased MDA concentration and caused an increase of SOD, CAT and GPx activities in both skin and muscular tissues. BG-Sr revealed maturation of myotubes followed a normal appearance of muscle regenerated with high density and mature capillary vessels. High wound recovery with complete re-epithelialization and regeneration of skin was observed. The results demonstrate that the protective action against reactive oxygen species (ROS) was clearly observed in soft tissue surrounding BG-Sr. Moreover, the potential use of BG-Sr rapidly restores the wound skin and muscle structural and functional properties. The BG advantages such as ion release might make BG-Sr an effective biomaterial choice for antioxidative activity
    • …
    corecore