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ABSTRACT
A method for improving the accuracy of hydrodynamical codes that use a moving Voronoi
mesh is described. Our scheme is based on a new regularization scheme that constrains the
mesh to be centroidal to high precision while still allowing the cells to move approximately
with the local fluid velocity, thereby retaining the quasi-Lagrangian nature of the approach.
Our regularization technique significantly reduces mesh noise that is attributed to changes in
mesh topology and deviations from mesh regularity. We demonstrate the advantages of our
method on various test problems, and note in particular improvements obtained in handling
shear instabilities, mixing, and in angular momentum conservation. Calculations of adiabatic
jets in which shear excites Kelvin Helmholtz instability show reduction of mesh noise and
entropy generation. In contrast, simulations of the collapse and formation of an isolated disc
galaxy are nearly unaffected, showing that numerical errors due to the choice of regularization
do not impact the outcome in this case.

Key words: methods: numerical – hydrodynamics – MHD

1 INTRODUCTION

New computational methods for fluid dynamics that employ a mov-
ing Voronoi mesh approach have been developed in the past several
years to simulate astrophysical and cosmological systems. Codes
based on this method include AREPO (Springel 2010), which
has recently been used to run the 12 billion resolution element
state-of-the-art “Illustris” cosmological simulation (Vogelsberger
et al. 2014a,b; Genel et al. 2014), TESS (Duffell & MacFadyen
2011), adapted for relativistic hydrodynamics, the moving mesh al-
gorithm presented in Gaburov, Johansen & Levin (2012) for the
simulation of magnetically levitating accretion disks around super-
massive black holes, and the RICH code (Steinberg et al. 2015).
The moving Voronoi framework has also been extended to finite-
element techniques (Mocz et al. 2014) and constrained transport
approaches for magnetohydrodynamics (MHD) to strictly maintain
the divergence-free nature of the magnetic field (Mocz, Vogels-
berger & Hernquist 2014). Related mesh-free methods have also
been developed by Hopkins (2014), which use Riemann solvers
acting over volume “overlaps”, and have similar advantages to the
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moving mesh approach, and have particularly good angular mo-
mentum conservation but at the cost of enhanced noise.

Moving mesh codes have found success due to the numerical
advantages they provide because of their quasi-Lagrangian nature,
Galilean-invariant formulation (for non-relativistic fluids), limited
advection errors, preservation of contact discontinuities, contin-
uous spatial adaptability, and ability to accurately resolve insta-
bilities. Notably, the moving mesh method provides advantages
over previous smoothed particle hydrodynamics (SPH) approaches,
which can suppress entropy generation by mixing, underestimate
vorticity generation in curved shocks, prevent efficient gas stripping
from infalling substructures (Sijacki et al. 2012), and have rela-
tively poor convergence properties (e.g. Zhu, Hernquist & Li 2015);
and also over adaptive mesh refinement (AMR) codes, which can
have large advection errors due to numerical diffusion in the pres-
ence of large supersonic bulk velocities.

However, moving Voronoi mesh codes can be affected by
noise on small spatial scales due to the mesh motion (Bauer &
Springel 2012; Hopkins 2014). As the mesh evolves, the orien-
tation and sizes of the faces and the topology of the connections
between cells change, introducing small truncation errors in the so-
lution, which can lead to artificial additional power on the smallest
scales (Bauer & Springel 2012) and numerical secondary instabil-
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ities in shear flows. The errors are largest in the presence of shear,
when the mesh cells move past each other and change face bound-
aries rapidly, because the standard moving mesh formulations as-
sume that the face orientations do not evolve significantly in one
timestep or may not adequately capture rapid changes. If the mesh
generating points strictly move with the fluid velocity, the mesh
noise can be quite large because the Voronoi cells can deform into
highly irregular shapes.

Mesh regularization, i.e., applying a small correction to the
mesh generating points of the cells in a way that keeps the cells
“well-behaved” (round and centroidal) provides a handle on this
error. The mesh generating points travel with the fluid velocity plus
some small correction to keep the mesh approximately regular and
centroidal. The approach taken by Springel (2010) adds a small cor-
rection in the direction of the center-of-mass at the beginning of the
time step (or sub time step in the case of higher-order time integra-
tion). Vogelsberger et al. (2012) modify this approach for cosmo-
logical simulations by considering the maximum opening angle of a
face at the mesh generating point and the density gradient direction
to set the correction. The correction term scales as the sound-speed
inside the cell, which ensures a timestep independent formulation.
We will refer to this class of regularization methods as sound-speed
regularization (SSR).

