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Abstract

When modeling game situations of incomplete information one usually
considers the players’ hierarchies of beliefs, a source of all sorts of compli-
cations. Harsányi (1967-68)’s idea henceforth referred to as the ”Harsányi
program” is that hierarchies of beliefs can be replaced by ”types”. The
types constitute the ”type space”. In the purely measurable framework
Heifetz and Samet (1998) formalize the concept of type spaces and prove
the existence and the uniqueness of a universal type space. Meier (2001)
shows that the purely measurable universal type space is complete, i.e., it
is a consistent object. With the aim of adding the finishing touch to these
results, we will prove in this paper that in the purely measurable frame-
work every hierarchy of beliefs can be represented by a unique element of
the complete universal type space.

1 Introduction

It is recommended that the models of incomplete information situations be able
to handle the players’ hierarchies of beliefs, e.g. player 1’s beliefs about the
parameters of the game, player 1’s beliefs about player 2’s beliefs about the
parameters of the game, player 1’s beliefs about player 2’s beliefs about player
1’s beliefs about the parameters of the game, and so on to infinity. The explicit
use of hierarchies of beliefs1, however, makes the analysis very cumbersome,
hence it is desirable that those should not appear explicitly in the models.

In order to make the models of incomplete information situations more
amenable to analysis, Harsányi (1967-68) proposes to replace the hierarchies
of beliefs by types. There are two approaches to examine the connection be-
tween types and hierarchies of beliefs. The first one, when we take a type space
as a primitive, in this case each player’s each type in the given type space de-
fines a hierarchy of beliefs of the given player (see e.g. Battigalli and Siniscalchi
(1999) or the proof of Proposition 18 in Section 4).
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In the second case, we take hierarchies of beliefs first, then we ”construct” a
type space of the considered hierarchies of beliefs (see e.g. Mertens and Zamir
(1985), Brandenburger and Dekel (1993), Heifetz (1993), Mertens et al (1994),
Pintér (2005) among others). It is an open question in this field whether the two
approaches are equivalent, i.e., whether there is a type space containing every
hierarchy of beliefs or equivalently whether every hierarchy of beliefs is a type.

Harsányi’s main concept is that the types can substitute for the hierarchies
of beliefs, and all types can be collected into an object on which the probability
measures represent the players’ (subjective) beliefs. Henceforth, we call this
method of modeling the ”Harsányi program”.

However, at least two questions come up in connection with the Harsányi
program: (1) Is the concept of types itself appropriate? (2) Can every hierarchy
of beliefs be a type?

Question (1) consists of two subquestions. First, can all types be collected
into one object? The concept of universal type space formalizes this requirement:
the universal type space in a certain category of type spaces is a type space (a)
which is in the given category and (b) into which, every type space of the given
category can be ”embedded” in a unique way. In other words, the universal
type space is the most general type space, it contains all type spaces (all types).
In the purely measurable framework Heifetz and Samet (1998) introduces the
concept of universal type space and proves that the universal type space exists
and is unique.

Second, can any probability measure on the object of the collected types
(states of the world) be a (subjective) belief? Brandenburger (2003) introduces
the notion of complete type spaces: a type space is complete, if its type func-
tions are surjective (onto). Roughly speaking, a type space is complete, if each
probability measure on the object consisting of the types of the model is as-
signed to a type. Meier (2001) shows that the purely measurable universal type
space is complete.

We can now conclude that the answer for question (1) is affirmative, i.e., in
the purely measurable framework the complete universal type space exists.

Question (2) is whether the universal type space contains every hierarchy
of beliefs. Mathematically, the problem is as follows: every hierarchy of be-
liefs defines an inverse system of probability measure spaces; the question is
the following: do these inverse systems of probability measure spaces have in-
verse limits? Kolmogorov Extension Theorem is about this problem, however it
calls for topological concepts, e.g. for (inner compact) regular probability mea-
sures. Therefore up to now, all papers on this problem, e.g. Böge and Eisele
(1979), Mertens and Zamir (1985), Brandenburger and Dekel (1993), Heifetz
(1993), Mertens et al (1994), Pintér (2005) among others, use topological type
spaces instead of purely measurable ones. Although these papers give a positive
answer to question (2), i.e., their type spaces contain all ”considered” hierar-
chies of beliefs, very recently Pintér (2010b) shows that there is no universal
topological type space, i.e., there is no topological type space which contains
every topological type space, therefore the answer for question (1) is negative in
this case, put it differently, in the topological framework the Harsányi program
fails.

In the above mentioned papers the authors answer question (2) (affirma-
tively) by constructing an object consisting of all considered hierarchies of be-
liefs, called beliefs space, and show that the constructed beliefs space defines (is
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Purely measurable setting Topological setting
Question (1)

√ ∅
Question (2)

√ √

Table 1: The Harsányi program

equivalent to) a topological type space.
It is worth mentioning that the above papers use different concepts of hi-

erarchies of beliefs; e.g. in Mertens and Zamir (1985) the parameter space is
a compact topological space, the beliefs are (inner closed) regular probability
measures, and the events (for higher order beliefs) are the Borel sets of weak*
topologies, in Brandenburger and Dekel (1993) the parameter space is a Pol-
ish space, the beliefs are probability measures and the events (for higher order
beliefs) are the Borel sets of weak* topologies, while in Heifetz (1993) the pa-
rameter space is a Hausdorff topological space, the beliefs are (inner compact)
regular probability measures, and the events (for higher order beliefs) are the
Borel sets of weak* topologies, and so on. Therefore, the concept of hierarchy
of beliefs is different from paper to paper, from setting to setting.

