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Abstract

In recent years, much effort has been placed on development of microscale devices

capable of propulsion in fluidic environments. These devices have numerous pos-

sible applications in biomedicine, microfabrication and sensing. One type of these

devices that has drawn much attention among researchers is magnetic microswim-

mers—artificial microrobots that propel in fluid environments by being actuated us-

ing rotating external magnetic fields. This dissertation highlights our contribution to

this class of microrobots. We address issues regarding fabrication difficulties arising

from geometric complexities as well as issues pertaining to the controllability and

adaptability of microswimmers.

The majority of research in this field focuses on utilization of flexible or achiral

geometries as inspired by microbiological organisms such as sperm and bacteria. Here,

we set forth the minimum geometric requirements for feasible designs and demonstrate

that neither flexibility nor chirality is required, contrary to biomimetic expectations.

The physical models proposed in this work are generally applicable to any geometry

and are capable of predicting the swimming behavior of artificial microswimmers with

permanent dipoles. Through these models, we explain the wobbling phenomena,

reported by experimentalists. Our model predicts the existence of multiple stable

solutions under certain conditions. This leads to the realization that control strategies

can be improved by adjusting the angle between the applied magnetic field and its axis

of rotation. Furthermore, we apply our model to helical geometries which encompass

the majority of magnetic microswimmers. We demonstrate the criterion for linear

velocity-frequency response and minimization of wobbling motion. One approach

to improve the adaptability of swimmers to various environments is to use modular

units that can dynamically assemble and disassemble on-site. We propose a model to

explain the docking process which informs strategies for successful assemblies. Most

studies conducted so far are to elucidate permanent magnetic swimmers, but the

literature is lacking on analysis of swimmers made of soft ferromagnetic materials.

In this work, we develop a model for soft-magnetic microswimmers in the saturation

regime in order to predict the swimming characteristics of these types of swimmers

and compare to those of hard-magnetic swimmers.
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Chapter 1

Introduction

1.1 Motivation

This dissertation aims to elaborate on modeling and simulation of magnetic mi-

croswimmers, micro-scale robots that are capable of generating thrust in the fluid.

Micro- and nano-scale swimming robots have been broadly investigated during the

past decade due to their numerous applications. Some of these applications include

micro-manipulation and micro-fabrication [5] such as scaffold-based tissue engineer-

ing [6], drug delivery systems, for example, for the purpose of drug injection into

retinal vessels [7, 8], in situ sensing [9], tissue manipulation [7, 10] and in vivo di-

agnostics in artery [11], brain [12], and cardiovascular system [13] using magnetized

particles and MRI machines.

Different types of micro-robots have been devised. Some of them use electrically-

and optically-controlled bacteria, such as the microbiorobots developed by Steager et

al., controlled by ultraviolet light and electric currents [14]. Some others use mag-

netically steered swimming cells [15]. Others use external fuels to cause a phoretic

propulsive force [16–24] such as the one developed by Paxton et al., which take ad-

vantage of a chemical reaction to cause oxygen gradient and induce propulsion [17].

The microswimmers we investigate in this dissertation belong to another broad class

of microswimmers: those that are actuated by externally rotating magnetic fields. Al-

though chemically actuated swimmers can move very fast and dielectrophoretically-
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manipulated robots can be controlled very precisely, magnetically actuated swimmers

have advantages in vivo. Chemical fuels such as hydrogen peroxides are toxic in the

body; and velocity and directional control are limited by the need to apply chemi-

cal gradients [25] or magnetic fields [24]. Dielectrophoretic methods require intricate

close-range electrodes and are affected by ionic screening or nearby conductors. How-

ever, magnetic fields can provide the necessary energy to a long distance and provide

adequate control with minimal health risks.

1.2 Objectives

We report a modeling procedure for magnetically actuated rigid microswimmers. Al-

though magnetized microswimmers have been investigated in the literature, certain

fabrication difficulties associated with the complexity of the geometries have hindered

the development of these microswimmers. These manufacturing difficulties call for

development of simpler geometries. In this respect, we establish the geometric crite-

ria for an effective swimmer through a symmetry analysis. We report the minimum

requirements to achieve propulsion and explain the simplest effective geometry.

Our proposed swimmers generate thrust motion under homogeneous, constant

strength magnetic fields rotating with a constant angular velocity. We describe a

modeling and simulation method that can predict swimming properties such as swim-

ming speed and rotation axis of the swimmer.

Another obstacle towards the utilization of magnetized microswimmers is the lim-

itation in controllability, which is caused due to dynamical bistability of these swim-

mers under certain conditions. We introduce a method for dynamic stability analysis

of swimmers that can be applied to any geometry. We show that multi-stability can be

avoided by adjusting certain experimental parameters. This contributes to improve-

ment of the control capacity by allowing us to deterministically choose swimming
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speed and direction in a repeated manner.

The majority of the rigid magnetic microswimmers proposed so far have been

comprised of helical shapes. We contribute to the controllability of these swimmers

by proposing magnetic dipoles and helical geometries that lead to linear velocity-

frequency responses. These linear responses facilitate controlling the swimming ve-

locity by only varying the rotational frequency of the magnetic field. We also identify

helical geometric requirements for maximizing swimming velocities of these types of

swimmers.

Successful utilization of microswimmers for drug delivery and other in vivo appli-

cations requires them to be able to navigate through various media. In this respect,

one of the present obstacles toward successful implementation of microrobotic sys-

tems is the lack of versatility to handle different environments. We propose a type

of modular microswimmer, consisting of simple spherical particles that can dynami-

cally assemble and disassemble and provide size and shape versatility, which in turn,

have an impact on swimming speed. We developed a physical model to explain and

improve the assembly process.

From the magnetic properties point of view, the swimming models developed

so far only investigate those swimmers made of permanent magnetic materials and

paramagnets. While these models are useful, they are not directly applicable to

the microrobotic systems that are made of soft magnetic material. For these types

of materials (contrary to the hard magnets) the magnetization is a function of the

applied magnetic field. The crystal and shape anisotropies often result in nonlinearity

within these systems. We develop a physical model that can handle an important

category of microswimmers: those that are made from soft ferromagnets with shape

anisotropy.
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1.3 Context

Many studies have investigated magnetically actuated miniature swimmers, employ-

ing various models depending on the type of the swimmer. The majority of the

swimmers studied so far can be classified under three main categories: flexible swim-

mers, swimmers that operate near solid boundaries, and rigid helical swimmers.

Flexible geometries have been the focus of many of the previous studies. among

these studies, many utilize classical elasticity models. Kosa et al. [26] modeled the

motion of a swimming tail as an elastic beam and solved the beam’s deflection differ-

ential equation to find the acting forces and displacements. Belovs and Cebers [27]

used structural mechanics and resistive force theory to simulate the swimming of a

flexible ferromagnetic swimmer. Livanovics and Cebers [28] reported on the swim-

ming motion of a flexible filament attached to magnetic dipole. They use Kirchhoff

model of the elastic rod and by applying the magnetic torque and boundary condi-

tions at both ends of the filament, they solved for the deflection of the filament. Roper

et al. [29,30] investigate swimming of an elastic filament which is constructed by self-

assembled micron-sized superparamagnetized beads, tethered to red blood cells. They

find an equation for the internal magnetic torque on the filament by considering both

the external field and dipole-dipole interactions. They established a balance between

elastomagnetic and viscous stresses on an infinitesimal element of chain and used

resistive force theory to account for the drag forces on the filament. Ogrin et al. [31]

studied a swimmer comprised of a soft and a hard ferromagnetic particle connected

by a linear spring. They used the Stokes approximation to model the hydrodynamics

of the particles.

There are also studies that focus on microswimmers that operate close to solid

surfaces. For example, Masoud and Alexeev [32] modeled crawling magnetic micro-

capsules in microchannels. Sing et al. [33] designed a swimmer made up of self-
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assembled colloidal rotors that can walk along surfaces in the presence of a rotating

magnetic field. Tierno et al. [34] studied the propulsion of paramagnetic colloidal

doublets above a surface, actuated by an external magnetic field. Zhang et al. [35] in-

vestigated the propulsion of Ni nanowires near complex surfaces. They observed that

dissimilar boundary conditions at the two ends of a nanowire can lead to propulsion.

There are also a number of previous studies that investigated rigid geometries, but

they are usually focused on particular geometries. Abbott et al. [36] modeled a helical

magnetic swimmer utilizing resistive force theory and derived equations, expressing

the swimming velocity and torque relative to the frequency of the magnetic field.

Ghosh et al. [2] studied the configuration of helical objects under external torques.

They used an ellipsoid to model the precessional motion of the swimmer. They showed

that such systems can exhibit bistable traits.

The studies discussed above have been mostly focusing on modeling of either

flexible tails or particular rigid geometries. Most of these studies are case specific. For

example, researchers have used the resistive force theory to account for the drag forces

on slender bodies [36]. On the other hand, our method as explained in chapter 3 and

4, can be harnessed to analyze any rigid geometry in low-Reynolds-number regimes.

Additionally, previous studies did not provide generalized approaches toward the

geometric requirements for the swimming of magnetically actuated microswimmers.

We address this question in chapter 3 through a mathematical investigation of the

geometry. Finally, although stability analysis of magnetically driven systems has been

studied before in the literature [2,37], those studies have been limited to distinct cases

such as ellipsoids. In chapter 4 we introduce a novel stability analysis method that

can be applied to a broad range of magnetically actuated swimmers.

In typical experiments done using helical microswimmers, the magnetic field is

usually kept constant. In these cases, the direction of swimming is controlled by

the direction of rotation of the applied field and the swimming speed is controlled
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by the frequency of rotation. It is often beneficial to have a linear correlation be-

tween frequency and swimming speed. This can be done by adopting constant axis

of rotation; however, for general geometries, the axis of rotation changes as frequency

changes while keeping the field strength constant [2, 3, 38]. This change of axis re-

sults in nonlinear velocity-frequency response and makes controlling of the swimmers

harder. We also address the wobbling behavior that was observed in previous studies.

Wobbling happens when the swimmer obtains an axis of rotation which is different

from the long axis of the helix. Previous studies claimed that the wobbling can be

avoided or minimized if the magnetization is perpendicular to the helical axis [3,39].

We show that even though wobbling cannot be avoided altogether, there are ideal

directions for magnetization that can result in linear velocity-frequency responses.

These matters, as well as other questions regarding helical geometries, are addressed

in chapter 5.

The concept of modular microrobotics has been previously discussed by Tottori et

al. [40]. They successfully demonstrated a process to assemble and disassemble helical

microswimmers using magnetic and hydrodynamic forces. The helical geometries,

though effective for swimming, may not be ideal for modularity since researchers

could assemble merely up to three helices. In chapter 6, we show how magnetic beads

can be used as building blocks. This allows for much wider range of achievable shapes

and sizes. We then describe a model that improves the assembly strategies.

Although models for magnetized microswimmers are available in the literature

[39, 41–44], these models may not directly apply to a wide range of microswimmers

that are built from soft magnetic materials [3, 45]. In chapter 7, we propose a model

that can describe a wide range of microswimmers made from soft magnetic materials.

Chapter 2 covers some fundamental concepts, which are necessary for develop-

ment of the models in the following chapters. We start with a brief discussion of

important terminologies in magnetism, followed by introductory concepts of low-
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Reynolds-number hydrodynamics and method of regularized stokeslets.

Chapter 3 encompasses an article [46] published in Physical Review E journal and

was coauthored with U Kei, Cheang, Dalhyung Kim and Min Jun Kim from Drexel

University and my advisor Henry Chien Fu from the University of Nevada, Reno. My

contribution to this manuscript was to perform data analysis and numerical modeling,

as well as commenting on and revising the manuscript.

Chapter 4 focuses on the simulation details, stability analysis, wobbling and con-

trollability of swimmers. This chapter was also published as a manuscript [42] to

Physical Review E. My contribution to this chapter entailed: numerical simulation,

computational stability analysis, data analysis and writeup.

Chapter 5 includes another PRE manuscript [43] specifically about magnetic heli-

cal swimmers coauthored with Henry Chien Fu and Mehdi Jabbarzadeh. I contributed

to this project by calculating mobility matrices and paper revisions.

In Chapter 6 we investigated modular microswimmers. This work [47] was pub-

lished in Scientific Reports and was coauthored with U Kei Cheang, Hoyeon Kim,

Kyoungwoo Lee, Hnery Chien Fu and Min Jun Kim. My contribution to this project

was to formulate the model and analyze its predictions for assembly as well as revising

the manuscript.

Chapter 7 deals with soft-magnetic microswimmers. This project is still under

development. We present some preliminary results corresponding to these types of

swimmers in saturated regime.

Chapter 8 is a brief conclusion for the entire dissertation.
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Chapter 2

Background

This chapter aims to set the background necessary for development of the models

explained in this dissertation. The models presented incorporate principles of mag-

netism and low-Reynolds-number fluid dynamics. These two topics are discussed

below.

2.1 Magnetism

In this section, some concepts of magnetism which are applicable to our work are

presented. We start with relevant definitions and briefly discuss different types of

materials from magnetic properties perspective. Then we specifically focus on ferro-

magnets from which most of the magnetic microswimmers are fabricated.

2.1.1 Definitions

NOTE : The material in this and next chapter follows the presentation of the books

”Introduction to magnetism and magnetic materials” by David Jiles [48], and ”Intro-

duction to magnetic materials” by Bernard Cullity [1].
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Table 2.1: Principal unit systems used in magnetism

Quantity Symbol SI (Sommerfeld) SI (Kennelly) EMU (Gaussian)

Field H Am−1 Am−1 oersteds

Induction B tesla tesla gauss

Magnetization M Am−1 - emu/cc

Intensity of mag-
netization

I - tesla -

Magnetic field

The magnetic field is one of the most important concepts in electromagnetism. When

a magnetic field is present, it can be identified by the force it exerts on moving electric

charges, the force acted on a current-carrying object, the torque acted on a magnetic

dipole or by reorientation of electron spins in certain atoms. Magnetic fields can

be produced by moving charges or by permanent magnets. In either case, there are

moving electrons that cause magnetic field. Magnetic field has both direction and

magnitude and therefore, can be represented as a vector field. In this work we denote

magnetic field as H. The units of magnetic field are ampere per meter (Am−1) in SI

and oersteds in EMU system.

Note that magnetic field, H is closely related to the magnetic induction, B (which

will be explained later.) In fact, some references use the term magnetic field for B.

Furthermore, there are several conventions used for defining magnetic entities. The

most well known conventions in SI system are Sommerfeld and Kennelly. Table 2.1

summarizes the units of main magnetic quantities in Sommerfeld, Kennelly, and EMU

(Gaussian) systems. In this work, all the parameters and equations will be expressed

in SI system using the Sommerfeld convention unless otherwise specified.

The Biot-Savart law predicts the magnetic field caused by moving charges in a
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conductor. [48]

δH =
1

4πr2
iδl× r̂ (2.1)

where r is the radial distance from the length element δl and i is the electric current.

Using the Biot-Savart law, we can provide an explanation of the unit of the

magnetic field. One ampere per meter is the magnitude of the magnetic field produced

at the center of a circular coil of diameter d = 1m, carrying an electric current of

i = 1A

Magnetic induction

The magnetic inductionB is closely related to the magnetic fieldH. When a magnetic

field is applied, the response of the medium will be through the magnetic induction.

The unit of magnetic induction in SI is tesla (T ). The Ampere’s Force Law helps us

understand magnetic induction better.

F = îl×B. (2.2)

Equation 2.2 states that if a conductor carrying current i in the unit direction l̂ is

placed in a magnetic induction field B, there will be a force per unit length F acting

on the conductor in the direction normal to both l, and B. Hence, the unit tesla is

the magnitude of the magnetic induction that can cause a 1N force on a 1m long

conductor carrying 1A of electric charge.