Despite keeping the cells approximately regular, these tech-
niques do not eliminate mesh noise entirely because there are sev-
eral small sources of error present in the formulation. First, the mo-
tion of the mesh generating points (and hence the change in the
orientation of the faces) is not smooth. The direction of the correc-
tion only takes into account the geometry at the beginning of the
time step. After the mesh advances to the next timestep, a small
offset between the mesh generating point and the center-of-mass
remains, which may point in an uncorrelated direction from that at
the beginning of the time step. The cell then obtains an small kick
in that uncorrelated direction, adding a small level of random noise
to the smooth mesh deformation. Second, a small offset exists in the
center-of-mass and mesh generating point. This causes the cells to
have some spin about their center of mass, and also introduces er-
rors in the second-order estimates of cell gradients (Springel 2010),
which assumes the two points coincide. This later issue has recently
been resolved in Pakmor et al. (2015), where an improved least-
squares-fit gradient estimator has been developed that can achieve
second-order accuracy for smooth flows.

Recently, Duffell & MacFadyen (2014) proposed a smoothing
of the velocities of the mesh generating points to alleviate the prob-
lem of mesh noise. Their scheme exhibits a reduction in: grid noise,
numerical secondary instabilities, and artificial power in the power-
spectrum of the solution field on the smallest spatial scales (al-
though not at the level of fixed grid codes). The smoothing method
overcomes the issue of the uncorrelated randomly directed correc-
tions that violate a fully smooth mesh motion. However, setting
the cell vertex velocities to the fluid velocity and smoothing by the
neighbours does not enforce a strongly centroidal mesh (only ap-
proximately centroidal; as do the other regularization methods in
the literature); deviations from a centroidal mesh introduce errors
in e.g. Green-Gauss gradient estimates. Moreover, in the presence
of shear flows, the cell velocities in this approach will be smoothed
out, reducing the code to a static mesh code, and thus losing the
desired properties of a moving mesh code such as advecting the
solution at high precision.

We have developed a new regularization scheme to address
the smoothness and strong-centroidality issues, which is presented
here. We refer to the method as strongly-centroidal Lloyd regu-

larization (LR). Our approach evolves the mesh in a smooth, cen-
troidal manner. Unlike the previous techniques, it accounts for
where the center-of-mass of a cell travels to at the end of a time
step in order to ensure the centroidal property, making it in essence
a forward-predicting, iterative Lloyd’s algorithm. The concept is
straightforward. The velocities of mesh generating points are ini-
tialized to the values of the local fluid velocity, and a few iterations
of corrections are applied to modify this velocity so that the cell
moves to the location of its center-of-mass at the end of the time
step. This results in a smoothly evolving centroidal Voronoi mesh
that moves approximately with the fluid velocity. The scheme may
optionally be modified to a weighted centroidal scheme (weighted
by the fluid density) for simulations with collapsing structure to
gain automatic increased resolution in regions of high density. We
demonstrate significant reduction of mesh noise with the new reg-
ularization scheme.

Developing reliable numerical codes that offer general adapt-
ability to a huge spatial and temporal dynamic range is an ongoing
challenge. Recently Pakmor et al. (2015) have improved the accu-
racy and angular momentum conservation for moving-mesh codes
by developing new time integration scheme and spatial gradient es-
timates in the AREPO code, significantly improving the precision
of the code in smooth test problems. In that work, the MUSCL-
Hancock (MH) scheme (Toro 1999) is replaced by a second-order,
time symmetric Runge-Kutta (RK) integrator via Heun’s method.
Additionally, the Voronoi-improved Green-Gauss (GG) gradient
estimates are replaced by a least-squares gradient estimator (LSF).
Our regularization complements these recent improvements for
smooth flows by improving the accuracy of moving mesh algo-
rithms when shear is present.

We describe the method and its computationally efficient im-
plementation in Section 2. Several numerical tests are performed
to show the advantages of our approach, the results of which are
presented in Section 3. We offer concluding remarks in Section 4.