In this paper we work with the category of type spaces introduced by Heifetz and Samet
(1998), i.e., we consider the purely measurable framework (with purely measur-
able type spaces, see Definition 4, and with purely measurable hierarchies of
beliefs, see Definition 13). Our main result is that in the purely measurable
framework every hierarchy of beliefs is a type, put it differently, the Harsányi
program works in the purely measurable setting.

The strategy of the proof is the same as in the above mentioned papers on
topological type spaces, i.e., we construct an object such that (1) it contains
every hierarchy of beliefs (see Definition 13) and (2) it generates a type space.
More exactly, it is showed that the purely measurable beliefs space is equivalent
to the purely measurable complete universal type space, we mean those are
measurable isomorphic.

As we have already mentioned, the proof that the universal type space con-
tains every hierarchy of beliefs is based on the Kolmogorov Extension Theorem.
Since we work in the purely measurable framework, we avoid using topologi-
cal concepts, and apply a non-topological variant of the Kolmogorov Extension
Theorem. Mathematically speaking, we take a new result of Pintér (2010a) to
show that the inverse systems of probability measure spaces under consideration
(the purely measurable hierarchies of beliefs) have inverse limits.

The intuition behind our result is that the purely measurable hierarchies of
beliefs are special stochastic processes. No new information enters the process,
i.e., the players do not learn anything new (about the states of the world) when
they are “thinking“ (considering their hierarchies of beliefs). In general, the hier-
archies of beliefs, however, do not have this property, e.g. in Heifetz and Samet
(1999)’s example the players can learn new things (about the states of the world)
when they are “thinking”.

In our opinion, the purely measurable approach, where the players do not
learn anything new about the states of the world, very accurately reflects the
intuition that the hierarchies of beliefs are “only“ descriptions of the players’
beliefs. Moreover, this accuracy makes it possible to achieve our positive result.

One important remark: our result does not contradict Heifetz and Samet
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(1999)’s counterexample, because their non-type hierarchy of beliefs is not in
the purely measurable beliefs space (for details see Section 5).

The paper is organized as follows: Section 2 presents the technical setup and
some basic results of the field. Our main result (Theorem 14) comes on stage
in Section 3, and in Section 4 we present the proof of Theorem 14. Section
5 is for the detailed discussion of the connection between our result and two
other papers Heifetz and Samet (1999) and Pintér (2010b). The last section
briefly concludes. The mathematics of the proof of Theorem 14 is relegated to
Appendix A.

2 The type space

Notation: Let N be the set of the players, w.l.o.g. we can assume that 0 /∈ N ,
and let N0 ⊜ N ∪ {0}, where 0 is for the nature as a player.

Let #A be the cardinality of set A. For any set system A ⊆ P(X): σ(A)
is the coarsest σ-field which contains A. Let (X,M) and (Y,N ) be measurable
spaces, then (X × Y,M⊗N ) or briefly X ⊗ Y is the measurable space on the
set X × Y equipped with the σ-field σ({A×B | A ∈M, B ∈ N}).

The measurable spaces (X,M) and (Y,N ) are measurable isomorphic if
there is a bijection f between them such that both f and f−1 are measurable.

For any measurable space (X,M) and for any point x ∈ X : δx is for the
Dirac measure on (X,M) concentrated at point x.

In the following, we use terminologies that are very similar to Heifetz and Samet
(1998)’s.

Definition 1. Let (X,M) be a measurable space and denote ∆(X,M) the set
of the probability measures on it. Then the σ-field A∗ on ∆(X,M) is defined
as follows:

A∗ ⊜ σ({{µ ∈ ∆(X,M) | µ(A) ≥ p}, A ∈M, p ∈ [0, 1]}) .
In other words, A∗ is the smallest σ-field among the σ-fields which contain the
sets {µ ∈ ∆(X,M) | µ(A) ≥ p}, where A ∈ M and p ∈ [0, 1] are arbitrarily
chosen.

In incomplete information situations it is recommended to consider events
like a player believes with probability at least p that a certain event occurs
(beliefs operator see e.g. Aumann (1999b)). For this reason, for any A ∈M and
for any p ∈ [0, 1]: {µ ∈ ∆(X,M) | µ(A) ≥ p} must be an event (a measurable
set). To keep the class of events as small (coarse) as possible, we use the A∗

σ-field.
Notice that A∗ is not a fixed σ-field, it depends on the measurable space

on which the probability measures are defined. Therefore A∗ is similar to the
weak∗ topology, which depends on the topology of the base (primal) space.

Assumption 2. Let the parameter space (S,A) be a measurable space.

Henceforth we assume that (S,A) is a fixed parameter space which contains
all states of the nature.
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Definition 3. Let Ω be the space of the states of the world and for each i ∈ N0:
letMi be a σ-field on Ω. The σ-fieldMi represents player i’s information,M0

is for the information available for the nature, hence it is the representative of
A, the σ-field of the parameter space S. Let M ⊜ σ(

⋃

i∈N0

Mi), the smallest

σ-field which contains all σ-fields Mi.

Each point in Ω provides a complete description of the actual state of the
world. It includes both the state of nature and the players’ states of the mind.
The different σ-fields are for modeling the informedness of the players, they have
the same role as e.g. the partitions in Aumann (1999a)’s paper have. Therefore,
if ω, ω′ ∈ Ω are not distinguishable 2 in the σ-fieldMi, then player i is not able
to discern the difference between them, i.e., she believes the same things and
behaves in the same way at the two states ω and ω′. M represents all informa-
tion available in the model, it is the σ-field got by pooling the information of
the players and the nature.