Magnetic dipole

The two fundamental entities in magnetization are the current loop (the limit when

the radius of a current carrying loop goes to zero) and the magnetic dipole (the limit

when a pair of magnetic poles get infinitely close to each other). In both cases, a
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magnetic moment m can be associated with the entity. For the case of the current

loop, the magnetic moment is given by the product of the area of the loop, A and the

electric current in the loop, i. For the magnetic dipole, the moment is given by the

product of the pole strength, p and separation distance between the poles, d. It can

be shown that the torque on a magnetic dipole is given by

τ = m×B. (2.3)

The units of magnetic moment in Sommerfeld convention are Am2. Equation 2.3

shows that the magnetic induction tends to align the dipole such that m lies parallel

to B; hence, when m and B are not parallel, there will be a potential energy in the

system

Ep = −m ·B. (2.4)

Magnetization

We can define the magnetization M as

M =
m

V
(2.5)

where V is the volume of the magnetized object. Hence the units of magnetization

are the same as the units of the magnetic field (Am−1).

Permeability

The permeability tensor, µ can be defined as

B = µH. (2.6)
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Permeability has units of henries per meter (Hm−1). In free space and air, because

of isotropic properties, the permeability tensor reduces to a scalar, denoted as µ0.

This permeability is a universal constant and its value is µ0 = 4π× 10−7Hm−1. Note

that, in general, µ is not a constant. It is often useful to consider the permeability

with respect to the free space permeability. Hence we can also define the relative

permeability tensor as

µr = µ/µ0. (2.7)

Susceptibility

One can establish a relationship between the magnetic field and magnetization using

the susceptibility tensor, χ through

M = χH. (2.8)

Depending on the type of material, M and H may not have a linear relationship.

Relationship between H, B, and M

It is known that the magnetic induction gets contributions from both the applied

magnetic field and the magnetization of the solid material; therefore,

B = µ0 (H+M) . (2.9)

In eq. 2.9, H is the magnetic field generated outside the material, and M is the

magnetization which is generated inside the solid object.
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Relationship between susceptibility and permeability

Considering equations 2.6, 2.7, 2.8, and 2.9, we can derive a relationship between

susceptibility and permeability.

µr = χ+ I (2.10)

In eq. 2.10, I is the identity matrix.

Demagnetization field

Let us investigate a magnetized bar. Since the magnetization outside the bar (in free

space) is zero, it can be shown through eq. 2.9 that H and B are parallel outside the

bar. Inside the bar, however, it can be shown using Ampere’s Circuit Law that H

and B point in opposite directions. This is due to the magnetization of the material.

Since H and M point in opposite directions inside the material, it is possible to

define a demagnetizing field, Hd whenever opposite poles are created in a material.

It is known that the demagnetizing field only depends on the magnetization of the

material and the geometry.

Hd = −NdM. (2.11)

Here Nd is the demagnetizing tensor and mainly a function of the geometry of the

magnetized object. For example, the axial (Na) and radial (Nr) demagnetizing coef-

ficients for a prolate ellipsoid can be calculated from

Na =
1

R2 − 1

(
R

2
√
R2 − 1

ln

(
R +

√
R2 − 1

R−
√
R2 − 1

)
− 1

)
Nr =

1−Na

2
, (2.12)

where R is the ratio of the semi-major axis to the semi-minor axis of the ellipsoid. In

the unit system and conventions used in this work, Nd is dimensionless.
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Now that the demagnetizing field is defined, the total field in the object (Hin) can

be expressed in terms of the applied field Happ and the demagnetizing field.

Hin = Happ −NdM. (2.13)

2.1.2 Different types of magnetic material

Magnetic materials can be categorized based on their magnetic properties. This

chapter is a brief introduction to three major types of magnetic materials: diamagnets,

paramagnets, and ferromagnets.

Diamagnets

The differences in magnetic material are usually signified by their bulk susceptibility,

χ. Diamagnets tend to have small negative susceptibilities (of the order of 10−5);

therefore, they tend to have a magnetic response, opposite to the applied field. This

behavior can be explained using quantum models. But heuristically, one can state

that this behavior comes from the fact that there are no unpaired atoms in diamagnet

orbits and according to Lenz’s law, in presence of a magnetic field, a current will be

induced in the direction that causes a magnetic field that opposes the change that

produced it. Therefore, the response of the orbit will be in the opposite direction of

the field.

Some common examples of diamagnets are copper, silver, gold, bismuth, and

beryllium.

Paramagnets

These types of materials have small and positive susceptibility (χ ≈ 10−3 − 10−5);

therefore, the magnetic response is aligned with the applied field. This comes from
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the alignment of the unpaired electrons with the external magnetic field, causing a

supporting response.

Examples of paramagnets are aluminum, platinum and manganese.

Ferromagnets

Ferromagnets have positive and much larger susceptibilities (χ ≈ 50− 10000). Ferro-

magnets are the most recognized type of magnetic materials. Examples of ferromag-

nets are iron, nickel, and cobalt.

There are a number of other types of magnetic materials, which are closely related

to ferromagnets since they are magnetically ordered (as will be explained later). These

include: ferrimagnets, antiferromagnets, helimagnets, and superparamagnets.

For the rest of this text, we will focus on the ferromagnetic material.

2.1.3 Ferromagnetics

Hysteresis

In ferromagnets, neither the magnetic induction nor the magnetization are generally

linear with the magnetic field. Moreover, the crystal structure of ferromagnets cause

anisotropy which will be explained later. Therefore, nonlinear and hysteretic behavior

can be observed when magnetic induction is plotted versus magnetic field strength.

Figure 2.1 shows a typical hysteresis loop of a ferromagnetic material. Note that one

can also get a hysteresis loop by plotting magnetization versus field strength, but

these are essentially equivalent according to eq. 2.9.

Saturation magnetization

It is clear from figure 2.1 that the magnetization of a (nonmagnetized) ferromagnet

is initially zero when the field strength is zero. As the field strength is increased, the
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Figure 2.1: Typical Hysteresis loop for a ferromagnet. [1]

magnetization also increases. In the far limit of magnetic strength, the magnetization

reaches an asymptotic value called saturation magnetization that we denote as M0.

When the material is saturated, all of its dipoles are aligned with the external mag-

netic field. Note that M0 only depends on the material; it is not structure sensitive.

Another closely related concept is the spontaneous magnetization, Ms. Spontaneous

magnetization is the value of magnetization within the domains of a material. At

temperatures significantly less than the Curie temperature (as will be defined later),

spontaneous and saturation magnetization are equal.

Remanence

It is clear from the hysteresis loop (figure 2.1) that once a material is magnetized, the

removal of the magnetic field will not reduce the magnetization (or the induction) to

zero. The remaining induction is called the remanent induction Br (see figure 2.1)

and the remaining magnetization is called the remanent magnetization Mr. The
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term remanence is used to describe the remanent induction or magnetization when

the material has been magnetized to saturation before removing the magnetic field.

Coercivity

Since the magnetic induction (and magnetization) of ferromagnets are not generally

zero in the absence of magnetic field, one needs to apply a reverse magnetic field

to bring the magnetic induction (and magnetization) to zero. This magnetic field

is called the coercive field. As with remanence, a distinction can be draw between

coercive field for a ferromagnet that was magnetized to an arbitrary level and a

ferromagnet which was magnetized to its saturation level. In the case of saturation,

the corresponding coercive field is called the coercivity, Hc as depicted in figure 2.1.

Hard and soft magnets

One way to classify ferromagnets is based on their coercivity. Materials with relatively

high coercivity (generally Hc ≥ 10kAm−1) are called hard magnets and materials

with relatively low coercity (generally Hc ≤ 1kAm−1) are considered soft magnetic

materials. Historically it was observed that mechanically hard metals such as iron

and steel also possessed high coercivity and softer material exhibited lower coercivity;

hence, they were named as magnetically hard and soft respectively.

Curie temperature

All ferromagnets when heated up to certain temperatures exhibit paramagnetic be-

haviors. The temperature at which this transition takes place is called the Curie

temperature, Tc. At this temperature, the permeability of the material decreases

significantly and coercivity and remanence become zero. In other words, there is no

hysteresis involved.
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Rayleigh law and low-field behavior

Rayleigh observed that the initial magnetization curve (from the demagnetized state)

can be represented using a parabolic equation

µ(H) = µ(0) + νH (2.14)

and the induction would be

B(H) = µ(0)H+ νH2. (2.15)

Rayleigh also showed that small-amplitude hysteresis can be represented by

B = [µ(0) + νHm]H±
(ν
2

) (
H2

m −H2
)

(2.16)

where Hm is the maximum field at the loop tip.

Molecular Field Theory

Assume that the magnetization of a substance increases with field as represented by

curve 1 of figure 2.2. Also assume that the only field acting on the material is a

molecular field Hm, proportional to the magnetization:

Hm = γM. (2.17)

The mean field theory can explain why ferromagnets are spontaneously magnetized

(self-saturating). Equation 2.17 is represented by curve 2 on figure 2.2. These two

curves intersect at the origin and point p. In the demagnetized state (at the origin),

slightest applied field (for example the earth’s magnetic field) can cause the material to

be magnetized to state A, but that magnetization would result in a small molecular
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Figure 2.2: Spontaneous magnetization by the molecular field. [1]

field according to eq. 2.17 so we land at point B on figure 2.2. This process will

continue until the magnetization reaches the stable state at point p. The value of

magnetization at point p is exactly the spontaneous magnetization, Ms. Note that

as the temperature increases, the slope of curve 2 on figure 2.2 increase. Therefore,

at some temperature, the two curves will no longer intersect at two points and there

will not be any spontaneous magnetization. This explains how ferromagnets can turn

into paramagnets above a certain temperature (Tc) [1].

Magnetic domains

Mean field theory explains why ferromagnets are self-saturating, but complication

arises since one can find demagnetized ferromagnetic material in nature. To answer

this objection, Weiss made the assumption that ferromagnets in their demagnetized

state are made up of several small regions, called domains. Each domain is sponta-

neously magnetized with Ms, but the directions of these domains are in a way that

they result in no net bulk magnetization. Hence, the magnetization process consists

of reorienting the domain so that they line up with each other. Figure 2.3 shows this

process schematically. In part (a) there is no external magnetic field. The region is
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Figure 2.3: Magnetization process in a ferromagnet consisting of two domains. [1]

consisted of two domains each of which has magnetization Ms. They are pointing in

opposite direction; hence, yielding a zero net magnetization. In part (b) an external

field is applied. In this case, the domain wall moves in such a way that makes the

upper domain larger and the lower domain smaller and results in a non-zero net mag-

netization. In part (c) the external magnetic field keeps increasing until the domain

wall moves completely out of the region and the upper domain prevails the whole

region. At this moment the net magnetization is equal to the spontaneous magne-

tization, but the direction is not lined up with the external magnetic field. If we

increase the field further, as is the case in part (d), the spontaneous magnetization of

the domain will rotate to align itself with the external magnetic field. At this stage,

the material is practically saturated.

Magnetic anisotropy

Magnetic anisotropy is one of the most important factors that affect the shape of

the hysteresis loop. This means that the magnetic properties are different when
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measured in different directions. In this section we investigate two main types of

magnetic anisotropy, namely crystal and shape anisotropies.

Crystal anisotropy is intrinsic to the material. When the applied field is not in the

direction of the easy axes of the crystal, the magnetization within the domains need

to reorient to line up with the external magnetic field as was discussed in section

2.1.3. Since the field must do work against the magnetic anisotropy to rotate the

magnetization, there is an energy stored in the crystal. This energy is called the

crystal anisotropy energy, E. It has been shown that this energy can be expressed as:

E = K0 +K1

(
α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

)
+K2

(
α2
1α

2
2α

2
3

)
(2.18)

where α values are the direction cosines of Ms with respect to the crystal axes and the

K values are constants for each material and have units of Jm−3. In most practical

cases, we are only concerned with the K1 terms as higher orders are negligible and

K0 is just a constant and can be neglected when dealing with changes in energy.

Also note that the anisotropy energy in eq. 2.18 leads to a torque on the magnetized

particle.

Shape anisotropy is another important type of magnetic anisotropy. It can be

shown that the magnetostatic energy (the energy of a magnet in its own field) is

given by:

Ems = −1

2
Hd ·M. (2.19)

For a prolate spheroid with semi-major axis c and equal semi-minor axes of length a,

which is magnetized to a value M making an angle θ with c, we can further simplify
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eq. 2.19 using eq. 2.11.

Ems =
1

2
µ0M2Nc +

1

2
µ0 (Na −Nc)M2 sin2 θ. (2.20)

Note that in this equation the first term on the right hand side is not angle-dependent

and, therefore, can be neglected when differences in energy states are the matter of

concern. If we define the shape-anisotropy constant as Ks = 1/2µ0 (Na −Nc)M2, we

can rewrite eq. 2.20 as

Ems = Ks sin
2 θ. (2.21)

Equation 2.21 describes a uniaxial anisotropy and is similar in form to the anisotropy

of hexagonal crystals, which have one easy axis only. This form can be directly

derived from eq. 2.18. The anisotropy torque in this case can be found by taking the

derivative of eq 2.21 with respect to θ.

2.2 Low-Reynolds-number hydrodynamics

In fluid mechanics, the characteristics of the flow are described using a dimensionless

number called Reynolds number. It represents the ratio of the inertial forces to

viscous forces in the flow. It is defined as Re = ρvL/µ where ρ and µ are density

and viscosity of the fluid respectively. v is the swimming velocity and L is the

characteristic length of the swimmer. When Reynolds number is much greater than

one, the inertial forces are more dominant than viscous force. This occurs for flows

caused by large moving objects with high velocities such as airplanes. In the case of

miniature swimmers, however, since the characteristic length of the object is of the

order of micro- or nano-meters and swimming velocities are relatively low, Reynolds

number is significantly smaller than one. A vast range of Reynolds numbers are

observed in biological scenarios. On the higher end, for example, a humpback whale
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induces Reynolds number of about 107, a human swimming in the water would cause

a Reynolds number of about 105. Reynolds number for smaller animals such as

goldfish is about 1 and as we come across smaller creatures such as sperm and E.

Coli, we observe very small Reynolds numbers, in the order of 10−4 to 10−5. This

fact establishes a fundamental difference between swimming at micro- or nano-scale

from macro-scale. In micro-scale, the viscous forces are the dominating hydrodynamic

effect.

The dynamics of an incompressible flow can be described using a set of differential

equations, called the Navier-Stokes equations, which expresses the Newton’s second

law for a fluid element.

ρ
DV

Dt
= ρg −∇p+ µ∇2V

∇ ·V = 0 (2.22)

where V is the velocity, g is the gravitational accelaration, and p is the absolute

pressure.

The microswimmers we conducted research on are about 10µm in length and they

induce Reynolds numbers of about 10−5. For such low Reynolds numbers, inertial

effects are negligible relative to viscous effects, so the left side of eq. 2.22 can be

neglected. Also, one can use the dynamic pressure to account for gravitational effects.

Consequently the above equation will be simplified as:

0 = −∇p+ µ∇2V (2.23)

Eq. 2.23 is called the Stokes equation and is used extensively in modeling of

low Reynolds number situations such as those produced by micro-organisms and

microswimmers. Equation 2.23 is linear and reversible, meaning that if the forces
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acting on the body are reversed, the velocity at every point in the flow reverses.

Purcell [49] explains that if there is no external force and torque on a swimmer,

the motion of the swimmer should be non-reciprocal with time in order to have a

net translation. In other words, the motion of the swimmer observed forward in time

should look different from its motion observed as played backward in times. This is

known as the Scallop theorem, since the opening and closing motion of a scallop at

low Reynolds number is time-reciprocal and, therefore, ineffective for swimming.