2 STRONGLY-CENTROIAL LLOYD REGULARIZATION

The regularization scheme involves initially setting the velocity of
the mesh generating point wi of each cell i equal to the local fluid
velocity vi:

wi,0 = vi (1)

Then, in each successive iteration J , the predicted locations of the
centers-of-mass of the cells c̃i,J are computed at the end of the
timestep ∆t, and the mesh generating point velocities are updated
to:

wi,J = (c̃i,J − ri) /∆t (2)

where ri is the location of cell i at the beginning of the timestep.
This iteration is essentially a Lloyd’s algorithm for converging

an arbitrary Voronoi diagram to a centroidal one. We take 5 itera-
tions in the simulations shown, as the method quickly produces a
strongly centroidal mesh. We have explored this free parameter and
found that 2 iterations is sufficient to produce quantitatively very
similar results.

Optionally, a limiter on the magnitude of the correction to the
velocity may be added to explicitly enforce the motion of the mesh
generating particles to be close to Lagrangian. We propose the fol-
lowing, Galilean-invariant limiter, based on the local sound speed
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Figure 1. Comparison of KHI with the new (LR) and previous (SSR) regularization schemes at low and high resolution at t = 2.0. LR eliminates secondary
numerical instabilities, which are present in the simulations that use SSR, even with the recent RK and LSF improvements. For comparison, runs on a static
grid are also shown, which also do not have secondary numerical instabilities.

cs,i of the cell.

c̃i,J ← (ri + ∆twi,0) + (c̃i,J − (ri + ∆twi,0))

×min

(
1,

fcs,i∆t

‖c̃i,J − (ri + ∆twi,0)‖

)
(3)

That is, we restrict the motion of the cell to remain within a circle
of radius fcs,i∆t, (0 < f < 1) around the first predicted location
of the mesh vertex (which is just predicted by the fluid velocity).

The scheme may also be modified so that the centers-of-mass
c̃i,J are calculated by weighting with the density field, to bias the
movement of the cells to regions of high density. Alternatively, for
a simpler implementation with the same effect, the initial velocities
in Equation 1 may be biased by a density gradient term as in Vo-
gelsberger et al. (2012), to move cells together towards regions of
collapse.

An efficient implementation of the method does not require
new mesh reconstruction in each iteration. The center-of-mass of
cell i in the predictive step may be calculated by just using the
points that are neighbours of the cell at the beginning of the
timestep (kicking them forward in time to build the predictive
Voronoi cell). This strategy avoids additional in-circle tests. In
cases where the mesh topology changes, this is not strictly an exact
calculation of the center-of-mass, but the error is negligible since a
Voronoi diagram changes continuously.

3 NUMERICAL TESTS

3.1 Reduction of artificial secondary instabilities in the
Kelvin Helmholtz instability

As a first test, we demonstrate how the mixing and formation of
secondary instabilities in the Kelvin Helmholtz instability (KHI)
changes visibly from the original KHI tests that were presented in
the AREPO paper (Springel 2010) using SSR. The setup of the ini-
tial conditions of this shear flow is described in Springel (2010).
The evolved KHI at t = 2.0 is presented in Fig. 1 with both the
LR and SSR schemes, at low and high resolutions. With the LR ap-
proach, we have enforced near-Lagrangian motion with the correc-
tion limiter parameter of f = 0.1. We ran the LR simulation with
the old MH integrator and the GG gradient estimates. For com-
parison, we ran the SSR simulation in the MH integrator and GG
gradient estimates mode, as well as the new RK integrator and LSF
gradient estimates mode.

The SSR scheme shows evidence of mesh noise at both low
and high resolutions; there is structure present on the scale of the
mesh size, at either resolution. The LR method produces a result
that is smooth and in agreement with high resolution fixed-grid
simulations in terms of the secondary instabilities that develop (c.f.
the static mesh runs shown for comparison in Fig. 1, or the static
mesh runs in Fig. 34 of Springel (2010), or the static mesh finite-
element simulations in Fig. 8 of Mocz et al. (2014)). Small scale
secondary instabilities that are present with the SSR scheme disap-
pear with the new LR method. The density field can be said to be
well-resolved with the LR technique because there are no structures
on the length scale of the cell size. It is worth pointing out that the
solution is not exactly symmetric at high resolution because trun-
cation errors lead to chaotic behaviour. We claim the secondary in-
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Figure 2. Comparison of KHI with the SSR and LR schemes at low and high resolution. The LR scheme eliminates secondary numerical instabilities.

stabilities present in the old SSR scheme runs are purely numerical
artifacts, which we demonstrate below with a second KHI test.