For the sake of brevity, henceforth – if it does not make confusion – we do
not indicate the σ-fields. E.g. instead of (S,A) we write S, or ∆(S) instead of
(∆(S,A),A∗). However, in some cases we refer to the non-written σ-field: e.g.
A ∈ ∆(X,M) is a set of A∗, i.e., it is a measurable set in the measurable space
(∆(X,M),A∗), but A ⊆ ∆(X,M) keeps its original meaning: A is a subset of
∆(X,M).

Definition 4. Let (Ω,M) be the space of the states of the world (see Definition
3). The type space based on the parameter space S is a tuple (S, {(Ω,Mi)}i∈N0

,
g, {fi}i∈N ), where

1. g : Ω→ S is M0-measurable,

2. for each i ∈ N : fi : Ω→ ∆(Ω,M−i) is Mi-measurable,

3. for each i ∈ N , ω ∈ Ω, A ∈ M−i such that there exists A′ ∈ Mi, ω ∈ A′

and A′ ⊆ A: fi(ω)(A) = 1,

whereM−i ⊜ σ(
⋃

j∈N0\{i}

Mj).

Put Definition 4 differently, S is the parameter space, it contains the ”types”
of the nature. Mi represents the information available for player i, hence it
corresponds to the concept of types (see Harsányi (1967-68)). fi is the type
function of player i, it assigns player i’s (subjective) beliefs to her types.

The above definition of type space differs from Heifetz and Samet (1998)’s
concept, but it is similar to the type space of Meier (2001) and Meier (2008).
We do not use a Cartesian product space, and refer only to the σ-fields. By
following strictly Heifetz and Samet (1998)’s paper, if one takes the Cartesian
product of the parameter space and the type sets, and defines the σ-fields as
the σ-fields induced by the coordinate projections (e.g. M0 is induced by the
coordinate projection pr0 : S ××i∈NTi → S, for the notations see their paper),
then she gets our concept. However, if the Cartesian product is not used directly,
then it is necessary to put the parameter space into the type space in some way.

2Let (X, T ) be a measurable space and x, y ∈ X be two points. x and y are measurably
indistinguishable if ∀A ∈ T : (x ∈ A) ⇔ (y ∈ A).
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For doing so we use g (Mertens and Zamir (1985) use a similar formalism),
hence g and pr0 have the same role in the two formalizations, in ours and in
Heifetz and Samet (1998) respectively.

A further difference between the two formalizations lies in the role of the
parameter space. While in Heifetz and Samet (1998) the entire parameter space
”is in” the space of the states of the world, in our approach that is not required.
We emphasize that this difference is not relevant.

Definition 5. The mapping ϕ : Ω→ Ω′ is a type morphism between type spaces
(S, {(Ω,Mi)}i∈N0

, g, {fi}i∈N) and (S, {(Ω′,M′
i)}i∈N0

, g′, {f ′
i}i∈N ) if

1. ϕ is an M-measurable mapping,

2. Diagram (1) is commutative, i.e., for each ω ∈ Ω: g′ ◦ ϕ(ω) = g(ω),

Ω

Ω′

ϕ

❄ g′
✲ S

g

✲

(1)

3. for each i ∈ N : Diagram (2) is commutative, i.e., for each i ∈ N , ω ∈ Ω:
f ′
i ◦ ϕ(ω) = ϕ̂i ◦ fi(ω),

Ω
fi

✲ ∆(Ω,M−i)

Ω′

ϕ

❄ f ′
i ✲ ∆(Ω′,M′

−i)

ϕ̂i

❄

(2)

where ϕ̂i : ∆(Ω,M−i) → ∆(Ω′,M′
−i) is defined as follows: for all µ ∈

∆(Ω,M−i), A ∈ M′
−i: ϕ̂i(µ)(A) = µ(ϕ−1(A)). It is a slight calculation

to show that ϕ̂i is a measurable mapping.

ϕ type morphism is a type isomorphism, if ϕ is a bijection and ϕ−1 is also a
type morphism.

The above definition is practically the same as Heifetz and Samet (1998)’s,
hence all intuitions, they discussed, remain valid, i.e., the type morphism assigns
type profiles from a type space to type profiles in an other type space in the
way the corresponded types induce equivalent beliefs. In other words, the type
morphism preserves the players’ beliefs.

The following result is a direct corollary of Definitions 4 and 5.

Corollary 6. The type spaces based on the parameter space S as objects and
the type morphisms form a category. Let CS denote this category of type spaces.

Heifetz and Samet (1998) introduce the concept of universal type space.
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Definition 7. The type space (S, {(Ω,Mi)}i∈N0
, g, {fi}i∈N ) is a universal type

space, if for any type space (S, {(Ω′,M′
i)}i∈N0

, g′, {f ′
i}i∈N ) there exists a unique

type morphism ϕ : Ω′ → Ω.

In other words, the universal type space is the most general, the broadest
type space among the type spaces. It contains all types which appear in the
type spaces of the given category.

In the language of category theory Definition 7 means the following:

Corollary 8. The universal type space is a terminal (final) object in category
CS.

From the viewpoint of category theory the uniqueness of a universal type
space is a straightforward statement.

Corollary 9. The universal type space is unique up to type isomorphism.

Proof. Every terminal object is unique up to isomorphism. �

The only question is the existence of a universal type space. Next, we present
a result which is an adaptation of Heifetz and Samet (1998) Theorem 3.4 to our
setting.

Proposition 10. There exists a universal type space, in other words, there is
a terminal object in category CS.

As we have already mentioned, Heifetz and Samet (1998)’s formalization
of type spaces is different from ours. Since the difference between the two
approaches is quite slight and we prove a stronger result in Theorem 14, we
omit the proof of the above proposition.