2.2.1 Method of Regularized Stokeslets

Different computational methods can be used to solve partial differential equations

such as Stokes equations. These methods include volume discretization methods (such

as finite element, finite difference and finite volume methods) as well as Boundary El-

ement Methods. In problems where the surface/volume ratio is small, BEM methods

are usually more efficient in terms of computational resources [50]. BEM methods can

be used when the Green’s function can be calculated. This usually occurs in prob-

lems with linear homogeneous media. In this section, we explain a boundary element

method, called the Method of Regularized Stokeslet, to solve the Stokes equation (eq.

2.23) for any geometry.

We start by introducing some fundamental solutions to eq. 2.23. Several fun-

damental solution to eq. 2.23 are known. One fundamental solution is called the

Stokeslet solution and describes the velocity profile at r due to a point force acting

at a specific position r0.

vi(r) = Sij(r− r0)fj (2.24)

where:

Sij(r) =
1

8πµ|r|
(δij +

rirj
|r|2

) (2.25)
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and δ is the Kronecker’s delta.

Note that, due to the linearity of eq. 2.23, new solutions can be obtained by adding

or subtracting the fundamental solutions. This help us find solutions to numerous

situation with more complicated geometries.

To employ the BEM, we use a surface discretization technique to cover up the

swimmer with Stokeslets (Fig. 2.4), as explained in the next section. This helps us

solve the Stokes equation and find the hydrodynamic characteristics of the flow. In

order to do that, we need to take 4 steps. The first step is to write the fluid velocity

profile v(r) in terms of the forces on each Stokeslet fα.

v(r) =
∑
α

S(r− rα)fα (2.26)

In eq. 2.26, S(r − rα) is the Stokeslet matrix that linearly correlates the forces on

each surface element to the velocity profile.

The second step is to write the velocities of the surface at Stokeslet positions based

on the overall effect of the center of mass translation V, and center of mass rotation

Ω. From the equations of rigid-body motion:

vα
s = V +Ω× rα. (2.27)

In eq. 2.27, vα
s is the velocity of the surface at positions of Stokeslet α, V is the center

of mass translational velocity and Ω × rα accommodates for the velocity of element

α due to its rotation relative to the center of mass. Since eq. 2.27 is expressing a

linear relation between the surface velocities vs and the rigid-body velocities V and
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Ω, it can be written by means of a linear operator K,

(vs) = (K)

 V

Ω

 . (2.28)

Here vs is a 3N × 1 matrix corresponding to the x, y, and z components of velocity

on all the N Stokeslets and K is a 3N × 6 matrix.

The no-slip boundary condition requires the fluid velocities on the surface of the

swimmer, found from the Stokeslets in step one to be equal to the velocities expressed

based on the rigid body motion in step 2. Therefore, in step 3, we set these two

velocities equal on the solid boundary of the swimmer at locations given by Stokeslet

positions. From there, we can solve for the forces on individual Stokeslets by the

fluid.

(fs) = (S)−1 (K)

 V

Ω

 (2.29)

We introduce a 6× 1 matrix

 Fext

Text

 to represent the external force and torque

on the swimmer. In this work, there are no external forces so there will be only

three non-zero elements in matrix

 Fext

Text

 which correspond to the x, y, and z

components of the external torque due to the external magnetic field.

The total force and torque on the swimmer is expressed as:

F =
∑
α

fα

T =
∑
α

rα × fα. (2.30)

The linear relation in eqs. 2.30 can be represented by a linear operator Λ such
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that:  F

T

 = (Λ) (fs) (2.31)

As it turns out, the matrix Λ in eq. 2.31 is identical to (K)T.

Finally, since we are working in the low-Reynolds number regime and inertia

is negligible, we set the total force and torque equal to zero. These include the

hydrodynamic and the external magnetic forces and torques, so:

(K)T (fs) +

 Fext

Text

 = 0. (2.32)

Combining this equation with eq. 2.29, we can solve for the center of mass transla-

tional and angular velocities, so:

 V

Ω

 =
(
(K)T (S)−1 (K)

)−1

 Fext

Text

 (2.33)

At each instant in time, the velocities can be calculated and integrated to find the

position of the swimmer. Due to the linearity of the problem, the external torque

and force acting on the swimmer can be linearly correlated to the center of mass

translational and rotational velocities. For rigid geometries, a 6× 6 mobility matrix

is used to express this linear correlation.

 V

Ω

 = MMM

 F

T

 (2.34)

where:

MMM =
(
(K)T (S)−1 (K)

)−1

(2.35)
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Note since the mobility matrixMMM only depends on the fluid properties and swimmer’s

geometry, for a rigid geometry, eq. 2.34 is constant in the swimmer’s frame; therefore,

we need to calculate the mobility matrix only once. This will save a lot of computation

time and makes our modeling procedure less costly and more efficient.

One caveat about eq. 2.25 is that the function is singular on the surface (r = 0);

hence, a modified solution to the Stokes equation has been introduced by Cortez et

al. [51, 52], which is well-behaved on the boundary. This solution is known as the

regularized Stokeslet.

Sϵ
ij(r) =

1

8πµ

(
δij

|r|2 + 2ϵ2

(|r|2 + ϵ2)3/2
+

rirj
(|r|2 + ϵ2)3/2

)
(2.36)

where ϵ is a diameter cut-off. We use eq. 2.36 instead of eq. 2.25 for a better

solution accuracy. Parameter ϵ can be chosen to optimize convergence based on a

previous study done by Hyon et al. [53]. This was accomplished by investigating

the convergence of swimming velocities by increasing the number of Stokeslets while

keeping constant values of ϵ/ds, where ds is the distance between each two adjacent

Stokeslets. The ϵ/ds value that resulted in best convergence was found to be 1 so we

can set ϵ = ds.

2.2.2 Surface discretization

The boundary-element method used to model the hydrodynamics of the swimmer re-

quires the surface of the swimmer to be discretized with a number of surface elements

as depicted in Fig. 2.4. To do so, a MATLAB program was developed that would

take the number of beads constructing the geometry, the centroid of each bead and

their diameters. Then the program would discretize the surface of each sphere indi-

vidually by making circular cross-sections across the sphere and placing a number of

collocation points on each cross-section. Note that we set the distance between each
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Figure 2.4: Discretized surface of a three-bead swimmer with 717 boundary elements

two circular cross-sections as well as each two adjacent elements on any cross-section

to be equal. This parameter (ds) can be adjusted by the user based on the accuracy

needed. Cross-sections can be easily defined in a spherical coordinate systems. An-

gle ϕ can be defined from the z axis. Cross-sections are specified by ϕ changing in

[0, π] with increments defined as dϕ = ds/R where R is the radius of the sphere.

Therefore, each cross-sectional circle would have a local radius of r = R sin(ϕ). On

any given cross-section, angle θ specifies the boundary-element placement. In order

to do that, θ needs to vary in [0, 2π] with increments of dθ = ds/r. Fig. 2.5 shows

the discretization parameters. Based on this spherical realization, we can formulate

the position of each element on the sphere in Cartesian coordinates as:

p = [r cos(θ), r sin(θ), R cos(ϕ)] (2.37)

One further step can be taken to maximize the discretization density while keeping

a relatively homogeneous distribution. In order to do so, we can rotate the elements

on each cross-section by dθ/2. This staggered configuration puts each element on a

cross-section in the mid-way distance between the elements in the neighboring cross-

section. After the surface of each sphere is discretized separately, we remove those
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Figure 2.5: Parameters used for discretizing the surface of each sphere

elements of each sphere that would collide with other spheres. This can be achieved

by removing all the elements that have shorter distances from other spheres’ centroids

than the radii corresponding to those spheres.
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Chapter 3

Minimal Geometric Requirements

for Nano- and Micropropulsion via

Magnetic Rotation

3.1 Abstract

Controllable propulsion of micro- and nanoscale devices enhanced with additional

functionality would enable the realization of miniaturized robotic swimmers applicable

to transport and assembly, actuators, and drug delivery systems. Following biological

examples, existing magnetically actuated microswimmers have been designed to use

flexibility or chirality, presenting fabrication challenges. Here we show that, contrary

to biomimetic expectations, magnetically actuated geometries with neither flexibility

nor chirality can produce propulsion, through both experimental demonstration and a

theoretical analysis which elucidates the fundamental constraints on micropropulsion

via magnetetic rotation. Our results advance existing paradigms of low-Reynolds-

number propulsion, possibly enabling simpler fabrication and design of micro- and

nanoswimmers.



32

3.2 Introduction

Nano- and microscale swimming robots have been intensely investigated due to their

many possible applications, including micromanipulation and microfabrication [5, 6],

drug delivery [7, 8], tissue manipulation [6, 10], and in situ sensing [9], such as in

vivo diagnostics [11–13]. However, difficulties in developing effective propulsion sys-

tems have limited their development. Microscale propulsion has been achieved us-

ing electrically- and optically-controlled bacteria [14], magnetically steered swimming

cells [15], optically-deformed 3-bead systems [54], biflagellate micro-objects [55], and

chemically-driven phoretic robots [16–24]. Here we focus on another broad class of

robotic microswimmers, those actuated by rotating magnetic fields. Swimming at mi-

croscales and below vastly differs from macroscales since viscous damping dominates

inertial forces, implying that the hydrodynamics are governed by the zero-Reynolds-

number Stokes equation.

Some magnetically actuated micro- and nanoswimmers, such as colloidal walk-

ers [56], rotors [34], nanowires [35], and drillers [57] rely on nearby surfaces for

propulsion, which limits their range of applicability. Away from surfaces, in bulk

fluids current efforts to make robotic microswimmers have followed biological exam-

ples that use either chirality or flexibility to achieve non-reciprocal swimming strokes

(i.e., strokes which do not trace the same sequence of configurations forward and

backward in time), as required for force- and torque-free biological swimmers by the

Scallop theorem [49]. The archetypal chiral strategy is the bacterial flagellum, which

is a nearly rigid helix rotating relative to the cell body [58]. The rotating flagel-

lum forms a helical traveling wave so it is not a reciprocal motion. Various artificial

helical swimmers [45,59–64] have achieved controlled propulsion under magnetic rota-

tion. The archetypal flexible strategy is the sperm flagellum. Non-reciprocal traveling

waves propagate down the flexible flagellum to produce propulsion even for in-plane
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Figure 3.1: Controlled achiral rigid microswimmers. (a) The microswimmers’ three-
bead structure contains a plane of symmetry making it achiral. (b, c) Schematic of
flexibility tests to quantify microswimmers rigidity under (b) impulsive reorientation
and (c) steady rotation. The microswimmers structure is measured by the three-
dimensional distances between each pair of beads (d12, d23, d13). (d) Percentage
change in (d12, d23, d13) during impulsive reorientation. (e) Percentage change in
(d12, d23, d13) during swimming with data points captured once per cycle when the
swimmer is nearly perpendicular to the line-of-sight. In (d) and (e) distances change
less than 5% indicating rigid geometry. f) Trajectories of achiral microswimmers
showing swimmers controlled to swim in different patterns and make sharp turns.

(hence achiral) beating patterns [65]. Flexible artificial swimmers include sperm-like

swimmers fabricated by DNA linkage [65] and nanowire robots [66, 67]. Based on

these biomimetic expectations, challenging fabrication techniques have been required

to create chiral or flexible structures.

Here, we show that neither chirality nor flexibility is necessary for propulsion of

robotic microswimmers actuated by external rotating magnetic fields away from sur-

faces. We demonstrate experimentally that an achiral, rigid colloidal microswimmer

constructed of three magnetic beads is capable of externally actuated locomotion and

is easily maneuvered. We present a theoretical analysis that elucidates the criteria

that apply for rigid microswimmers rotated by external torque, establishing funda-

mental guidelines for designing such micro- and nanoswimmers, which may lead to

simpler fabrication of magnetic microswimmers than currently used.
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3.3 Methods

3.3.1 Fabrication of achiral microswimmers

We fabricated achiral microswimmers using three ferromagnetic micro-particles (4.40

µm in diameter) linked together, forming the simplest structure for a microswimmer.

Naturally, dipole interactions tend to self-assemble the magnetic particles linearly, but

we need to make a bent geometry. Chemical streptavidin-biotin binding was used to

overcome the linearity of the magnetic self-assembly to form the curved structures

necessary for swimming.

The swimmers contain two types of particles. Both of those particles possess the

same magnetic properties and are of the same size (4.40 µm). The difference between

the two types of beads is the surface coating: one with streptavidin, and the other with

biotin. The two are diluted using 30 mg/mL NaCl solution to 0.1 mg/mL and then

combined in a reaction mix to make the three-bead microswimmers. The dilution was

used to avoid aggregation and increase the probability to create three-bead swimmers.

This mixing method introduces randomness to the fabrication process; nonetheless, 3-

bead structures can be obtained in this process. Another concern is the rigidity of the

swimmers. Some 3-bead structures are prone to deformation while under a magnetic

field, while others are relatively rigid. As detailed in Section 3.4.1, only swimmers

that have a rigid structure were used for experiments. The binding affiliation between

streptavidin and biotin is the strongest among naturally found noncovalent bonds

[68, 69], so the swimmers will be relatively unbreakable and rigid [70] while under

strong magnetic forces during experiments.
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3.3.2 Magnetic control of swimmers far from surfaces

To generate the rotating magnetic field which actuates the achiral microswimmers,

we used a control system consisting of three pairs of electromagnetic coils arranged in

an approximate Helmholtz configuration (see Appendix), three Kepco power supplies

(BOP 20-5M), a National Instruments data acquisition (DAQ) system, a computer,

an inverted microscope (Leica DM IRB), and a high speed camera (FASTCAM SA3).

Through the use of a DAQ system, the power supplies generate sinusoidal outputs to

the coils to create a rotating magnetic field. The high speed camera provides visual

feedback and records videos at high frame rates (60-100 fps). The computer is used

as interface for the camera and the DAQ system. The three pairs of coils are designed

to exert torque on the swimmer without introducing translational force by creating

a spatially uniform magnetic field with any specified time-dependent magnitude and

direction in a 2 mm × 2 mm × 2 mm region. Experiments take place with swimmers

immersed in 0.3 g/mL NaCl solution (viscosity of 1 mPa s) in a 3 mm × 3 mm

× 2 mm (L × W × H) polydimethylsiloxane (PDMS) chamber, sealed to minimize

fluid flow and evaporation, and placed at the center of the Helmholtz coil system

mounted on the microscope. The concentration of the NaCl solution was chosen to

minimize vertical drift from sedimentation or buoyancy, indicating that the swimmers

have density less than 1.2 g/mL. A video is provided showing a swimmer located far

from a boundary1. At this and higher concentrations, we observed some beads rising

due to buoyancy. Out of many imaged videos, we analyzed those where the vertical

drift from sedimentation or buoyancy was smallest, so that the swimmer could be

kept in the plane of focus. The focal plane was always at least 20 µm from the

chamber surfaces. As described later, we also insured that boundary effects were

negligible by observing the direction of swimming motion relative to the magnetic

1See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.90.03300 for
video.
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field rotation axis: boundary effects make swimmers “roll” along the surface in a

direction perpendicular to the rotation axis, while bulk swimmers move in a direction

along the rotation axis [38].

3.3.3 Three dimensional image processing and analysis

Changes in structure, swimmer rotation, and swimmer translation are quantified using

a three-dimensional tracking algorithm written in MATLAB. Since the structure of

the swimmer consists of three spherical beads, the algorithm tracks the three Carte-

sian positions (x, y, z) of each bead. Planar positions (x, y) are obtained from the

centroid of the bead images. Vertical positions (z) are obtained from a standard-

deviation-based algorithm that detects the changes in intensity of the beads which

correspond to changes in the distance from the focal plane (see autofocusing algo-

rithms reviewed by Sun et al [71]).