We investigate the KHI setup of McNally, Lyra & Passy
(2012), which is a benchmark test in which only a single mode
is excited and analytic theory exists to predict the growth rate. Very
high resolution simulations of the instability are performed in Mc-
Nally, Lyra & Passy (2012) using the 6-th order (in space) finite
difference PENCIL code. In Fig. 2, we show that the SSR scheme
produces secondary instabilities on the scale of the cell size, which
are not present with the LR approach. The growth rate of the pri-
mary mode of the instability of this test is still simulated accurately

with both regularization methods and agrees with theory, as calcu-
lated and presented in Fig. 3; only at late times (in the non-linear
regime) are small deviations observed in the growth rate of the in-
stability simulated with the two regularization techniques, where
we expect the LR scheme is providing more accurate results due to
the suppression of the secondary numerical instabilities.

We explore the Lagrangian nature of the SSR and LR schemes
in Fig. 4, where we plot the relative changes in the mass of each
cell as a function of time. In a purely Lagrangian scheme, there
is no mass exchange between particles. We see that the SSR and
LR schemes saturate to the same level of mass exchange, regard-
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Figure 3. Growth rates of the KHI simulated using the two regularization
methods both show good agreement at early times with theory.
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Figure 4. Comparison of the mass of each cell as a function of time in a
KHI simulation for the different regularization schemes (static mesh, SSR,
LR with 1/4 the time step, LR). The lines and shaded regions represent the
quartiles of the distribution.

less of whether the timestep is decreased by a factor of 4. Hence,
we observe no strong implicit dependence of the deviation from
Lagrangian behaviour on the time step. We have also explored re-
ducing the number of Lloyd iterations from 5 to 2, and the mass
exchange as function of time and the density solution at t = 2 do
not change noticeably, so they are not shown. The mass exchange
on a static mesh saturates to a higher level than the moving mesh
approaches due to its Eulerian nature.

3.2 Reduction of noise in the MHD Orszag-Tang Vortex

We next consider simulations of the Orszag-Tang vortex (Orszag
& Tang 1979), a common MHD test problem that involves super-
sonic shocks and decaying turbulence. The setup of the problem
is described in detail in Mocz, Vogelsberger & Hernquist (2014).
We solve the system using the constrained transport algorithm
for a moving mesh described in Mocz, Vogelsberger & Hernquist
(2014). The outputs of the simulation at t = 0.5 are presented
in Fig. 5. The SSR scheme produces numerical noise in the den-

sity field, particularly at the locations of shocks and shear flows
(compare the center and the shocks in the four cardinal directions
in the image). The degree of these numerical noise errors can be
changed by altering the mesh regularization parameters of the SSR
technique, but it is difficult a priori to predict to what extent. For
the tests presented here, we chose the typical values suggested in
Springel (2010), and also explored stronger regularization parame-
ters, but found that the noise does not go away completely because
the corrections to the mesh generating point locations are not ap-
plied in precisely the right directions to keep the cells centroidal to
high precision. These numerical artifacts, however, are completely
eliminated by the LR scheme, which produces a clean, smooth so-
lution. We note that there are no parameters to adjust in the LR
approach: the simulation was run without the optional Lagrangian-
enforcer (i.e., f =∞).

In Fig. 5 we tagged cells initially on the y = 0 axis at t = 0
to show where they finish at the end of the simulation, to demon-
strate that both regularization methods move the cells approxi-
mately with the fluid flow, as they land approximately in the same
places, demonstrating that the scheme is quasi-Lagrangian. Thus,
just a tiny correction to the cell vertex velocities can have large
implications on the amount of grid noise in the solution: directed
at the right orientations they can be used to remove the grid noise
almost entirely.

We verify that the LR scheme keeps the mesh regularized to
a much higher degree. A histogram of the relative center-of-mass,
mesh generating point offset for the two regularization techniques
is shown in Fig. 6. The LR method shows over an order of mag-
nitude improvement, and can be arbitrarily improved with more
iterations in the regularization algorithm. The offsets in the SSR
scheme, on the other hand, can be quite large (> 10 per cent of the
cell’s effective radius).

3.3 Proper 2nd order convergence in Yee Vortex and
Improved Angular Momentum Conservation

With the LR scheme, we can achieve formal second order conver-
gence with a moving Voronoi mesh code, which has been long-
standing issue (see also Pakmor et al. (2015) which achieves second
order accuracy using an RK integrator and LSF gradient estimates).
In many applications second-order convergence is not possible be-
cause the astrophysical flows generate shocks, and in the presence
of these shocks the slope limiter reduces the order of accuracy to
first-order in order to maintain numerical stability across discon-
tinuities. However, second-order convergence should be expected
for smooth flows.