Next, we turn our attention to an other property of type spaces, to the
completeness.

Definition 11. The type space (S, {(Ω,Mi)}i∈N0
, g, {fi}i∈N ) is complete, if for

each i ∈ N : fi is surjective (onto).

Brandenburger (2003) introduces the concept of complete type space. The
completeness recommends that for any player i, any probability measure on (Ω,
M−i) be in the range of the given player’s type function. In other words, for
any player i, any measure on (Ω,M−i) must be assigned (by the type function
fi) to a type of player i. The following proposition is practically the same as
Meier (2001)’s Theorem 4.

Proposition 12. The universal type space is complete.

Although Meier (2001)’s type space is different from ours, the difference is
slight, moreover, we prove a stronger result in Theorem 14, hence we also omit
the proof of the above proposition.

3 The beliefs space

In this section we formalize the intuition of hierarchies of beliefs, as Harsányi
(1967-68) calls them the ”infinite regress in reciprocal expectations.” First, we
give a rough description (see Mertens and Zamir (1985)):
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T0 ⊜ S
T1 ⊜ T0 ⊗∆(T0)

N

T2 ⊜ T1 ⊗∆(T1)
N = T0 ⊗∆(T0)

N ⊗∆(T0 ⊗∆(T0)
N )N

...

Tn ⊜ Tn−1 ⊗∆(Tn−1)
N = T0 ⊗

n−1
⊗

m=0
∆(Tm)N

= T0 ⊗
n−2
⊗

m=0
∆(Tm)N ⊗∆(T0 ⊗

n−2
⊗

m=0
∆(Tm)N )N

...

The above formalism can be interpreted as follows. T0 describes the basic
uncertainty of the modeled situation, its elements are the states of nature. T1 is
for T0 and the first order beliefs of the players ∆(T0)

N , i.e., the players’ beliefs
about the states of nature. In general, Tn describes Tn−1 and the nth order
beliefs of the payers ∆(Tn−1)

N , i.e., the players’ beliefs about Tn−1.
There are, however, some redundancies in this model. First, Harsányi

(1967-68) proposes that the players know their own types (see point 3. in
Definition 4), so e.g. player i’s belief about her own first order belief is a Dirac
measure. Second, there is an other redundancy3 in the above description as
well. E.g. ∆(T0 ⊗∆(T0)

N )N determines ∆(T0)
N and so does ∆(Tn−1)

N for all
0 ≤ m ≤ n− 2: ∆(Tm)N .

Therefore we can rewrite the above formalism, from the viewpoint of player i
as follows (the definition below is a purely measurable reformulation of Mertens et al
(1994)’s concept):

Definition 13. In Diagram (3)

Θi ∆(S ⊗ΘN\{i})

Θi
n+1

pin+1

❄

⊜ ∆(S ⊗ΘN\{i}
n )

idS

❄

p
N\{i}
n

❄

Θi
n

qinn+1

❄

⊜ ∆(S ⊗Θ
N\{i}
n−1 )

idS

❄

q
N\{i}
n−1n

❄

(3)

• i ∈ N is a player,

• n ∈ N,

• S is the parameter space (see Assumption 2).

Moreover for each i ∈ N :

• #Θi
−1 = 1,

3This redundancy is called coherency and consistency in the literature of game theory and
mathematics respectively.
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• for each n ∈ N ∪ {−1}: ΘN\{i}
n ⊜

⊗

j∈N\{i}

Θj
n,

• qi−10 : Θi
0 → Θi

−1,

• for all m,n ∈ N such that m ≤ n, µ ∈ Θi
n:

qimn(µ) ⊜ µ|
S⊗Θ

N\{i}

m−1

,

therefore qimn is a measurable mapping.

• Θi ⊜ lim←−(Θ
i
n,N ∪ {−1}, qimn),

• for each n ∈ N ∪ {−1}: pin : Θi → Θi
n is the canonical projection,

• for all m,n ∈ N ∪ {−1} such that m ≤ n: q
N\{i}
mn is the product of the

mappings qjmn, j ∈ N \ {i}, and so is p
N\{i}
n of pjn, j ∈ N \ {i}, therefore

both mappings are measurable,

• ΘN\{i} ⊜
⊗

j∈N\{i}

Θj.

Then T ⊜ S ⊗ΘN is called a purely measurable beliefs space.

The interpretation of the purely measurable beliefs space is the following. For
any θi ∈ Θi: θi = (µi

1, µ
i
2, . . .), where µi

n ∈ Θi
n−1 is player i’s nth order belief.

Therefore each point of Θi defines an inverse system of probability measure
spaces

((S ⊗ΘN\{i}
n , pin+1(θ

i)),N ∪ {−1}, (idS, qN\{i}
mn )) , (4)

where (idS , q
N\{i}
mn )4 is the product of mappings idS and q

N\{i}
mn . We call the

inverse systems of probability measure spaces like (4) player i’s hierarchies of
beliefs5.

To sum up, T consists of all states of the world: all states of nature: the
points of S, and all players’ all states of the mind: the points of set ΘN , therefore
T contains all players’ all hierarchies of beliefs.

Our main result:

Theorem 14. The complete universal type space contains all players’ all hier-
archies of beliefs.

We present the proof of Theorem 14 in the next section.