3.4 Controlled achiral rigid microswimmers

We fabricated an achiral microswimmer consisting of three ferromagnetic spherical

beads (4.40 µm average diameter) linked together, which forms a simple structure

for a swimmer (Fig. 3.1a). Dipole interactions tend to lead to linear self-assembly

of the magnetic particles, so streptavidin-biotin binding [68,69] was used to stabilize

randomly formed bent nonlinear structures necessary for swimming. Since the centers

of the three beads define a plane of mirror symmetry (even for beads of different

diameters), the structure is achiral. After assembly, the swimmer has a magnetic

dipole, which allows us to manipulate its orientation by applying a spatially uniform,

time-dependent magnetic field. The swimmers are large enough that Brownian motion

is negligible compared to observed swimming velocities [72].
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3.4.1 Rigidity of swimmers

Due to the randomness in the fabrication process, not all microswimmers were rigid.

The results reported are for those which do not deform by visual inspection. We

further quantified the rigidity of these swimmers by observing their response to time-

dependent magnetic fields (Fig. 3.1b and 3.1c and supplemental video2). First, to

determine whether the swimmer elastically deforms in response to torque, its geome-

try was observed while it reoriented in response to a time-dependent magnetic field.

Swimmers were first allowed to come to equilibrium in a static field, with dipole mo-

ment aligned with the field. Then the static field was changed instantaneously to

a direction perpendicular to the original direction while maintaining the same mag-

nitude (Fig. 3.1b). This sequence imposes a sudden torque on the swimmer which

relaxes as the swimmer reorients to align its moment with the field. During the

reorientation, we tracked the distances between the three beads (d12, d23, d13, Fig.

3.1b and 3.1c) in three dimensions. Second, to determine whether the swimmer ir-

reversibly deforms under the torques exerted by rotating fields, we investigated the

change in swimmer geometry while it was rotated continuously (as might occur dur-

ing swimming) about the x-axis (Fig. 3.1c). In this and our swimming experiments,

the magnetic field is perpendicular to its rotation axis. We tracked the distance be-

tween beads over 6 periods of rotation (1.5 seconds), a time comparable to those

used to measure swimming velocities. To minimize error in the z-displacements, we

measure the distances once per rotation, when the swimmer-plane is oriented nearly

perpendicularly to the line-of-sight. Representative results from the rigidity tests for

a visually rigid swimmer are shown in Fig. 3.1d and 3.1e. The lengths d12, d23, and

d13 change by less than 5%.

The observed < 5% deformations are not responsible for the propulsion, since as

2See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.90.03300 for
video of flexibility tests.
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detailed in Section 3.5 our theoretical model shows that rigid swimmers of similar

geometries are capable of propulsion, and the model estimates swimming speeds of

the same order of magnitude as those observed.

3.4.2 Swimming and motion control

We observe that the direction of the average velocity is along the rotation axis of the

field. The swimmer rotates along a body-fixed axis as it swims. Altering either the

angular velocity or magnitude of the applied rotating magnetic field alters the body-

fixed rotation axis and the velocity of the swimmer. In contrast, swimmers relying on

boundary effects roll in a direction perpendicular to the rotation axis of the field [38],

and we use this fact to ensure that the swimmers we observe are not affected by a

boundary.

To validate swimming capability and controllability of the achiral swimmer, we

changed the strength, direction, and frequency of the rotating magnetic field. The

swimming direction can be controlled by manipulating the direction of the magnetic

fields rotational axis. To control motion in the xy plane we use a 3D electromagnetic

coil system to apply a time-dependent magnetic field B = Bi[sin θ sin(ωt + ϕ)̂i +

cos θ sin(ωt+ϕ)̂j+sinωtk̂] that rotates with angular velocity ω = ω(− cos θî+sin θĵ)

(which is the average swimming direction). The phase ϕ is either −90◦ or 90◦. By

changing θ the achiral swimmer could make sharp turns at any angle (see SM video).

Fig. 3.1f and the supplemental video3 show several swimming trajectories illustrating

directional control. For these trajectories, the rotational frequency and field strength

were kept constant, maintaining constant swimming speed. In addition, turning the

field on and off or reversing the rotation resulted in starting and stopping motion or

direction reversal, respectively.

3See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.90.03300 for
video of controlled trajectory.
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Figure 3.2: Schematic for analyzing swimmer dynamics in body-fixed frame. e1,
e2, and e3 are the principal axes of M; e2 and e3 are perpendicular to the symmetry
planes of the swimmer. For steady rotation, the swimmer angular velocityΩ coincides
with the magnetic field rotation, and the magnetic field H and its angular velocity are
constant in the body-fixed frame. The magnetic field is perpendicular to its angular
velocity.

3.5 Geometrical requirements for swimming

The swimmer described above demonstrates the ability to convert external rotational

torque to translational motion without a chiral or flexible geometry. Here we analyze

the coupled rotational and translational motion of the achiral swimmer working in a

frame fixed relative to the body of the swimmer (principal axes of rotation e1, e2, e3

in Fig. 3.2; e2 and e3 are perpendicular to the symmetry planes of the swimmer),

and show that such motion is consistent with the principles of low-Reynolds number

hydrodynamics.

In the Stokes regime, the translational velocity v and angular velocity Ω are
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related to the force F and torque N on the swimmer by the 6×6 mobility matrix [73]:

 v

Ω

 =

 K C

CT M


 F

N

 (3.1)

where the 3× 3 submatrices K, M, and C relate the translational velocity and force,

rotational velocity and torque, and translational velocity and torque, respectively.

For a swimmer with permanent magnetic dipole m, the torque N on the swimmer

due to the external field is N = m × H, where H is the magnetic field, and for

the uniform fields in the experiment there is no net external force. Therefore the

instantaneous angular velocity is

Ω = M(m×H) (3.2)

In general, as the swimmer and the external field rotate independently, the orientation

of H changes relative to the body-fixed frame. However, a steady-state solution

arises if the swimmer angular velocity Ω is equal (in magnitude and direction) to the

magnetic field rotation ω.

Now assume that rotational dynamics are in steady-state, as is the case when

the swimmers are observed to rotate with the field. Then the translational velocity

produced by the external torque is

v = C(m×H) (3.3)

which like the angular velocity is time-independent in the body-fixed frame. Gener-

ically, an object with constant body-fixed v and Ω moves in circular or helical tra-

jectories [53]. A net translational swimming velocity requires a helical trajectory, for

which v · Ω ̸= 0. Thus, the minimal criteria for swimming are that the swimmer



41

rotation Ω (eq 3.2) is equal to the field rotation ω, and Ω · (C(m×H)) ̸= 0.

A necessary condition for swimming is that C is nonzero. Based on standard

symmetry analyses [73], geometries with axisymmetry or three perpendicular mirror

planes of symmetry have C = 0 and no swimming, but geometries with up to two

perpendicular mirror planes of symmetry can have nonzero C and produce swimming.

In particular, swimming is possible for rigid, achiral geometries. To be concrete,

consider a swimmer composed of three equally-sized beads such as those fabricated

for our experiments (Fig. 3.1a). For this geometry, symmetry analysis reveals that

M and C take the form [73]

M =


M1 0 0

0 M2 0

0 0 M3

 ; C =


0 0 0

0 0 C23

0 C32 0

 (3.4)

referred to the body fixed axes labeled e1, e2, e3 in Fig. 3.24. We also verified the

form of the mobility matrix by explicit calculation for rigid bodies composed of beads

of diameter 4.40 µm using the method of regularized Stokeslets [51–53] (see Appendix

for details).

Substituting these mobility matrices into eqs 3.2 and 3.3 shows that for this achiral

swimmer, the torque must have both 2- and 3-components in order for swimming to

be possible. This implies that m cannot lie along either the 2 or 3 directions, which

are the directions perpendicular to the symmetry planes of the swimmer. Solving eqs

3.2 and 3.3 explicitly for a geometry corresponding to our achiral 3-bead swimmers

confirms that under external rotating torques, such geometries swim with the order

1 µm/s speeds observed in our experiments (see Appendix for details).

4Note that this form of nonzero C is also consistent with the example of the achiral impeller
given by Happel and Brenner.
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Note that the propulsion of our swimmers is consistent with the Scallop theorem

and kinematic reversibility of the Stokes equations: as a rigid body, our swimmers

do not undergo swimming deformations and instead are actuated by a nonreciprocal

external torque. Here we point out that the chirality employed in previous examples

of rigid magnetically rotated swimmers is not necessary to have nonzero C and hence

swimming.

If a steady solution to eq 3.2 exists (Ω = ω), it depends on both the frequency

of rotation and the strength of the magnetic field. An important timescale of the

rotational dynamics is the typical timescale for rotation of the swimmer due to an

external field of magnitude |H|, which is determined by balancing viscous rotational

drag against the external torque. From eq 3.2, the timescale is given by Tviscous =

(||M|||m||H|)−1, where ||M|| is the typical magnitude of rotational mobility of the

particle. If Tviscous is short compared to the timescale of variation of the magnetic

field (TB = 2π/ω), then the swimmer is in a quasistatic regime, with its magnetic

dipole always nearly aligned with the external field. If Tviscous is much longer than

TB, then the swimmer cannot rotate quickly enough to follow the magnetic field, and

the swimmer will not rotate steadily. For steady-state solutions in the intermediate

regime the dipole is not aligned with the external field, producing enhanced torques,

hence the rotation axis of the swimmer varies.

3.6 Qualitative predictions and experiments

To satisfy eq 3.2 for a given ω, the magnetic fieldH and its rotation vector ω must take

specific orientations relative to the swimmer, which varies as ω varies. Since Ω = ω,

the direction of ω also sets the swimmers rotation axis as well as the direction of

average swimming translation. Frequency dependent rotational axes have also been

observed and modeled for magnetically actuated swimmers and gyroscopes both in
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Table 3.1: Linear regression values for the 7 microswimmers in Fig. 3.3(b)

swimmer

1 2 3 4 5 6 7

Slope 0.4454 0.3770 0.3435 0.2972 0.6614 0.4567 0.3492

R2 0.9309 0.9799 0.8567 0.9745 0.9989 0.9662 0.9729

bulk fluids and near surfaces [2, 37, 38, 41, 57]. Together, these considerations make

qualitative predictions that can be checked experimentally.

First, no swimming results if the torque is perpendicular to one of the planes of

mirror symmetry (i.e., along e2 and e3) or along e1, in which case the rotational axis

is also along e1, e2, or e3. In our experiments we indeed observe that the swimmers’

rotation axes change as we change the rotation frequency (representative result in

Fig. 3.3a) and that the swimmers only swim when they rotate around an axis which

is not e1, e2, or e3.

Second, examination of eq 3.2 shows that constant rotation and field directions

satisfy eq 3.2 if the rotation frequency and magnetic field strength are increased

proportionally. In that case, eq 3.3 implies the swimming speed increases linearly

with the frequency. This linear relationship was observed experimentally (Fig. 3.3b).

We tracked seven different swimmers while the frequency and magnetic field strength

were increased proportionally (Fig. 3.3b). During the experiments, the swimmers

were all controlled to swim in the positive x direction. For swimmers 1-7, the velocity-

frequency data had linear fits through the origin with R2 ranging from 0.8567 to

0.99894 (Table 3.1). The linear relation was confirmed for a variety of frequency-

to-magnetic field strength ratios (Table 3.1). Since our fabrication process results

in random geometries, each swimmer has a different geometry and hence a different

swimming speed. Nonetheless, all demonstrate the linear relationship predicted by

our theory.
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Figure 3.3: Response of swimmer to rotation frequency. (a) The rotational axis (de-
marcated by red dashed line) changes relative to swimmer’s orientation as rotation
frequency changes with constant field strength. The swimmers rotation transitions
from a symmetrical axis (low frequencies) to a non-symmetrical axis (high frequen-
cies). (b) Swimming speed of seven different achiral microswimmers as frequency and
field strength are varied with their ratio held constant. Equation 3.2 predicts a linear
relation; linear fit data and ratio of frequency to field strength are reported in Table
3.1. Due to the random fabrication process, each swimmer has a different geometry
hence different swimming speed. (c) Swimming speed of the six different microswim-
mers as frequency is varied for constant field strength, including the microswimmer in
(a) shown as swimmer 6. Error bars in (b) and (c) denote standard errors estimated
from position uncertainty in image analysis and observation time used to measure
velocity.
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Third, if the frequency is increased while the magnetic field strength is held con-

stant, the swimmer body-fixed rotation axis changes, leading to a complicated non-

linear dependence of swimming speed on frequency. A supplemental video shows

this behavior for one swimmer5. In Fig. 3.3c, we show the swimming speed for

6 microswimmers as a function of frequency while magnetic field strength is held

constant. In contrast to Fig. 3.3b, the relationship between swimming speed and

frequency is nonlinear and markedly non-monotonic. Note that our analysis assumed

a permanent dipole, which approximates the magnetic moment of a soft ferromagnet

under saturating fields when the direction of the magnetic field is fixed relative to

the swimmer body. In the experimental case, the direction of the field changes as the

rotation axis changes. Therefore some of the nonlinearity in Fig. 3.3b results from

changes in the moment as the rotation axis changes under frequency. However, the

changes in rotation axis play a key role in driving the nonlinearity in the context of

our analysis, as can be seen from the behavior of the swimmer shown in Fig. 3.3a

(corresponding to swimmer 6 in Fig. 3.3c). For frequencies less than or equal to 2

Hz, the swimmer rotates near axis e1, and accordingly the swimming velocities are

small. Between 3 Hz and 5 Hz, the swimmer rotates around non-principal axes, and

there is appreciable propulsion. At 6 Hz, the swimmer rotates near axis e2, and the

swimming velocity is small again. Above 7 Hz, the swimmer does not rotate steadily

in synchrony with the magnetic field, hence 7 Hz is the step-out frequency.

3.7 Discussion

Previous work on robotic microswimmers focused on flexible or chiral structures to

generate propulsion; here, our achiral microswimmers have shown that neither is nec-

5See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.90.03300 for
video of changing rotation axis.
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essary. Our analysis of the achiral microswimmer provides a framework to describe the

coupled rotational and translational motion of magnetically rotated microswimmers

of arbitrary geometries, as well as the minimal criteria for propulsion of rigid bodies

under external torque. Applying this framework to design artificial microswimmers

without chirality may lead to simpler fabrication methods than currently used for

helical or flexible micro- and nanoswimmers, advancing their development for numer-

ous applications. Although the particular swimmers demonstrated here are not faster

than previously fabricated microrobots, our work expands the space of geometries to

be considered for optimization of swimming performance, thus opening possibilities

for more effective propulsion as well.
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3.9 Appendix A: Magnetic field produced by ap-

proximate Helmholtz coils

The Helmholtz coils in this study are arranged in a slightly different configuration

than that of a normal Helmholtz coil. Conventionally, the distance between two coils

of the same size is the radius of the coils, which creates a near-constant magnetic field

in the central region between the coils. In this study, the distance between each pair

of coils is equal to the outer diameter of the coils plus the thickness for the coil, which
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allows a cube-like configuration for the 3D coil system and fits within the geometrical

constraints of the microscope while maintaining the desired characteristics of the

Helmholtz configuration. In order to validate the magnetic field strength as well as the

field profile, a finite element method was used to model the coil system in COMSOL

Multiphysics. The finite element model simulated the magnetic field using two pairs

of coils producing a magnetic field with x- and y- components, generating a static

magnetic field in the xy plane. The approximate Helmholtz coil system produces a

near-constant magnetic field at the center region of the coil system within which the

magnetic flux has less than 2% variation; this region is indicated in Fig. 3.4 by the

red box marking an area approximately 2 mm by 2 mm. The magnetic field strength

(mT), rotational direction of the magnetic field, and rotational frequency (Hz) of

the field generated by the coils are controlled through LabVIEW. The simulation

indicates a field strength of 5.06 mT when a current of 1 A passes through the coils,

which matches the experimentally measured value of approximately 5 mT. According

to the Biot-Savart law, the field strength scales linearly with the applied current; this

is also validated with the simulated model and experimental measurements.