We achieve second order convergence by using the LR scheme
and the time-symmetric RK integrator (Pakmor et al. 2015) but un-
like Pakmor et al. (2015) we can use GG gradient estimates since
the mesh remains highly centroidal. The RK integrator averages a
flux calculated with the mesh geometry at the beginning and end of
the time step, instead of using just the mesh geometry at the begin-
ning of the time step as the original MH integrator of AREPO does.
We demonstrate the ability of the code with the new LR scheme to
show second-order convergence in the Yee vortex problem, a 2D
isentropic, differentially-rotating, steady-state smooth flow (Yee,
Sandham & Djomehri 1999).

The flow is described with parameters Tinf = 1, β = 5, γ =
1.4, and box size L = 10. The temperature, density, velocity, and
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Figure 5. Density field at t = 0.5 in the Orszag-Tang vortex simulated with the SSR and LR schemes. The LR scheme eliminates noise at locations of shocks
and shear flow in the simulation. A number of cells are tagged in black (initially on the y = 0 axis at t = 0) to visually verify that they have travelled to
similar locations at the end of the simulation.

pressure profiles are given as follows.

T (r) = Tinf −
(γ − 1)β2

8γπ2
e1−r

2

(4)

ρ(r) = T 1/(γ−1) (5)

vx(r) = −y β
2π

e(1−r
2)/2 (6)

vy(r) = x
β

2π
e(1−r

2)/2 (7)

P (r) = ργ/γ (8)

We simulated this flow to t = 10, a time at which the vor-
tex has differentially rotated several times. Fig. 7 shows a well be-
haved profile using the LR scheme, but a noisy one with the SSR
technique, even with the RK time integrator. We see that due to the
presence of this mesh noise, the SSR method is unable to achieve
second-order convergence of the L1 norm error of the density pro-
file, as shown in the convergence plot Fig. 8. Beyond some fairly
low resolution, the mesh noise dominates the error in this test prob-
lem. However, this noise is removed with the LR scheme.

We simulate the flow much longer, up to t = 100 to study the
long term behaviour of the angular momentum. The L1 norm error
of the angular momentum is reduced by an order of magnitude once
the LR scheme is added, as shown in Fig. 9, and grows with time
in a predictable manner as t0.5 for this problem. The angular mo-
mentum without the LR scheme can fluctuate unpredictably due to
mesh noise, as also shown in Fig. 9. The total angular momentum
is well behaved with the LR and RK time integrator improvements,
as shown in Fig. 10, while with the original formulation of AREPO

it can grow non-linearly, which has previously placed some limita-
tions on the application of moving Voronoi mesh codes like AREPO

or TESS for rotationally symmetric accretion flows. With the LR
scheme, we have improved the angular momentum conservation of
the moving mesh approach, and at the same time reduced the mesh
noise.

The well-behaved convergence with LR is achieved because
there are no errors in the gradient estimate present that are caused
by deviations from a fully centroidal mesh, which again result from
the noise in the movement of the mesh-generating points. We em-
phasise that the combination of GG gradients and a centroidal mesh
even guarantees second order accurate gradients, whereas LSF gra-
dients are only first order accurate in general (for a Cartesian mesh,
they are also second order).

3.4 Reduction of artificial power in turbulence test

We present the results of 3D subsonic driven turbulence, whose
setup is described in Bauer & Springel (2012), and was also pre-
sented in Mocz et al. (2014), where the system was investigated
using finite-element methods. The energy power spectrum for such
a turbulent system is well described by a Kolmogorov power-law
on the range of spatial scales that are resolved by the mesh. How-
ever, the energy cascade is artificially limited by the sizes of the
cells, and there is excess artificial accumulation of energy on these
scales. This excess build-up typically has tended to be larger in
moving mesh codes than in static mesh codes, with mesh noise be-
ing a likely culprit as it adds fluctuations on the length scale of the
cell size. In Fig. 11, we show that the artificial accumulation of en-
ergy on the scale of the cells is reduced with the LR approach. The
LR run used a Lagrangian enforcing parameter of f = 0.1, same
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offset for the two regularization methods. The LR scheme shows over an
order of magnitude improvement. The errors in the SSR technique can be
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Figure 7. The density profile of the Yee vortex at t = 10, with the SSR and
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with the LR method. The LR eliminates the mesh noise.

as the KHI simulations, chosen so that the relative offsets between
centres-of-mass and mesh generating points are reduced by at least
an order of magnitude from the SSR scheme.