4It is clear that this is a measurable mapping.
5In the literature system like (4) is usually called coherent hierarchy of beliefs. Since it

does not make confusion in this paper we omit the adjective coherent.
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4 The proof of Theorem 14

The strategy of the proof is to show that the purely measurable beliefs space
(see Definition 13) generates (is equivalent to) the complete universal type space
(in category CS). Mathematically, the key point of the proof is to demonstrate
the following lemma:

Lemma 15. For each i ∈ N , θi ∈ Θi: the inverse system of probability measure
spaces

((S ⊗ΘN\{i}
n , pin+1(θ

i)),N ∪ {−1}, (idS, qN\{i}
mn )) (5)

admits a unique inverse limit.

Since the proof of Lemma 15 is technical, we relegated it to Appendix A.
It is a slight calculation to see that Lemma 15 implies directly that for each

i ∈ N in Diagram (3)

Θi = ∆(S ⊗ΘN\{i}) ,

i.e., those are measurable isomorphic.
First we show that the beliefs space of Definition 13 induces a type space.

Lemma 16. The purely measurable beliefs space T induces a type space in
category CS.

Proof. For each i ∈ N : let pri : T → Θi, pr0 : T → S be coordinate projections,
and for each i ∈ N ∪ {0}: let the σ-fieldsM∗

i be induced by pri. From Lemma
15 for each i ∈ N :

Θi = ∆(S ⊗ΘN\{i}) , (6)

i.e., those are measurable isomorphic.
Furthermore, let g∗ ⊜ pr0 and for each t ∈ T : f∗

i (t) ⊜ pri(t). Then

(S, {(T,M∗
i )}i∈N , g∗, {f∗

i }i∈N )

is a type space in category CS. �

The following proposition is a direct corollary of identity (6).

Proposition 17. The type space (S, {(T,M∗
i )}i∈N , g∗, {f∗

i }i∈N ) is complete.

Next we show that the type space induced by the purely measurable beliefs
space is the universal type space.

Proposition 18. The type space (S, {(T,M∗
i )}i∈N , g∗, {f∗

i }i∈N ) is a universal
type space in category CS.

Proof. Let (S, {(Ω,Mi)}i∈N , g, {fi}i∈N ) be a type space (an object in CS), i ∈
N and ω ∈ Ω.

Player i’s first order belief at state of the world ω vi1(ω) is the probability
measure defined as follows, for each A ∈ S:

vi1(ω)(A) ⊜ fi(ω)(g
−1(A)) .

10



fi isMi-measurable, hence vi1 is alsoMi-measurable.
Player i’s second order belief at state of the world ω vi2(ω) is the probability

measure defined as follows, for each A ∈ S ⊗Θ
N\{i}
0 :

vi2(ω)(A) ⊜ fi(ω)((g, v
N\{i}
1 )−1(A)) ,

where for each ω′: (g, v
N\{i}
1 )(ω′) ⊜ (g(ω′), {vj1(ω′)}j∈N\{i}), hence (g, v

N\{i}
1 )

isM−i-measurable. Since fi isMi-measurable vi2 is alsoMi-measurable.
For any n > 1 player i’s nth order belief at state of the world ω vin(ω) is the

probability measure defined as follows, for each A ∈ S ⊗Θ
N\{i}
n−2 :

vin(ω)(A) ⊜ fi(ω)((g, v
N\{i}
n−1 )−1(A)) .

Since fi isMi-measurable vin is alsoMi-measurable.
To sum up, we have got a mapping φ : Ω → T defined as follows, for each

ω ∈ Ω:

φ(ω) ⊜ (g(ω), (vi1(ω), v
i
2(ω), . . .)i∈N ) . (7)

Then it is easy to verify that
(1) φ isM-measurable,
(2) for each i ∈ N , ω ∈ Ω:

g∗ ◦ φ(ω) = g(ω)

and

f∗
i ◦ φ(ω) = φ̂i ◦ fi(ω) ,

i.e., φ is a type morphism,
(3) Since Θi consists of different inverse systems of probability measure

spaces (hierarchies of beliefs), φ is the unique type morphism from the type
space (S, {(Ω,Mi)}i∈N , g, {fi}i∈N ) to (S, {(T,M∗

i )}i∈N , g∗, {f∗
i }i∈N ). �

In the above proof we show that any point in a type space induces a hi-
erarchy of beliefs for each player, i.e., any point in a type space completely
describes the players’ hierarchies of beliefs at the given state of the world.
Battigalli and Siniscalchi (1999) provided this observation first in the literature.

It is also worth noticing that in the above proof φ is not necessarily injective
(one-to-one). The φ-image of redundant types, i.e., types such that generate
the same hierarchy of beliefs, see e.g. Ely and Peski (2006), is one point in the
universal type space. Therefore, it is not surprising at all that there are no
redundant types in the universal type space, hence it can be complete.

The proof of Theorem 14. From Proposition 18

(S, {(T,Mi)}i∈N , g∗, {f∗
i }i∈N ) (8)

is the universal type space.
Then Corollary 9 implies that Heifetz and Samet (1998)’s universal type

space and (8) coincide (those are type isomorphic).
From Proposition 17: (8) is complete, Meier (2001) also proves this result.
Finally, from Definition 13: (8) contains all players’ all hierarchies of beliefs.

�

11



5 Related papers

In this section our main result, Theorem 14, is compared to the results of
Heifetz and Samet (1999) and Pintér (2010b). These papers seem to contra-
dict our main result, in the following, however, we show that this is not the case
at all.

Heifetz and Samet (1999) as the title indicates, give an example for a hier-
archy of beliefs, which can not be a type in any type space. Mathematically,
their counterexample is based on an exercise of Halmos (1974), an example for
an inverse system of probability measure spaces having no inverse limit. First,
we summarize Heifetz and Samet (1999)’s example6.