3.10 Appendix B: Explicit calculation of mobility

matrix

To verify the results for the symmetry analysis of the submatrix C of the mobility

matrix, we numerically calculate the mobility matrix for rigid bodies composed of

three beads by using the method of regularized Stokeslets [51–53]. The surface dis-

cretization used 717 regularized Stokeslets (Fig. 3.5a). To find the mobility matrix,

we calculate the force and torque on the swimmer for prescribed rigid-body transla-

tions in each of the cartesian directions and for prescribed rigid-body rotations along
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Figure 3.4: Modeled magnetic field. Density plot of magnetic field in xy plane created
by the coil system modeled using COMSOL Multiphysics. The small box at the center
shows the area where the magnetic field is near-uniform (< 2% variation).

each of the cartesian directions. This yields the resistance matrix, which is the inverse

of the mobility matrix.

We calculate C for two cases. First, we consider the fully symmetric case with

three beads of radius 4.40 µm, with centroids of the beads located 8.80 µm apart,

which has two perpendicular planes of mirror symmetry. We verified that when the

origin is taken to be the center of reaction, the form agrees with that of the symmetry

analysis (Eq. 3.4) up to machine precision.

Second, because irregularities during fabrication can produce less symmetric three

bead swimmers, we also calculate C for three beads of different sizes or with different

lengths between their centroids, which produces structures with only a single plane of

mirror symmetry, the plane containing the centroid of the three beads. In that case,
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Figure 3.5: (a) Schematic of discretized surface of the swimmer. Each of the 717
points represents a regularized Stokeslet on the surface of the swimmer. (b) Angular
reorientation of the swimmer during the reorientation test (solid blue line), along
with simulated angular reorientation for different magnitudes of the magnetic dipole
(green dotted, red dashed, turquoise dash-dotted lines). The best fit corresponds to
a moment of 4.05× 10−15 J/T.
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the symmetry analysis of Happel and Brenner [73] implies that C takes the form

C =


0 0 C13

0 0 C23

C31 C32 0

 . (3.5)

Again, the numerically calculated mobility matrices for these less symmetric geome-

tries, including geometries deduced from experimental image analysis, have the form

predicted by symmetry analysis.

3.11 Appendix C: Calculated swimming speeds

We used the mobility matrices to calculate the swimming speed for a 10.12 mT mag-

netic field rotating at 4 Hz by solving Eqs. 3.2 and 3.3 numerically. The calculation

requires a measurement of the magnetic dipole. The random fabrication process

means that each swimmer has a different dipole magnitude and direction, but to ob-

tain an estimate of swimming speeds, we estimated the moment via the response of

a single swimmer to the reorientation experiment used to test rigidity (Fig. 3.1b).

The magnetic field strength in this experiment was 2.53 mT. The direction of the

magnetic moment was determined from the initial and final orientations of the swim-

mer. The magnitude of the moment was obtained by modeling the rotation dynamics

using eq 3.2 and the mobility matrix calculated above. We found that a moment of

4.05× 10−15 J/T provided the best fit to the reorientation dynamics, as measured by

the sum of squared residuals (Fig. 3.5b). For this magnitude of dipole moment in a

variety of directions, and a variety of three-bead swimmer geometries, we found that

swimming speeds had typical orders of magnitude of 1 µm/s.
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Chapter 4

Modeling Rigid Magnetically

Rotated Microswimmers: Rotation

Axes, Bistability, and

Controllability

4.1 Abstract

Magnetically actuated microswimmers have recently attracted attention due to many

possible biomedical applications. In this study we investigate the dynamics of rigid

magnetically rotated microswimmers with permanent magnetic dipole. Our approach

uses a boundary element method to calculate a mobility matrix, accurate for arbitrary

geometries, which is then used to identify the steady periodically rotating orbits in a

co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We

map the magnetoviscous behavior as a function of dimensionless Mason number and

as a function of the angle that the magnetic field makes with its rotation axis. We

investigate the wobbling motion of these swimmers by investigating how the rotation
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axis changes as a function of experimental parameters. We show that for a given

magnetic field strength and rotation frequency swimmers can have more than one

stable periodic orbit with different rotation axes. Finally, we show that one can

improve the controllability of these types of microswimmers by adjusting the relative

angle between the magnetic field and its axis of rotation.

4.2 Introduction

Swimming microrobots have been extensively studied during the past decade. These

micro- and nano-swimmers have numerous biomedical applications such as drug de-

livery [7,8], micro-manipulation [5,6], in situ sensing [9], in vivo diagnostics [11–13],

and tissue manipulation [6, 10]. Recent studies have focused on various methods of

powering and controlling micro- and nano-swimmers. One group of microswimmers

are those that are powered using external fuels to cause a phoretic propulsive motion

by a chemical reaction [16–24]. Another category are those that use electrically and

optically controlled bacteria [14]. In this paper we concentrate on yet another class,

those swimmers that are actuated and controlled using external magnetic fields.

Among those swimmers that use external magnetic fields to generate propulsion,

we focus on those that are rotated or oscillated by magnetic torques, rather than

pushed by magnetic field gradient forces (e.g., [11]), since the former is a more effective

strategy at the microscale and below [36]. Some magnetically rotated swimmers have

been designed to work near solid surfaces [34, 35, 56, 57], rolling along the surface

for propulsion. Our focus, however, is on more versatile micro-swimmers that can

swim in the bulk fluid and do not require the presence of a nearby surface. Some

previous realizations of these types of magnetically actuated swimmers have emulated

the flexible flagella of sperm [65–67]. These swimmers are propelled through the fluid

by traveling waves caused by the waving motion of their flexible flagella. Other
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realizations have emulated the rigid helical flagella of bacteria. These magnetized

helical swimmers are actuated by externally rotating magnetic fields and exhibit a

corkscrew type of motion [45,59–64]. Recently, we have also shown [46] that a broad

class of nonhelical geometries, including achiral geometries, are capable of propulsion

when rotated by an external magnetic field. Thus, it is of interest to have modeling

methods which can treat arbitrary geometries.

In this study we present a modeling method for rigid magnetically actuated swim-

mers that allows accurate consideration of any geometry. In this paper, we employ

our approach to address two important issues in the dynamics of these swimmers: 1)

wobbling, or the change in rotation axis of swimmers as the driving magnetic field

amplitude or frequency changes, and 2) bistability, the existence of more than one

stable rotation axis for a given magnetic field amplitude or frequency.

Some previous studies on helical artificial swimmer have reported wobbling and

tumbling motion, in which the helix rotates about an axis different from its longi-

tudinal helical axis. Peyer et al. [38] reported wobbling at lower frequencies, with

a frequency-dependent precession angle. They also found that this wobbling mo-

tion enhances the undesirable sideways drift due to wall effects. Ghosh et al. [2]

also observed tumbling (rotation about an axis perpendicular to the helical axis) and

wobbling in helices magnetized to have magnetic moments which were not perpen-

dicular to the helical axis. In theoretical work Man and Lauga [41] investigated the

transtion from tumbling to wobbling behavior as a function of the dimensionless Ma-

son number, and showed that the precession angle is proportional to the magnetic

field, and inversely proportional to frequency and length for a nearly straight helix.

Peters et al. [3] attributed wobbling motion to the non-perpendicularity of the easy

axis of magnetic dipole moment to the long axis of the helix. They experimentally

illustrated that aligning the easy axis perpendicular to the helical axis results in a

wobbling-free swimming and significant increase in performance of the swimmer.
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In their study, Ghosh et al. [2] also observed bistability for helices. Experimentally,

they observed dynamical switching between two different rotation axes at rotation

frequencies near the step-out frequency. In simulations, they observed that depending

on initial conditions, more than one steady-state rotation axis could be observed at

long times in numerical evolution of the magnetoviscous rotational dynamics.

Previous theoretical studies aiming to address wobbling and dynamic (bi)stability

of magnetized swimmers have been restricted to simplified geometries or involved

simplifying assumptions. For example, Dhar et al. [37] studied the behavior of mag-

netic nano-rods sedimenting on top of a surface. They analytically investigated the

configuration of the nano-rod and analyzed the stability of different configurations for

different magnetic field strengths and rotation frequencies. However, both Dhar et

al. [37] and Ghosh et al. [2] model the geometry as an ellipsoid or rod for simplicity.

In a follow-on theoretical study, Ghosh et al. [44] also modeled a helix as a rod to

show that there can be more than one steady state solution. Man and Lauga [41] use

resistive force theory to obtain the full mobility matrix for a helix, but their analytic

results are limited to the asymptotic regime of nearly straight helices. To identify

stable orbits, Ghosh et al. [2,44] and Man and Lauga [41] both used direct numerical

integration of the magnetoviscous dynamics, which identifies stable orbits as the so-

lutions which evolve at long times. Since the evolution depends on initial conditions,

it can be difficult to ensure that all possible stable steady solutions have been found

numerically.

Our approach uses a boundary element method to find the low-Reynolds-number

mobility matrix relating velocities and forces/torques for a rigid object, and then

uses a co-rotating body-fixed frame to identify the steady periodically rotating orbits

for any frequency and field strength. We also evaluate the stability of each of these

orbits. Neither identification of the orbits nor evaluation of their stability requires
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numerical integration of the dynamical evolution. We show that swimmers can have

more than one stable periodic orbit. We map the magnetoviscous behavior as a

function of dimensionless Mason number and as a function of the angle that the

magnetic field makes with its rotation axis. We show that for a given magnetic field

strength and rotation frequency swimmers can have more than one stable periodic

orbit with different rotation axes, and that one can improve the controllability of

these types of microswimmers by adjusting the relative angle between the magnetic

field and its axis of rotation.

4.3 Models

Although most attempts to develop magnetically rotated microswimmers in bulk

fluid have been focused on using chiral geometries such as helices, in a previous

study we showed that a much broader class of rigid achiral geometries are capable of

propulsion [46]. Here, in order to represent this broad class of geometries, we continue

to use the achiral geometry introduced in that previous work, a three-bead geometry

with two planes of symmetry as depicted in Fig. 4.1. The basis vectors e2 and e3

in Fig. 4.1 are perpendicular to the symmetry planes of the swimmer. We analyze

the three-bead swimmer since it is one of the simplest geometries that satisfies the

minimum swimming criteria. However, the presented method is applicable to any

rigid geometry, such as helices [43].

In experiments, these swimmers have swimming velocities of about 1µm/s, and

length of about 10µm, leading to a Reynolds number of the order of 10−5. In low

Reynolds number regimes, the linear and angular velocities of moving rigid objects

are linearly dependent on the applied torque and force. This can be formulated using
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Figure 4.1: Three views of the body-fixed frame for analyzing swimmer dynamics.
Top: three-dimensional view; lower left: e1 pointing out of page; lower right: e3
pointing out of page. We work in the principal axes of the mobility submatrix M,
e1, e2, and e3; e2 and e3 are perpendicular to the symmetry planes of the swimmer.
The magnetic moment m, angular velocity Ω, and magnetic field H are also shown.
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a linear operator, the mobility matrix:

 v

Ω

 =

 K C

CT M


 F

N

 , (4.1)

where the submatrices K, C, and M that make up the mobility matrix in Eq. 4.1 are

each 3 × 3 matrices, coupling force and translation, torque and translation (or force

and rotation), and torque and rotation, respectively.

For the purpose of finding the mobility matrix, we use a boundary element method,

the method of regularized Stokeslets [41, 51]. This method allows us to accurately

calculate low-Reynolds numbers flow properties of complex geometries. In previous

work, we validated and used the method of regularized Stokeslet to find swimming

velocities of biological swimmers with asymmetric flagellar configurations [53]. By

calculating the force and torque resulting from translations and rotations along the

cartesian directions, it is straightforward to obtain the resistance matrix, which is the

inverse of the mobility matrix.

In the case of permanently magnetized microswimmers, the external force and

torque is caused by the interaction of the magnetic field (H) and magnetic moment

dipole of the swimmer (m). We assume that the dipole is permanent and measured by

experiment. In the most common case of uniform magnetic field there is no external

force on the swimmer. The external torque is

N = (m×H). (4.2)

Combining Eqs. 4.1 and 4.2, we arrive at the equation for the angular velocity of the

swimmer:

Ω = M(m×H). (4.3)
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Figure 4.2: Rotation of magnetic field (H) at configuration angle α with rotation
vector ω. H∥ is the component of H in the direction of ω. H⊥ is the component of
H perpendicular to ω.

Below we explain how Eq. 4.3 can be solved to find the periodic rotation orbits,

evaluate the orbits for stability, and find the corresponding swimming velocities.

4.3.1 General case

The actuating magnetic field can be rotated about an axis making any angle with the

field. As illustrated in Fig. 4.2, we call this relative angle the configuration angle α.

The magnetic field vector can be decomposed into components parallel and normal

to the rotation axis, H∥ and H⊥.

One way to solve Eq. 4.3 is to calculate the angular velocity Ω at the instantan-

taneous configuration of the swimmer and numerically integrate the angular velocity

to find the time-dependent orientation, as in previous studies [2,41,44]. In this work,

we use a more economical approach which is applicable if one is only interested in

steadily rotating solutions. For a steady solution the swimmer follows the rotation

of the magnetic field. Therefore, the angular velocity of the swimmer Ω is equal to

the angular velocity of the field ω. Note that this is a similar approach to that em-

ployed in [44], but here our definition of a steady solution does not include solutions

where the rotation axis is constant but the rotation rate of the field and swimmer

are not equal, and hence the rotation rate is time-dependent. Under our definition,

in a co-rotating body-fixed frame of the swimmer, the magnetic field and angular
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velocities will be constant in time. Using the decomposition of the magnetic field,

this is expressed as

Ω = ωĤ∥ = M(m×H) (4.4)

which should be interpreted in the body-fixed frame of the swimmer. In Eq. 4.4

the strength of the field and its parallel component are specified by the experiment

through the configuration angle α. We work in the body-fixed frame corresponding

to the principle axes (eigendirections e1, e2, and e3) of sub-matrix M as shown in

Fig. 4.1. Working in the principal axes of sub-matrix M simplifies the problem by

reducing the sub-matrix M to a diagonalized matrix (with eigenvalues M11, M22,

and M33) and therefore reducing the number of parameters. Although the angular

velocity of the swimmer (ω = Ω) and magnetic field (H) are constant vectors with

known magnitude and relative angle α, their precise directions Ω̂ and Ĥ are unknown

and need to be solved for.

Taking the dot product of both sides of Eq. 4.4 with H and dividing by H2 yields

ω

H

H∥

H
= ĤTM(m× Ĥ). (4.5)

Note that the left-hand-side of Eq. 4.5 will be zero if H∥ is zero. This corresponds to

a special case in which H and ω are perpendicular and will be discussed in section

4.3.2. Any steady solution must satisfy the constraint Eq. 4.5, hence Eq. 4.5 specifies

a 1-D locus of directions of Ĥ on the unit sphere possibly corresponding to steady

solutions. We can express the components of Ĥ using the two spherical coordinate

angles ϕ and θ shown in Fig. 4.3.

Ĥ = (sin θ cosϕ, sin θ sinϕ, cos θ) (4.6)

Substituting Eq. 4.6 into Eq. 4.5, we can solve for θ in term of the azimuthal angle ϕ
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Figure 4.3: Angles ϕ and θ used for expressing the magnetic field direction Ĥ in
spherical coordinates.

θ = arctan

(
−B ±

√
B2 + 4(A− C)C

2(A− C)

)
, (4.7)

A = (M22 −M11)m3 sinϕ cosϕ,

B = (M33 −M22)m1 sinϕ+ (M11 −M33)m2 cosϕ,

C =
ω

H

H∥

H
.