We study the Lagrangian nature of the simulations by adding
passive Monte Carlo tracers in the turbulence tests, as in Genel et al.
(2013). The number of exchanges between cells,Nexch, that Monte
Carlo tracers experience as a function of time, should be ideally
zero in a fully-Lagrangian code. We plot the evolution of this quan-
tity in Fig. 12. The LR and SSR methods show greatly reduced
exchanges from a static mesh run, as expected. For a Lagrangian
enforcing parameter of f = 0.1, the LR scheme exhibits somewhat
more exchanges than the SSR scheme. The exchange number can
be reduced by decreasing f to make the Lagrangian enforcement
stronger, at the cost of weakening the strongly centroidal condition.
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3.5 Adiabatic jet simulations with KHI

As a test of the new regularization method in an astrophysical con-
text where it is expected to have an impact, we present simulations
of heavy, supersonic, adiabatic jets that have a helical mode ex-
cited which triggers the KHI, following the setup of Bodo et al.
(1998); Micono et al. (2000). This situation is ideal for the study of
different phases of the temporal evolution as a function of sound-
crossing time. The jet has a surrounding gas density to jet density
ratio of ν = 0.1, and a supersonic Mach number of M = 10.
Our simulations are in 3D and use 5 million cells. In Figure 13, we
present the results of the simulation at a point where the KHI has
developed and shredded the jet. The LR scheme shows lower level
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Figure 13. Simulation of an M = 10, heavy, adiabatic jet with the two
regularization methods. The cross-sections are at time t = 7 sound-crossing
times. Entropy generation is higher at late times with the SSR scheme than
with the LR scheme.

of mesh noise and entropy generation than the SSR technique at
late times in the simulation.

3.6 Isolated galaxy formation

Finally, we simulate the formation of an isolated disk galaxy with
magnetic fields similar to the Milky Way, following the setup of
Pakmor & Springel (2013). The initial gas sphere in the simulation
is in hydrostatic equilibrium (without radiation), but collapses due
to radiative cooling. The gas has some initial angular momentum,
and settles into a dense, rotationally supported disk. Regions in the
disc can fragment and are allowed to form stars. In this simulation
with collapse, we bias the initial velocities of the mesh generating
points by the density gradient term as in Vogelsberger et al. (2012),
before applying the Lloyd regularization, in order to closely follow
the collapse. We present the results of the simulations under the LR
and SSR schemes as well as time evolution of some global prop-
erties in Figure 14, and find the results are unaffected by the regu-
larization because mesh noise errors are sub-dominant. The simu-
lations have a mass resolution of 106 M�.
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Figure 14. Simulation of the formation of an isolated magnetic disc using the two regularization schemes. The first two panels show a slice of the gas density
field, while the third panel shows the time evolution of mass of stars and gas within a 15 kpc radius. Regularization does not affect the global properties of the
simulation. The density scale covers −5 ≤ log10 ρ ≤ −0.8.

4 CONCLUDING REMARKS

In summary, we have presented a new regularization scheme, Lloyd
Regularization (LR) for moving Voronoi mesh codes that signifi-
cantly reduces mesh noise and improves convergence and angular
momentum conservation. These advantages are gained because the
new LR scheme keeps the cells centroidal to a high degree by ap-
plying a forward-predicting Lloyd iteration correction to the mesh
generating point. The regularization scheme will improve the sci-
ence applications of moving mesh codes used in astrophysics, par-
ticularly in systems where shear flows exist. The LR scheme allows
moving mesh codes to capture the physics of fluid instabilities more
accurately than earlier methods, which are thought to be important
for jet dynamics and gas stripping in galaxies. The correct level
of turbulence and entropy generation is also improved with the re-
duction of mesh noise through this method. The improvements are
most relevant for shear flows, and complements the recent moving-
mesh improvements for smooth solutions of Pakmor et al. (2015).
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2012, MNRAS, 424, 2999 1

Springel V., 2010, MNRAS, 401, 791 1, 3.1, 3.2
Steinberg E., Yalinewich A., Sari R., Duffell P., 2015, ApJS, 216,

14 1
Toro E. F., 1999, Riemann solvers and numerical methods for fluid

dynamics. 1
Vogelsberger M. et al., 2014a, Nat, 509, 177 1
—, 2014b, MNRAS, 444, 1518 1
Vogelsberger M., Sijacki D., Kereš D., Springel V., Hernquist L.,
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