Example 19. Notation: l∗ and l∗ are respectively the outer and inner measures
induced by the Lebesgue measure. Let {An}n be the Vitali sets from the ex-
ample of Halmos (1974), so it is true that for all n An+1 ⊆ An ⊆ A0 = [0, 1],
l∗(An) = 1, l∗(An) = 0 and

⋂

n

An = ∅. Moreover, for each n let µn be the

probability measures on B

(

n
∏

k=0

Ak

)

7 also from Halmos (1974)’s example.

Consider the following inverse system of probability measure spaces:

((

n
∏

k=0

Ak, B

(

n
∏

k=0

Ak

)

, µn

)

,N, prmn

)

, (9)

where prmn :
n
∏

k=0

Ak →
m
∏

k=0

Ak is the coordinate projection.

Furthermore, if X ⊜
n
∏

k=0

Xk is a product space and δx is the Dirac measure

concentrated at x ⊜ (x0, x1, . . . , xn), then δx =
n
∏

k=0

δxk
, where δxk

is the Dirac

measure on B(Xk) concentrated at point xk.
Interpretation: There are two players, we chose one of them. Let A0 be the

parameter space (the set of the states of nature). A1 ⊆ A0, and for each x ∈ A1

let x be δx, i.e., A1 is8 the set of some first order beliefs of the given player.
Moreover, A2 ⊆ A1 and for all x ∈ A2 let x be δ2x, where δ2x ⊜ δδx , i.e., A1 ×A2

is the set of some second order beliefs of the given player. In general, for each

n ≥ 3, x ∈ An ⊆ An−1: let x be δnx , where δnx ⊜ δδn−1

x
, i.e.,

n
∏

k=1

Ak is the set of

some nth order beliefs of the given player.

To sum up, for each n (a0, a1, . . . , an) ∈
n
∏

k=0

Ak is (a0, δa1
, δ2a2

, . . . , δnan
) =

a0 × δ(a1,...,an).

Put it differently,
∞
∏

k=1

Ak is the space of some hierarchies of beliefs, therefore

(9) is a hierarchy of beliefs. However, from the example of Halmos (1974) (9)
has no inverse limit, i.e., this hierarchy of beliefs is not a type.

6We do not follow Heifetz and Samet (1999) letter by letter, we only grab the very essence
of their example.

7B(·) is for the Borel σ-field.
8Henceforth in the context like this ”is” means that the two spaces are homeomorphic.
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Next we show that Heifetz and Samet (1999)’s hierarchy of beliefs is not in
the purely measurable beliefs space T (see Definition 13).

Lemma 20. (9) is not in T .

Proof. It is enough to show that the diagonal of A0 × A1 is not a measurable
subset of A0⊗∆(A0). The strategy of the proof is the following: if the diagonal
of A0×A1 is a measurable subset of A0⊗∆(A0), then for any B ⊆ A0⊗∆(A0)
the intersection of the diagonal of A0×A1 and B is a measurable set of subspace
B.

Consider A0 × A0, i.e., let B ⊜ [0, 1] × [0, 1]. Then from Example 19 B
equipped with the subspace σ-field is measurable isomorphic to A0 ⊗∆D(A0),
where ∆D(A0) is for the set of Dirac measures on A0. Furthermore, it is clear
that B([0, 1]× [0, 1]) encompasses the subspace σ-field of B. However, from the
definition of {An}n the diagonal of A0×A1 is not a Borel measurable subset of
(the diagonal of) [0, 1]× [0, 1], i.e., it is not in the subspace σ-field of B, hence
µ1 /∈ ∆(A0 ⊗∆(A0)), where µ1 is from Example 19. �

Even if we have showed above that Heifetz and Samet (1999)’s hierarchy of
beliefs is not in the purely measurable beliefs space, they argue that it is a purely
measurable hierarchy of beliefs, so we have to comment their argument. Without
going into the details, we can say that the ”problem” with Heifetz and Samet
(1999)’s argument is the following: the Cartesian production is not commuta-
tive, i.e., e.g. (see their notations9)

S2 6= A0 ×A0 ×A1 ×A1 ×A2 × · · · ×An ×An+1 × · · ·
This makes trouble because at certain points Heifetz and Samet (1999) use

S2 at other points they use A0 ×A0 ×A1 ×A1 ×A2 × · · · . The first is needed
for getting an inverse system of probability measure spaces having no inverse
limit, so is the second for embedding the inverse system of probability measure
spaces under consideration into the purely measurable beliefs space.

It is easy to see that (e.g.) the notion of diagonal depends on the ordering,
e.g. Diag((A×B)× (A×B)) 6= Diag((B×A)× (A×B)), which means a crucial
flaw in Heifetz and Samet (1999)’s argument (they need the diagonal of S2).

To sum up, Heifetz and Samet (1999)’s counterexample is a hierarchy of
beliefs such that it is not among the purely measurable hierarchies of beliefs, i.e.,
it is not in the purely measurable beliefs space. Therefore, Heifetz and Samet
(1999)’s result does not contradict ours.

Very recently, Pintér (2010b) provides a negative result, he argues that there
is no universal topological type space in the category of topological type spaces.
Actually, this non-existence is got by a topological reasoning, hence this negative
result does not contradict this paper’s positive one.

On the other hand, Pintér (2010b)’s result clearly shows that the irrelevant
details, getting in the model by topological concepts, can make real difficulties,
which culminate in that the goal proving that the Harsányi program works, is
unreachable in the topological setting.

9S = A0 ×A1 × · · · × An × · · · .

13



6 Conclusion

The main result of this paper, Theorem 14, concludes that in the purely measur-
able framework the Harsányi program works, i.e., the incomplete information
situations can be modeled by type spaces.