To satisfy Eq. 4.4, a field direction specified by θ and ϕ must satisfy Eq. 4.5 and

hence Eq. 4.7, but not all directions specified by Eq. 4.7 satisfy Eq. 4.4. To satisfy

Eq. 4.4, the directions in Eq. 4.7 must also satisfy the geometric constraint

Ω

Ω
·H = H∥, (4.8)

which specifies that the component of the magnetic field in the rotation direction has

the correct magnitude. Substituting for Ω from Eq. 4.4 and dividing both sides by

H, this second constraint becomes

M(m× Ĥ)

|M(m× Ĥ)|
· Ĥ =

H∥

H
= cosα. (4.9)

To find all magnetic field directions satisfying Eq. 4.4 specified by the angles θ and
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ϕ, we check all the directions specified by Eq. 4.7 to see if they also satisfy Eq. 4.9.

Substitution of an Ĥ(θ, ϕ) satisfying both equations into Eq. 4.4 yields the direction

and magnitude of the corresponding rotation axis in the swimmer’s frame.

4.3.2 Perpendicular case

A special case arises when the magnetic field is perpendicular to its rotation. Then

H = H⊥, and since the swimmer’s angular velocity is equal to the angular velocity

of the field

Ω = ω = M(m×H). (4.10)

As before, it is convenient to work in a body-fixed frame of the swimmer such as

that specified by the principal axes of the sub-matrix M (Fig. 4.1). In Eq. 4.10, the

field strength and the rotation frequency of the field are known from the experiment.

Since the field is perpendicular to its rotation vector, if we take the dot product of Ĥ

with both sides of Eq. 4.10,

0 = ĤTM(m× Ĥ). (4.11)

This imposes a constraint which results in a 1-D locus of allowable directions of Ĥ.

Substituting Eq. 4.6 into Eq. 4.11, Ĥ and solving for θ (or substituting C = 0 in Eq.

4.5) yields:

θ = −arctan

(
(M33−M22)m1 sinϕ+(M11−M33)m2 cosϕ

(M22−M11)m3 sinϕ cosϕ

)
. (4.12)

Equation 4.12 specifices a set of magnetic field directions Ĥ via the spherical coor-

dinate angles (θ, ϕ). In the perpendicular case, each direction specified by Eq. 4.12

also satisfies Eq. 4.4, since Eq. 4.9 becomes equivalent to Eq. 4.11. However, each

direction corresponds to a different value of the rotation frequency ω, which can be

determined by substituting an H(θ, ϕ) specified by Eq. 4.12 into Eq. 4.4.
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In addition to the solutions satisfying Eq. 4.12, there are also two solutions at

the magnetic field directions specified by θ = 0 and θ = π (along the ê3 axis).

Substitution into Eq. 4.10 implies that these are isolated solutions, each at a single

frequency. Since it would be nearly impossible to tune the frequency to this single

value (a set of measure zero in frequency space) for a given experimental realization,

we ignore these solutions in the rest of the manuscript.

4.3.3 Swimming speeds

Once the steady state direction of rotation and field are found, one can find the

swimming velocity of the swimmer. The instantaneous velocity of the swimmer based

on Eq. 4.1 is

v = CN = C(m×H). (4.13)

If this velocity is not along the direction of rotation Ω, the swimmer makes a helical

trajectory along the axis of rotation and the time-averaged swimming velocity is the

component of the instantaneous velocity along the axis of rotation [53] (Fig. 4.4):

Vs = v ·Ω. (4.14)

Note that although the mobility matrices and instantaneous velocity depend on

the choice of origin of the body frame for the rigid swimmer, the average velocity

in Eq. 4.14 does not. As shown in Fig. 4.4, in one rotation period, the swimmer

moves by one pitch of the helical trajectory and returns to the same orientation.

Since after one rotation the net motion is simple translation, while different origins

or points of the swimmer body have helical trajectories with different radii, all the

helical trajectories have the same pitch. The average velocity in Eq. 4.14 is equivalent

to the pitch divided by the rotation period, so is independent of the choice of origin.
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Figure 4.4: Helical trajectory taken by swimmer. The two curves (solid blue and
dashed red) are the trajectories of the centroids of the middle and upper beads,
which represent two possible choices of origins for the body-fixed frame. In the body
frame the rotation around the origin (Ω) and instantaneous velocity (v) are constant.
The instantaneous velocity depends on the choice of origin, but the rotation does not.
The swimmer is depicted at two times separated by the rotation period 2π/Ω, during
which it translates by one helical pitch (shown by dimension arrows at left) and
rotates back to the same orientation. The average swimming velocity is the pitch
divided by the rotation period and is the same for either choice of origin.
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One can also show that Vs is independent of the choice of origin even though the

mobility matrices depend on the choice of origin by considering how the mobility

matrices transform under a shift of origin by a displacement r. Let the position,

instantaneous velocity of the original origin and angular velocity, total force, and

total torque referenced to the original origin be x, v, Ω, F, and N, respectively, while

the position, instantaneous velocity of the shifted origin and angular velocity, total

force, and total torque referenced to the shited origin be x′, v′, Ω′, F′, and N′.

The original and primed quantities are related by

x′ = x− r (4.15)

Ω′ = Ω (4.16)

v′ = v +Ω× r (4.17)

F′ = F (4.18)

N′ = N− r× F. (4.19)

From these, one can explicitly show how the mobility matrices depend on the

origin, and the resulting invariance of V ′
s , by writing

 v′

Ω′

 =

 v +Ω× r

Ω

 (4.20)

=

 (KF+CN) + (CTF+MN)× r

CTF+MN

 . (4.21)

Finally, by rewriting F and N in terms of F′ and N′, one can identify the submatrices
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in  v′

Ω′

 =

 K′ C′

(C′)T M′


 F′

N′

 , (4.22)

as

K′ = K+C× r− r×CT − r×M× r (4.23)

C′ = C− r×M (4.24)

M′ = M, (4.25)

where (r×M)ad = ϵabcrbMcd and (M× r)ad = Mabϵbcdrc, etc. These transformations

of the mobility matrix are analogous to those provided by Happel and Brenner [73]

for transformations of the resistance matrix. Using these,

V ′
s = v′ ·Ω′/|Ω′| (4.26)

= [(C− r×M)N] · [MN] /|MN| (4.27)

= [CN] · [MN] /|MN| (4.28)

= v ·Ω/|Ω| (4.29)

= Vs. (4.30)

Therefore, Vs is independent of the choice of origin even though the mobility matrices

depend on the origin.

4.3.4 Stability

We examine the steady solutions found in the previous sections for dynamic stability.

Consider a steady state solution that rotates with rate Ω in the lab frame. At time

t = 0, perturb the solution by rotating the swimmer by an infinitesimal rotation
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Figure 4.5: Schematic of the geometry of the swimmer corresponding to the stable
solution (transparent geometry) and perturbed solutions (opaque geometry). Note
that the magnetic field and its angular velocity stay unchanged in the lab frame after
perturbation.

vector σ(t = 0) (Fig. 4.5) and allow it to rotate due to the magnetic torque. Let

R(t) be the rotation matrix which rotates the steady state solution at time t to the

orientation of the perturbed swimmer at time t, and σ(t) be the rotation vector

corresponding to R(t). Then at time t = 0, since σ is infinitesimal,

Rij(t = 0) = (δij + ϵikjσk(t = 0)). (4.31)

At time t = 0, the perturbed swimmer rotates with angular velocity Ω′, which can

be obtained from Eq. 4.4 by rotating the swimmer properties such as the sub-matrix

M and the magnetic dipole moment m to the perturbed orientation (denoted by a

prime) in the lab frame:

Ω′ = M′(m′ ×H), (4.32)

M′ = RMRT,

m′ = Rm.

At time dt, the steady state solution will have rotated by Ωdt, while the perturbed

swimmer will have rotated by Ω′dt. Thus at t = 0, R(t) evolves by the rotation
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(Ω′ −Ω)dt:

dRij

dt
= lim

dt→0

(δil + ϵikl(Ω
′
k − Ωk)dt)Rlj −Rij

dt
. (4.33)

The linearized rated of change of R with time can alternatively be found in terms

of σ by differentiating Eq. 4.31,

dRij

dt
= ϵikj

dσk

dt
. (4.34)

By equating Eqs. 4.33 and 4.34, we can obtain the rate of change of σ with time.

dσi

dt
= (MijϵjklmkϵlmnHm − ϵijnMjlϵlmommHo)σn

≡ Qinσn, (4.35)

where the last equality defines Q. The corresponding solution is stable if all the real

parts of eigenvalues of Q are negative. Application of this criteron allows determi-

nation of stability without needing numerical integration to observe the long-time

dynamics of the governing equation.

4.4 Results

In order to demonstrate the features of solutions to both the general and perpendicular

paramagnetic case, we perform calculations for a specific three-bead swimmer with

beads of diameter 4.35µm attached in a bent configuration, forming a 90◦ angle. This

geometry is similar to structures fabricated using carboxyl beads and demonstrated

to swim by magnetic rotation [46]. We chose an arbitrary direction for the magnetic

moment dipole pointing in the (1, 1, 1) direction in the frame of the principle axis of

the swimmers sub-matrix M.

To apply the method of regularized stokeslets, we discretized the surface of the
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Figure 4.6: Discretized surface of a three-bead swimmer. Each of the 717 spheres on
the surface represents one regularized stokeslet.

swimmer with 717 elements as shown in Fig. 4.6. In Fig. 4.6, each ball represents

the position of a regularized stokeslet. We calculated the sub-matrices of mobility

matrix to be

K =


1.38 0 0

0 1.73 0

0 0 1.72

× 107mN−1 s−1 (4.36)

C =


0 0 0

0 0 −1.16

0 1.94 0

× 1012N−1 s−1 (4.37)

M =


1.58 0 0

0 8.96 0

0 0 5.11

× 1017 radN−1 s−1m−1 (4.38)

We can investigate the effect of each of the physical parameters by nondimension-

alizing Eq. 4.4 using the viscosity µ, magnetic dipole strength m, field strength H,

and Lc, a characteristic length of the swimmer, which we choose to be the distance
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between the centroids of its non-central spheres. The dimensions ofM are [µ]−1[Lc]
−3,

so in nondimensional form Eq. 4.4 becomes

Ma Ĥ∥ = M̃(m̃× H̃), (4.39)

where Ma = µL3
cω/(mH) is the Mason number and tildes indicate nondimensional

quantities. Physically, the Mason number is the ratio between viscous rotational

torque and the maximum torque exerted by the magnetic field. Thus, the solutions

depend on all the experimental parameters through only two dimensionless quantities,

Ma and α [the configuration angle between the field direction and rotation direction

(Fig. 4.2)]. In the following we explore the results across a range of different config-

uration angles (α) and Mason numbers.

4.4.1 Swimmer orientations in steady periodic rotational or-

bits

A steady periodic rotational orbit corresponds to specific (constant) directions of

magnetic field and rotation axis in the swimmer frame. Figures 4.7, 4.8, and 4.9

depict directions of the magnetic field and directions of rotation in the body-fixed

frame of the swimmer that lead to steady rotational orbits for α = 80◦, 90◦, and 100◦,

respectively. In the center of each plot we show the swimmer in its body fixed frame

composed of the eigenvectors of the sub-matrix M (e1,e2, and e3) and the direction

of the magnetic dipole moment. The colored points on the unit sphere of panel (a) in

each figure demonstrate the allowed directions of the field. The color of these points

corresponds to the values of the azimuthal angle ϕ, varying from 0 to 2π as shown

in the color bar. The purple surface shows directions of the magnetic field which are

stable according to Eq. 4.35. Therefore, the stable solutions correspond to the portion
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Figure 4.7: 1-D locus of allowable directions of the a) magnetic field and b) rotation
axis in the body-fixed frame for α = 80◦. The purple area on the surface of the sphere
in panel (a) shows direction of H which are stable according to Eq. 4.35.

Figure 4.8: 1-D locus of allowable directions of the a) magnetic field and b) rotation
axis in the body-fixed frame for α = 90◦. The purple area on the surface of the sphere
in panel (a) shows direction of H which are stable according to Eq. 4.35.
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Figure 4.9: 1-D locus of allowable directions of the a) magnetic field and b) rotation
axis in the body-fixed frame for α = 100◦. The purple area on the surface of the
sphere in panel (b) shows direction of H which are stable according to Eq. 4.35.

of the curve that passes through the purple area. The colored points in panel (b) of

Figs. 4.7-4.9 show the directions of the steady rotations in the swimmer’s frame. In

these panels, the color of the point is the same as the color of the corresponding field

direction in panel (a).

Each pair of Ĥ and ω̂ on the curves corresponds to an experimental realization

which can be specified by the strength of the magnetic field H, magnitude of the

angular velocity ω, and magnitude of the magnetic dipole moment m through the

Mason number. Thus, tracing along the curves yields a Mason number for each point.

For example, in Fig. 4.8, the Mason number for each point can be expressed as Ma(ϕ),

which is plotted in Fig. 4.10. In this graph, the color of each point is the same as the

corresponding point in Fig. 4.8a. Then, for a given Ma, the experimentally realized

directions of the magnetic field and rotation can be obtained by finding the value of ϕ

for which Ma(ϕ) is equal to the Mason number, shown graphically in Fig. 4.10. In this



72

Figure 4.10: Mason number as a function of the azimuthal angle ϕ for α = 90◦.
Color spectrum represents the values of the azimuthal angle ϕ and is identical to the
color coding used in Fig. 4.8. Intersections with the horizontal lines, at different
Mason numbers, specify solutions for different experimental realizations. Here, the
horizontal lines at Mason numbers of 0.08, 0.12, and 0.17 correspond to frequencies
of 10, 15, and 20 Hz at m =

√
3× 10−14J/T, and H = 10.11mT.
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Figure 4.11: Dimensionless swimming velocity vs Mason number for different values
of α.

plot, solutions correspond to the intersection of the curve representing Ma(ϕ) and the

horizontal lines belonging to the specific experimental conditions. Once the angle ϕ is

found, we can go back to Fig. 4.8 to obtain the corresponding angle θ which specifies

the direction of H, and from which the rotation axis Ω can be calculated through

Eq. 4.3. As illustrated by Fig. 4.10, there might be multiple possible solutions for

each frequency. Some of these solutions may be unstable if they are not in the purple

region in Fig. 4.8.

For the cases of non-perpendicular configurations of the magnetic field (Figures

4.7 and 4.9), the existence of a solution is not guaranteed for all the values of ϕ, but

different points on the curves in Figs. 4.7 and 4.9 still correspond to different Ma.
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4.4.2 Swimming speeds

The swimming speed can be nondimensionalized using units of Lcω,

V ′
s =

Vs

Lcω
(4.40)

The nondimensional swimming speed V ′
s is a function of Ma and α. Figure 4.11

shows the non-monotonic behavior of the non-dimensional swimming velocity for our

example swimmer as a function of Mason number for a variety of fixed values of

α. For each value of α, the velocity as a function of Mason number is continuous;

the obvious gaps in the curves of Fig. 4.11 are a result of errors due to numerical

precision in the root-finding algorithms used to solve Eqs. 4.7, 4.9, and 4.10. For each

angle α, steady solutions are available only up to a certain frequency, the well-known

step-out frequency [36]. Above the step-out frequency the swimmer cannot follow

the magnetic field fast enough to maintain a steady rotation. As we discuss below

in Section 4.4.4, for our geometry, the shape of the velocity-frequency curve for our

geometry is quite different from that for helices.

For certain angles of the magnetic field relative to its axis of rotation there is a

range of bistability (for α = 85◦, 0.104 < Ma < 0.180; for α = 90◦, 0.108 < Ma <

0.185, and for α = 95◦, 0.134 < Ma < 0.175), where there are 2 stable solution with

different values of V ′
s . Note that in these bistabilities the two solutions can even have

opposite directions of swimming at the same rotation rates.

To further investigate the swimming velocities, we studied the dependence of di-

mensionless swimming velocities on the configuration angle α for a number of different

constant Mason numbers. Figure 4.12 plots dimensionless swimming velocity versus

magnetic field configuration angles (α) for Ma = 0.058. This plot can be broken

down to three regions. In region I, at the smallest and largest configuration angles,
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Figure 4.12: Dimensionless swimming velocity versus magnetic field’s configuration
angle (α) at Ma = 0.058. In region I, no swimming motion is expected; region II and
III have one positive and negative solutions respectively, corresponding to swimming
in the same and opposite direction of the rotation vector.

no steady solutions are available. In region II, the swimming velocity is positive, i.e.,

in the same direction as the rotation vector. In region III, the swimming velocity is

negative, in the opposite direction as the rotation vector.

Figures 4.13 and 4.14 illustrate the same velocity-angle dependence for Mason

numbers of 0.125 and 0.167 respectively. In these plots, regions I, II, and III corre-

spond to no solution, single positive solution, and single negative solution as before,

but there are two more regions marked as IV and V. In region IV there are two stable

solutions with swimming velocities of opposite directions. In region V, there are two

stable solutions but with swimming velocities in the same direction. As in Fig. 4.11,

the curves as a function of α are continuous, and gaps arise from errors due to nu-

merical precision in root finding algorithms, except for at α = 90◦, where gaps result
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Figure 4.13: Dimensionless swimming velocity versus magnetic field’s configuration
angle (α) at Ma = 0.125. Regions I to III are defined as in Fig. 4.12. In region
IV there are two possible swimming velocities with opposite directions. In region V,
there are two possible swimming velocities, but in the same direction.

from the need to consider the perpendicular case separately.

4.4.3 Implications for control

Identifying regions with bistability and monostability may be important for the con-

trol of the swimmers, since α, H, ω, and ω̂ are the quantities amenable to experi-

mental control. The rotation axis ω̂ = Ω̂ determines the direction of the swimming

movement. The magnitudes ω and H both enter through the Mason number, which

has been used in the past as the main control parameter, for instance by varying

frequency to alter the speed of swimmers. Identification of the regions in Figures 4.12

to 4.14 allows control of the swimming velocity of the swimmer by adjusting the field

configuration angle α. The swimming speed does vary with α, so the configuration
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Figure 4.14: Dimensionless swimming velocity versus magnetic field’s configuration
angle (α) at Ma = 0.167. Regions are defined in the same fashion as in Figures 4.12
and 4.13.
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angle could be used to control speed like Ma, but α can also be used to control the

qualitative features of the solutions as described below.

First, beyond the step-out frequency unsteady rotation occurs. However, this

unsteady wiggling motion can be avoided, by adjusting angle α such that the step-

out frequency is as high as possible.

Second, even if there are only monostable regimes such as in Fig. 4.12, changing

α can control the direction of swimming by choosing between region II and region

III, for a fixed frequency.

Third, experiments have observed bistability in certain frequency regimes for he-

lical swimmers [2]. Bistability also hinders control, for example, in regions IV and

V. In region IV the solutions have swimming velocities of opposite direction. In this

case, the direction in which the swimmer moves may depend on the initial conditions,

which cannot be predicted based on these graphs. In region V, bistable solutions

result in swimming velocities of the same direction, but the swimming speed can take

different values and therefore, cause uncertainty in control capacity. We can avoid

bistability by adjusting α to stay away from regions IV and V. At any Mason number,

we can also choose the swimming direction to be in the same direction as the rota-

tion by choosing region II, or we can choose it to be in the opposite direction of the

rotation by working in region III. Thus, the angle α may serve as a useful parameter

to enhance control of these type of microswimmers.

While preparing this manuscript we learned that a control scheme involving the

introduction of nonzero B∥ and hence α ̸= 90◦ has recently been employed by Cheang

et al. [74]. Our work provides a physics-based model to predict the behavior of

swimmers in such a scheme, as well as develop more sophisticated control strategies

which vary the configuration angle α.
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Figure 4.15: Dimensionless swimming V ′
s (blue squares) and precession angle β (red

circles) vs Mason number at α = 90◦.

4.4.4 Rotation axes and precession

Finally, we wish to discuss the steady solutions we have found in the context of the

wobbling/tumbling, precession, and propulsional behavior discussed in the literature

for helical swimmers [2,3,38,41]. For our swimmer, the rotation axis depends on the

Mason number, which is similar to previous experimental observations and theoretical

results for helices. For helices, the rotation has been characterized by a precessional

angle β between the helical axis and the rotation axis [41]. To compare to our

swimmer, which is not a helix, we introduce the precession angle β between the long

axis of the swimmer (e2, which has the largest eigenvalue of M) and the direction

of rotation (Ω̂). β = 0 corresponds to rotation about the long axis, while β = 90◦

corresponds to what has been called tumbling and β ̸= 0 corresponds to wobbling.

Figure 4.15 shows how the precession angle depends on Mason number for the

perpendicular case (α = 90◦). As observed above, the bistability results in two
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possible precession angles for certain values of Mason number.

Like the helices, near zero Mason number (small frequencies) the precession angle

is closer to 90◦, and then decreases as the frequency increases. However, unlike the

results for helices, the precession angle does not scale with the inverse of the Mason

number, the precession angle does not approach 0◦ as the frequency increases, nor

is there an abrupt transition from tumbling (β ≈ 90◦) to precessional motion with

β ̸= 0◦ [2, 41].

Furthermore, a helix shows a continual, almost linear increase in swimming ve-

locity as the frequency increases towards step-out, and then a sharp drop as step-out

is exceeded. In terms of the dimensionless velocity V ′
s , which is scaled by Lcω, this

would correspond to a nearly flat V ′
s as a function of Ma below step-out (where steady

solutions exist). In contrast, our swimmers show a gentle rise in swimming velocity

which peaks at a frequency below step-out, and then the velocity decreases until

step-out.

The differences in precession angle and velocity as a function of Mason number be-

tween our results and helices are not unexpected since our geometry is quite different

from a helix.

4.5 Conclusion

We described a method to investigate dynamical stability that can be generally ap-

plied to any rigid geometry and does not require any geometric simplifications. We

found that certain experimental settings result in bistability. We show that one can

effectively avoid bistable regions by adjusting the relative angle between magnetic

field and its axis of rotation. This provides a physics-based model for control which

allows us to predict the swimming speed and direction deterministically. Our model

is also capable of illuminating the wobbling motion as reported in the literature for
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helices. While here we studied the wobbling of a three-bead geometry we also can

apply our method to helices to further elucidate their rotational behavior while ac-

curately taking into account the helical geometry [43]. Furthermore, our analysis

can be extended to arbitrary swimmer geometries in unsteady regimes (such as the

regime beyond the step-out frequency) through numerical integration of the rotational

dynamics using accurately calculated mobility matrices. Although our ≈ 10µm swim-

mers are negligibly affected by Brownian fluctuations, numerical integration of the

rotational dynamics including Langevin noise can also extend our analysis to smaller

swimmers where thermal fluctuations are more important [75]. Paramagnetic and

soft-ferromagnetic magnetic response can be incorporated through the appropriate

relationship between moment and magnetic field. Finally, our work may serve as a

precursor to investigations of the behavior of groups or swarms of interacting magnetic

microswimmers, since understanding the individual dynamics of magnetic swimmers

provides the first step before interactions between swimmers can be considered.
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Chapter 5

Magnetization Directions and

Geometries of Helical

Microswimmers for Linear

Velocity-Frequency Response

5.1 Abstract

Recently, there has been much progress in creating microswimmers or microrobots

capable of controlled propulsion in fluidic environments. These microswimmers have

numerous possible applications in biomedicine, microfabrication, and sensing. One

type of effective microrobot consists of rigid magnetic helical microswimmers that are

propelled when rotated at a range of frequencies by an external rotating magnetic

field. Here, we focus on investigating what magnetic dipoles and helical geometries

optimally lead to linear velocity-frequency response, which may be desirable for the

precise control and positioning of microswimmers. We identify a class of optimal

magnetic field moments. We connect our results to the wobbling behavior previously
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observed and studied in helical microswimmers. In contrast to previous studies, we

find that when the full helical geometry is taken into account, wobbling-free motion

is not possible for magnetic fields rotating in a plane. Our results compare well

quantitatively to previously reported experiments, validating the theoretical analysis

method. Finally, in the context of our optimal moments, we identify helical geometries

for minimization of wobbling and maximization of swimming velocities.

5.2 Introduction

Micro- and nano-robots capable of controlled propulsion have been pursued for a

variety of microfabrication and biomedical applications. Biomedical applications in-

clude drug delivery [7, 8], tissue manipulation [5, 6, 10], and in vivo diagnostics and

sensing [9, 11–13]. A number of types of microrobots employing different propulsion

techniques have been developed, including chemically-powered microrobots depen-

dent on external fuels to create phoretic flows [16–24], externally controlled biotic

systems [14], dielectrophoretically manipulated robots [76], and magnetically actu-

ated robots, including those that require a nearby surface [34, 35, 56, 57], and those

that can swim in bulk fluids [15,45,46,59–61,63–67]. In this paper, we focus on mag-

netically actuated microswimmers in bulk fluids which can be propelled when rotated

by an external magnetic field [15,45,46,59–61,63,64].

These magnetic swimmers are one of the most promising types of microrobotic

systems under current investigation. Compared to other swimmers, magnetic swim-

mers have advantages for in vivo use [36], since they do not require a potentially

toxic chemical fuel, and magnetic fields permeate through tissue with little attenua-

tion. Furthermore, swimmers rotated via a magnetic torque produced by field-dipole

interactions can be scaled down to micro- and nanoscales unlike those which rely on

magnetic forces produced by field gradient-dipole interactions. Although non-helical
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magnetically rotated swimmers have been reported [46], nearly all such swimmers

so far have been helical in geometry [45, 59–61, 63], mimicking the rigid helical flag-

ella of bacteria. Thus, in this paper we focus on the swimming properties of helical

geometries.

These swimmers are actuated by a magnetic field of magnitude H, which has

a time-dependent direction that rotates with angular velocity ω. In typical exper-

iments, the magnitude of the field is kept constant, while the rotation direction ω̂

and frequency ω = |ω| are varied. The direction ω̂ controls the swimming direction

(along ω̂), while the frequency ω is most often used to control the speed. Typically,

the magnetic field is rotated in a plane perpendicular to its rotation axis, and we will

focus on that case here.

One desirable feature for control is a linear relationship between velocity and

frequency [3]. This allows simple proportional control of the swimming velocity as

frequency is varied, and is especially useful for precise control if the linear relationship

extends all the way to zero velocity. One way to achieve a linear velocity-frequency

relationship is to maintain a constant axis of rotation as frequency changes [3, 46],

but for generic geometries, the axis of rotation varies as frequency is changed while

magnetic field strength stays constant [46]. Previous studies have observed these

changes in rotation axis for magnetically rotated helices as frequency is varied [2,3,38].

The change in rotation axis leads to nonlinear velocity-frequency response and hinders

ease of control. The rotation axis can be characterized by a “precession angle” (β),

which is the angle the axis of rotation makes with the longitudinal helical axis (Fig.

5.1). For β = 0◦, the swimmer rotates as designed around the helical axis, while for

β = 90◦ the swimmer rotates about an axis perpendicular to the helical axis, which

has been called “tumbling.” Rotation about intermediate axes with 0◦ < β < 90◦

has been called “wobbling.” For example, Ghosh et al. [2] observed that helices
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Figure 5.1: Rotation of the helix by angular velocity Ω can be characterized by the
precession angle β.

magnetized with moments which were not perpendicular to the helical axis tumble at

the lowest frequencies, and show little forward propulsion. As frequency is increased

past a critical frequency, the tumbling transitions to wobbling and the precession angle

decreases while the velocity increases nonlinearly as frequency is further increased.

The precession angle approaches zero and the swimming velocity peaks at the so-

called step-out frequency. Beyond the step-out frequency, steady rotation is no longer

possible since the magnetic torque is not large enough to rotate the swimmer as fast

as the field, and the swimming velocity decreases.

The tumbling and wobbling of magnetically rotated helices has been theoretically

examined in a number of previous studies. Man and Lauga [41] showed that during

wobbling the precession angle scales as inverse frequency using numerics and asymp-

totics of nearly straight helices. Ghosh et al. [2,44] and Morozov and Leshansky [39]

investigated the transition of stability from tumbling to wobbling behavior as fre-

quency increases by treating the rotational dynamics as that of ellipsoids numerically

and analytically, respectively.

Two studies have explored what types of magnetization are optimal for helical

microswimmers. Recently, Peters et al. [3] proposed that wobbling can be elimi-

nated by fabricating superparamagnetic helical microswimmers in a way such that

the paramagnetic easy-axis is perpendicular to the helical axis. They showed that
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microswimmers with such magnetization had much reduced wobbling compared to mi-

croswimmers with random easy-axis, as well as improved swimming characteristics.

In addition, in a theoretical examination of the rotational and swimming behavior of

helices with permanent magnetic dipole, Morozov and Leshansky [39] concluded that

for such microswimmers, it is optimal to have the magnetic dipole perpendicular to

the helical axis to minimize wobbling.

In previous publications [42, 46], we have described a modeling method for rigid

magnetically rotated swimmers that is applicable for arbitrary geometries. The

method identifies stable steady rotating orbits of the swimmer for given experimental

conditions in terms of the rotation axis of the swimmer and the orientation of the

swimmer relative to the magnetic field. Here, we apply our techniques to investigate

how the magnetization direction and geometry of helical swimmers can be designed

in order to control the rotation axis, reduce wobbling, and produce linear velocity-

frequency response, which may enable simplified control, especially at the low speeds

required for precise position control.

In the previous work on the rotational dynamics of helical microswimmers men-

tioned above [2, 39, 44], the rotational dynamics was approximated by the dynamics

of an ellipsoid or rod, ignoring chirality and non-axisymmetry of the helix. Here, we

treat the rotational dynamics of a truly helical geometry. We investigate theoretically

whether the direction of magnetization can be used to guarantee wobble-free rotation

about the helical axis, and find that it cannot. We show that although no moment

can completely eliminate wobbling, there are ideal directions of magnetization that

are optimal in the sense that they can guarantee linear velocity-frequency relation-

ships. For helices with large aspect ratios (helical length/helical radius), the ideal

magnetization directions are close to those suggested previously (i.e., perpendicular

to the helical axis) by studies using the ellipsoidal approximation, and we provide a

comparison to illustrate how the difference increases as the aspect ratio decreases. We
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also compare swimming speeds predicted by our theory to those reported for helical

swimmers in the literature and find good agreement. Finally, in the context of these

ideal directions of magnetization, we investigate what helical geometries minimize

wobbling and maximize velocities. Previous work investigating optimal shapes for

helical swimmers [77] assumed that the rotation is along the helical axis; here we

incorporate the full wobbling dynamics of helices rotated by magnetic fields.

In this work we use both resistive force theory [78] as well as the method of regular-

ized stokeslets [51] to calculate mobility matrices for helical geometries. The resistive

force theory is useful for obtaining analytical results which allow exploration of vary-

ing helical geometries, while the method of regularized stokeslets allows quantitative

comparison with experiments. Resistive force theory is commonly used to investigate

both artificial microswimmers as well as biological microswimmers, and by comparing

the results of resistive force theory and the method of regularized stokeslets, we also

show how thin the helix filament should be for the resistive force theory approximation

to hold.