Theorem 14 together with Pintér (2010b)’s result raise the problem that al-
though in the literature mostly the topological models are popular, the purely
measurable and not the topological framework is appropriate for modeling in-
complete information situations. Can the results of the topological framework
be translated into the purely measurable one? For this question future research
can answer.

A The proof of Lemma 5.1

In this appendix we prove that ∀i ∈ N , ∀θi ∈ Θi: the inverse system of proba-
bility measure spaces

((S ⊗ΘN\{i}
n , pin+1(θ

i)),N ∪ {−1}, (idS, qN\{i}
mn )) (10)

admits a unique inverse limit.
First we refer to a concept and a result, both from Pintér (2010a).

Definition 21. The inverse system of probability measure spaces ((Xn, Mn,
µn),N, fmn) is ε-complete, if ∀ε ∈ [0, 1], ∀m,n ∈ N such that m ≤ n, and
∀A ⊆ Xm:

(µ∗
n(f

−1
mn(A)) = ε)⇒ (µ∗

m(A) = ε) ,

where µ∗
n is the outer measure generated by µn.

The following result is Theorem 3.2 from Pintér (2010a).

Theorem 22. Let ((Xn,Mn, µn),N, fmn) be an ε-complete inverse system of
probability measure spaces. Then (X,M, µ) ⊜ lim←−((Xn,Mn, µn),N, fmn) exists
and is unique.

Remark 23. It is worth noticing that in Theorem 22 we can substitute fields for
the σ-fieldsMn.

Remark 24. Let (X,M, µ) and (Y,N , ν) be probability measure spaces, and
f : X → Y be a measurable mapping. Then the following two conditions are
equivalent

inf
B∈M, f−1(A)⊆B

µ(B) = inf
B∈N , A⊆B

ν(B) , A ⊆ Y ,

and

sup
B∈M, B⊆f−1(A)

µ(B) = sup
B∈N , B⊆A

ν(B) , A ⊆ Y .

Next, we give an ”alternative” definition of ε-completeness.
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Corollary 25. The inverse system of probability measure spaces ((Xn,Mn, µn),
N, fmn) is ε-complete if and only if ∀m,n ∈ N such that m ≤ n, and ∀A ⊆ Xm:

sup
B∈Mn, B⊆f

−1

mn(A)

µn(B) = sup
B∈Mm, B⊆A

µm(B) .

For the sake of simplicity, henceforth, we assume that there are only two
players, and we consider the problem from the viewpoint of one of them. Then
we get the following diagram (see Diagram (3)):

Θ ∆(S ⊗Θ)

Θn+1

pn+1

❄

⊜ ∆(S ⊗Θn)

idS

❄

pn

❄

Θn

qnn+1

❄

⊜ ∆(S ⊗Θn−1)

idS

❄

qn−1n

❄

(11)

Since here we consider the case where there are only two players we focus
on the following inverse system of probability measure spaces:

((S ×Θn, pn+1),N ∪ {−1}, (idS, qmn)) . (12)

Consider the ”truncated” variant of (12):

((Θn, pn+1(θ)|Θn
),N ∪ {−1}, qmn) . (13)

The following lemma is a direct corollary of Marczewski and Ryll-Nardzewski
(1953)’s result (see e.g. Bogachev (2006) Problem 7.14.100 on p. 161).

Lemma 26. Let (X,M) be a measurable space and A ⊆ P(X) be a field such
that #A <∞. Moreover, let µ be an additive probability set function on the field
generated by A∪M such that µ|(X,M), the restriction of µ onto the measurable
space (X,M) is σ-additive. Then µ is σ-additive.

Notice that for any measurable space (X,M), ∆(X,M) ⊂ [0, 1]M. There-
fore, ∆(X,M) can be equipped with the pointwise convergence topology as a
subspace of [0, 1]M. Henceforth, let τp denote the pointwise convergence topol-
ogy.

The next lemma shows that the inverse system of probability measure spaces
(13) can be ”embedded” uniquely into the following inverse system of probability
measure spaces:

((Θn, B(Θn, τp), µn),N ∪ {−1}, qmn) , (14)

where B(Θn, τp) is for the Borel σ-field of the pointwise convergence topology
and µn is an inner τp-closed regular measure such that µn|Θn

= pn+1(θ)|Θn
.

15



Lemma 27. Let µ be a probability measure on (∆(X,M),A∗), where A∗ is
given in Definition 1. Moreover, let τp be the pointwise convergence topology on
∆(X,M). Then there exists a unique probability measure ν on B(∆(X,M), τp)
such that

1. µ = ν|(∆(X,M),A∗),

2. ν is inner τp-closed regular, i.e., ∀A ∈ B(∆(X,M), τp), ∀ε > 0: ∃Z
τp-closed set such that Z ⊆ A and ν(A \ Z) < ε.

Proof. First, from Definition 1 ∀A ∈ A, ∀ε > 0: ∃Z ∈ A∗ τp-closed set such
that Z ⊆ A and µ(A \ Z) < ε.

Let a(X,M) be the set of the additive probability set functions on the
measurable space (X,M). Notice that a(X,M) is a compact topological space
with the pointwise convergence topology. Let

A∗∗ ⊜ σ({{µ ∈ a(X,M) | µ(A) ≥ p}, A ∈M, p ∈ [0, 1]}) .
Then ∀A ⊆ A∗∗: i−1(A) ∈ A∗, where i : ∆(X,M) → a(X,M) is the natural
embedding; moreover let µ∗ ⊜ µ ◦ i−1 be a probability measure on (a(X,M),
A∗∗). Notice that ∀A ∈ A∗∗, ∀ε > 0: ∃Z ∈ A∗∗ compact set in the pointwise
convergence topology such that Z ⊆ A and µ∗(A \ Z) < ε.

Furthermore, notice that A∗∗ contains the base of the pointwise convergence
topology on a(X,M), hence Henry’s Extension Theorem (see e.g. Rao (1987)
Theorem 10 on pp. 76-78 and Exercise 11 on p. 80) implies that there exists a
unique probability measure ν∗ on the Borel σ-field of the pointwise convergence
topology on a(X,M) such that µ∗ = ν∗(a(X,M),A∗), and ν∗ is inner compact
regular, i.e., for any set A of the Borel σ-field of the pointwise convergence
topology on a(X,M), ∀ε > 0: ∃Z compact set in the pointwise convergence
topology such that Z ⊆ A and ν∗(A \ Z) < ε.

Let ν be defined by ν◦i−1 ⊜ ν∗; then ν is a probability measure on the Borel
σ-field of the pointwise convergence topology on ∆(X,M), µ = ν|(∆(X,M),A∗),
and ν is inner τ -closed regular, i.e., ∀A ∈ B(∆(X,M), τ), ∀ε > 0: ∃Z τ -closed
set such that Z ⊆ A and ν(A \ Z) < ε. �

The next lemma demonstrates that the mappings qmn in (14) are closed
mappings.

Lemma 28. Let (X,M1) and (X,M2) be measurable spaces such that M1 ⊆
M2. Moreover, let ∆(X,M1) and ∆(X,M2) be equipped with the pointwise
convergence topologies τ1 and τ2 respectively, and let f : ∆(X, M2) → ∆(X,
M1) be defined as follows, ∀ν ∈ ∆(X,M2): f(ν) ⊜ ν|(X,M1). Then f is a
closed-mapping, i.e., for any τ2-closed set Z: f(Z) is τ1-closed.

Proof. In Diagram 15 a(X, ·) is for the set of the additive probability set func-
tions on (X, ·), i1 and i2 are for the natural injections (embeddings), and fa :
a(X,M2)→ a(X,M1) is defined as follows: ∀ν ∈ a(X,M2): fa(ν) = ν|(X,M1).

∆(X,M2)
f

✲ ∆(X,M1)

a(X,M2)

i2

❄ fa
✲ a(X,M1)

i1

❄

(15)
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First notice that the both a(X,M1) and a(X,M2) are compact topological
spaces (with the pointwise convergence topology), and f , fa, i1 and i2 are
continuous mappings.

Moreover, notice that for any τ2-closed set Z:

fa(i2(Z)) = i1(f(Z)) , (16)

where i2(Z) is for the pointwise convergence topology closure of set Z in a(X,
M2) and i1(f(Z)) is for the the pointwise convergence topology closure of set
f(Z) in a(X,M1).

Let Z be a τ2-closed set, and indirectly assume that f(Z) is not τ1-closed.
Let µ ∈ ∆(X,M1) be such that µ ∈ f(Z) \ f(Z), where f(Z) is the τ1-closure
of f(Z). From (16) µ ∈ fa(i2(Z)), i.e., there exists ν ∈ i2(Z) such that µ =
ν|(X,M2).

Let A ⊆ M2 be a field such that #A < ∞. Then for any ε > 0: {µ′ ∈
Z : |µ′(A) − ν(A)| < ε, A ∈ A} 6= ∅. However, Lemma 26 implies that there
exists µ∗ ∈ ∆(X,M2) such that ν = µ∗|(X,(A∪M1)), where (A∪M1) is the field
generated by A ∪M1, i.e., f

−1({µ}) * ∁Z10, which is a contradiction. �

Notice that the measurable spaces of the inverse system of probability mea-
sure spaces (12) are products of measurable spaces of the inverse systems of
probability measure spaces

((S,A, pn+1(θ)|(S,A)),N ∪ {−1}, idS) (17)

and (13).
Consider the following inverse system

((S ×Θn,A×A∗
n, pn+1(θ))|A×A∗

n
,N ∪ {−1}, (idS, qmn)) , (18)

where A×A∗
n is for the field generated by the cylindrical sets of A (the σ-field

on S) and A∗
n (the σ-field on Θn).

Moreover, notice that the inverse system (18) can be ”embedded” uniquely
into the inverse system

((S ×Θn,A×B(Θn, τp), νn),N ∪ {−1}, (idS, qmn)) , (19)

where A × B(Θn, τp) is for the field generated by the cylindrical sets of A and
B(Θn, τp), νn is a probability measure such that νn|A×A∗

n
= pn+1(θ)|A×A∗

n
and

νn|B(Θn,τp) = µn (µn is from (14)). That is, the inverse system (19) is the
”product” of the inverse system of probability measure spaces (17) and (14).

The proof of Lemma 5.1. We prove the two player case, see Diagram 11; the
proof of the general case is a slight modification of that of the two player case.

It is clear that it is enough to show that the inverse system (19) admits a
unique inverse limit.

Let n > m and Bj × Cj , j = 1, . . . , k, where Bj ∈ A and Cj ∈ B(Θn, τp).
Then Lemma 27 implies that Cj can be a closed set, therefore from Lemma 28

(idS , qmn)(Bj × Cj) ∈ A×B(Θn, τp) , j = 1, . . . , k ,

and

10∁Z is for the complement of set Z.
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νm





k
⋃

j=1

(idS , qmn)(Bj × Cj)



 ≥ νn





k
⋃

j=1

Bj × Cj



 .

Therefore the inverse system (19) is ε-complete, so Theorem 22 implies that
it admits a unique inverse limit. �
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