Besides its application to the helical swimmers, the work reported here also pro-

vides quantitative validation of the modeling technique used. In [46] and [42] we

reported the technique as a method applicable to generic geometries, providing qual-

itative comparison to observations in [46], but did not quantitatively compare it to

experimental results. The agreement between our model and experimental swim-

ming speeds for helices lends support to the use of our model for a wide variety of

geometries, including achiral geometries [46]. The potential insights allowed by our

technique are demonstrated by investigations of stability in varying magnetic field

conditions [42] as well as the rotational dynamics of helices reported here. Our model

may be useful for designing effective microswimmers from a much larger geometry

space than helical geometries alone. Furthermore, the conclusion that a moment

perpendicular to the principal axis of the rotational mobility matrix leads to linear
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velocity-frequency response applies to nonhelical geometries, which may be useful for

general design of microswimmers.

5.3 Model and method

We follow the general framework for modeling the rotational propulsion of rigid bodies

described in Ref. [42]. Here we summarize the essential features for the present study;

for more details please see Ref. [42]. In the zero Reynolds number limit appropriate

for microswimmers, the instantaneous velocity (v) and angular velocity (Ω) applied

to a rigid body are linearly related to the external force (F) and torque (N) through

a 6×6 mobility matrix,

 v

Ω

 =

 K C

CT M


 F

N

 . (5.1)

In the above, K, M, and C are 3×3 submatrices that relate translations to forces,

rotations to torques, and translations to torques, respectively. According to this

definition K and M are positive definite.

In typical experiments, a uniform field interacts with a magnetic dipole to produce

zero external force and a net torque N = (m × H), so the instantaneous angular

velocity of the swimmer is

Ω = M(m×H). (5.2)

A steady solution occurs when the angular velocity of the swimmer is equal to

the angular velocity of the rotating magnetic field, so that in a body-fixed frame

co-rotating with the swimmer, the magnetic field and hence angular velocity are
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constant1. Thus a steady solution obeys

Ω = ω = M(m×H), (5.3)

and finding steady solutions amounts to identifying pairs ofH and ω in the body-fixed

frame that satisfy Eq. 5.3.

In many experiments, the magnetic field is rotated in a plane perpendicular to its

rotation axis. In this work, we restrict ourselves to this condition unless explicitly

stated otherwise. For such a field, the steady solutions can be found by finding the

magnetic field directions which satisfy

0 = ĤTM(m× Ĥ). (5.4)

For example, the direction of the field can be specified using spherical coordinates

defined in Fig. 5.2b,

Ĥ = (cos θ, sin θ cosϕ, sin θ sinϕ) , (5.5)

in which case Eq. 5.4 provides a constraint on the angles (θ, ϕ).

Once the magnetic field direction for a steady solution is identified, the instanta-

neous swimming velocity can be calculated from Eq. 5.1 as v = CN = C(m ×H),

which is also constant in the body-fixed frame. The average swimming velocity over

a rotation period is the component of the instantaneous swimming velocity along the

rotation direction,

Vs = v · Ω̂. (5.6)

Note that while the instantaneous velocity, which has been used by others as a mea-

sure of swimming speed, depends on the origin chosen for the body-fixed frame, the

1Our definition of steady solution excludes the solutions with phase slip discussed by Ghosh et
al. [44] and Morozov and Leshansky [39]
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Figure 5.2: a) Helix with two turns, pitch P , and radius R. The helical axis is along
x̂, and the helix is symmetric about a 180◦ rotation about ŷ. The principal axes
of the rotational mobility matrix M are ê1, ê2, and ê3. b)Angles ϕ and θ used for
expressing the magnetic field direction Ĥ in spherical coordinates. As specified in
text, the angles may be used relative to the symmetry (x, y, z) axes or the principal
(1,2,3) axes.

swimming velocity of Eq. 5.6 is independent of the choice of origin.

One way a linear relationship between swimming velocity and frequency can be

achieved if the rotation axis remains constant as the frequency is altered. In that

case, Eq. 5.2 implies that the torque m×H also has constant direction and increases

in magnitude linearly with the frequency. Therefore v also has constant direction and

increases linearly with frequency, and so Eq. 5.6 implies Vs increases linearly with

frequency. Thus, maintaining a constant rotation axis for different frequencies can be

viewed as a design goal for helical swimmers.

One way to achieve a constant rotation axis is to increase the magnetic field

strength proportionally to the frequency as the frequency of the rotation is increased

[46]. In this case, it should be clear that the magnetic field direction and rotation di-

rection satisfying Eq. 5.2 remains fixed while both the field magnitude and frequency

increase. However impractically large magnetic fields may be required at higher fre-

quencies so we will search for other ways to achieve linear velocity-frequency response.

Steady solutions can be evaluated for stability by evaluating the eigenvalues of



91

the matrix Q [42],

Qin = (MijϵjklmkϵlmnHm − ϵijnMjlϵlmommHo) . (5.7)

If the real parts of the eigenvalues are all negative, then the solution is stable, other-

wise, it is unstable.

5.4 Mobility matrix for a helix

Consider a helix with centerline specified by

r(ξ) = ξx̂+R cos(2πχξ/P )ŷ +R sin(2πχξ/P )ẑ, (5.8)

where P is the helical pitch, R is the helical radius, ξ varies from −nP/2 to nP/2,

and n is the number of turns. (See Fig. 5.2a.) The parameter χ = ±1 controls the

chirality of the helix. Note that the arclength s = ξ/ cosα, where α = arctan(2πR/P )

is the pitch angle.

In these coordinates, the helix is unchanged by the symmetry operation of a 180◦

rotation about the ŷ axis. Applying the symmetry arguments described in Chapter
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5 of Happel of Brenner [73], the mobility matrix takes the form

K =


Kxx 0 Kxz

0 Kyy 0

Kxz 0 Kzz

 (5.9)

M =


Mxx 0 Mxz

0 Myy 0

Mxz 0 Mzz

 (5.10)

C =


Cxx 0 Cxz

0 Cyy 0

Czx 0 Czz

 . (5.11)

In this study, we calculate the mobility matrix for a helix using resistive force the-

ory [78], which is often applied to slender objects such as helical filaments. Although

resistive force theory is not always quantitatively accurate [79], it is a convenient way

to capture the qualitative dependence of the hydrodynamic mobility matrix on the

helical geometry using analytic expressions. Consider a helix moving due to external

forces and torques in a quiescent fluid. In resistive force theory, the force per unit

length on a segment of the helix is

f(ξ) = [ζ∥n̂n̂+ ζ⊥(1− n̂n̂)]vrel(ξ), (5.12)

where vrel(ξ) is the velocity of the segment relative to the quiescent background,

n̂(ξ) is the tangent to the helix segment, and ζ∥ and ζ⊥ are the resistive force theory

coefficients. The ratio ζ⊥/ζ∥ depends only logarithmically on the thickness of the

helix relative to its pitch, so in this work, we keep the ratio constant (ζ⊥/ζ∥ = 2) for
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our qualitative investigations of the effects of varying helical geometry.

The total force F and torque N on the helix are

F =

∫ nP/2

−nP/2

dξ

cosα
f(ξ) (5.13)

N =

∫ nP/2

−nP/2

dξ

cosα
r(ξ)× f(ξ) (5.14)

If the helix undergoes rigid body motions with translational velocity v and angular

velocity Ω, then vrel(ξ) = v+Ω× r(ξ). Calculating the total force and torque when

v and Ω take values along cartesian directions yields the elements of the resistance

matrix, which is the inverse of the mobility matrix. In the appendix we list the

elements of the resistance matrix. The form of the matrix agrees with that predicted

by the symmetry analysis.

5.5 Magnetization perpendicular to the helical axis

does not lead to rotation about the helical axis.

Here we examine whether a permanent magnetic dipole oriented perpendicularly to

the helical axis (i.e. in the y-z plane), similar to that proposed by Peters et al. [3]

and Morozov and Leshansky [39], leads to rotation about the helical axis (Ω = Ωx̂)

and hence no wobbling.

To do so, consider what moments and magnetic fields are needed to yield a rotation

axis in the x-direction. The inverse of M has the same form as M; call its nonzero

elements

M−1 =


Rxx 0 Rzx

0 Ryy 0

Rzx 0 Rzz

 . (5.15)
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Figure 5.3: For a rotation axis along the helical axis (x̂), the torque N is not in the
x-direction, and the moment m and field H lie in a plane perpendicular to the torque.
As the rotation frequency changes, the angle H shifts to make a different angle γ with
m.

In order to achieve a rotation Ωx̂, Eq. 5.2 requires that the torque m × H =

Ω(Rxxx̂+Rzxẑ). Note that the helical geometry leads to off-diagonal elements Rzx so

that the torque has a z as well as x component. To satisfy this torque, both m and

H must lie in a plane perpendicular to Ω(Rxxx̂+Rzxẑ) (see Fig. 5.3). Consider what

happens as the frequency of rotation changes. For a given moment m in that plane,

at small frequencies the field H will point in a direction close to m. As frequency

increases, H will rotate in the plane to make a larger angle with m and increase the

torque. However, since the plane is perpendicular to Ω(Rxxx̂+Rzxẑ) and notΩ = Ωx̂,

the angle between H and Ω must change as the frequency changes. In particular,

for almost all frequencies H will not be perpendicular to Ω. Thus, to achieve a

rotation about the helical axis requires a careful tuning of the angle between the field

and its rotation axis as the frequency changes, which may be difficult to implement

experimentally.

The above argument applies to any moment in the plane perpendicular to the

torque. Of those, only one is also perpendicular to the helical axis, m = mŷ. Thus for

a helical geometry, in contrast to what is suggested by the ellipsoidal approximation,
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having a moment perpendicular to the helical axis does not lead to rotation about

the helical axis for fields perpendicular to rotation. Is there another strategy that

could be employed for easier control? Below, we show that although rotation about

the helical axis is not easily achievable, one can still choose a moment to obtain linear

velocity-frequency response.

5.6 Rotation about the principal axis of M.

Although the rotational mobility submatrix M is not diagonal when referred to the

symmetry basis x̂, ŷ, ẑ, it is diagonal when referred to the principal axes ê1, ê2, ê3.

Call the respective eigenvalues M1, M2, and M3, which are all positive. For typical

helices with large aspect ratio, Mxz is small compared to Mxx and Mzz and one of

the eigenvectors of M will be close to x̂. Let ê1 be the principal axis closest to x̂. As

the aspect ratio decreases, ê1 increasingly deviates from x̂. Below, we show that if

the moment is chosen to lie perpendicular to ê1, then the rotation axis will be along

ê1, independent of frequency, and there will be a linear velocity-frequency response.

First, consider how one could obtain rotation along the 1-direction (Ω = Ωê1).

Repeating the argument from the previous section but in the principal axis frame,

since the mobility matrix is now diagonal the torque is in the 1-direction, and m

and H lie in the 2-3 plane. In this case, the 2-3 plane is always perpendicular to

the rotation axis, so no tuning of the angle between the field and the rotation axis is

necessary as frequency is changed.

To be more specific, consider a magnetic moment in the 2-3 plane, m = m2ê2 +

m3ê3. Specify the field direction using spherical coordinates as in Eq. 5.5, referred to

the principal axes (i.e., θ is the angle between H and the 1-axis). Then, substituting
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into Eq. 5.4, the field directions giving steady solutions satisfy the constraint

0 = sin θ cos θ [(M1−M2)m3 cosϕ− (M1−M3)m2 sinϕ] . (5.16)

There are two families of solutions to the above constraint equation.

For the first family of solutions, θ = π/2 and H is in the 2-3 plane (H = H2ê2 +

H3ê3), leading to

Ω = M1(m2H3 −m3H2)ê1. (5.17)

This is the solution discussed two paragraphs above, and is similar to the “propulsive”

or “wobbling” solutions found under the ellipsoidal approximation employed by Ghosh

et al. [2,44] and Morozov and Leshansky [39,80]. Since the rotation axis is always in

the 1-direction, it will have a linear velocity-frequency response. This solution exists

as long as ω < M1mH, the step-out frequency.

The second family of solutions is specified by

tanϕ =
(M1 −M2)m3

(M1 −M3)m2

(5.18)

for any value of θ. (Note that this includes solutions to Eq. 5.16 with θ = 0.) Referred

to the principal axes, the corresponding field directions are given by

Ĥ =

[
cos θ,± sin θ

(M1 −M3)m2√
(M1 −M2)2m2

3 + (M1 −M3)2m2
2

,

± sin θ
(M1 −M2)m3√

(M1 −M2)2m2
3 + (M1 −M3)2m2

2

]
(5.19)

Ω = H

[
∓ M1m2m3(M2 −M3) sin θ√

(M1 −M2)2m2
3 − (M1 −M3)2m2

2

,M2m3 cos θ,−m2M3 cos θ

]
. (5.20)

Vs can be found by direct substitution of Ĥ and Ω into Eq. 5.6, but the expression
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is not illuminating and too unwieldy to write explicitly here. As we will see using a

specific example below, this solution corresponds to “tumbling” rotation.

Note that although any moment in the 2-3 plane has a solution with constant ro-

tation axis along the first principal direction, it may be hard to experimentally realize

such moments, since aligning swimmers with the principal, as opposed to symmetry,

axes may be difficult. However, ê2 = ŷ is perpendicular to both the symmetry and

principal axis, and may be feasible to achieve during fabrication. For example, if

helices made by glancing angle deposition [61] are magnetized while still attached to

substrate, identification of the 180◦ symmetry axis corresponds to picking a particu-

lar direction parallel to the substrate. Therefore, in some sense magnetization along

ê2 = ŷ is the most practical option and we investigate it in more detail below.

5.6.1 Moment along 2-direction

For the case of a moment m = m2ê2 along the 2- (or equivalently y-) direction the

above two families of solutions simplify to

Ω = M1m2H3ê1 = HM1m2 sinϕê1 (5.21)

H = H(cosϕê2 + sinϕê3) (5.22)

Vs = |m2H3|C11 = ωC11/M1 (5.23)

for the first family and

Ω = −M3m2H1ê3 = −HM3m2 cos θê3 (5.24)

H = H(cos θê1 ± sin θê2) (5.25)

Vs = |m2H1|C33 = ωC33/M3 (5.26)
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for the second family. It should be clear now that the since the second family rotates

about the third principal axis, it is rotating about an axis which is nearly perpen-

dicular to the helical axis and represents the “tumbling” solution. The first family

has two solutions with opposite signs of Ω for 0 < ω < |HM1m2| (corresponding

to ϕ and ϕ + π), while the second family has two solutions for 0 < ω < |HM3m2|

(corresponding to the ±).

Both families are steady solutions, but to determine which solutions are realized

experimentally we must evaluate the stability. For the first family, Q in Eq. 5.7 is

Q = H


−m2M1 cosϕ 0 0

0 0 m2M1 sinϕ

0 −m2(M1 −M3) sinϕ −m2M3 cosϕ

 . (5.27)

The eigenvalues are λ1 = −M1m2 cosϕ and λ± = (A ±
√
A2 + 4BC)/2, with A =

−m2M3 cosϕ, B = M1m2 sinϕ, and C = −m2(M1−M3) sinϕ. For all helices we have

examined, M1 > M3. Thus BC = −m2
2M1(M1 −M3) sin

2 ϕ < 0 and the real parts of

λ± are both negative if and only if A = −m2M3 cosϕ < 0. Therefore stability occurs

for −π/2 < ϕ < π/2 if m2 > 0 but for π/2 < ϕ < 3π/2 if m2 < 0, and in general a

stable solution exists for the whole range of ω where there are steady solutions.

For the second family, Q is

Q = H


∓m2M1 sin θ m2(M1 −M3) cos θ 0

m2M3 cos θ 0 0

0 0 ∓m2M3 sin θ

 (5.28)

The eigenvalues are λ3 = ∓m2M3 sin θ, and λ± = (A ±
√
A2 + 4BC)/2, where
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Figure 5.4: The swimming velocity vs frequency for the stable solutions of a rotating
helix with 2 turns, P = 4R, χ = 1, and a moment along the y-direction. The
lower branch corresponds to rotation around an axis with precession angle β = 85◦,
while the upper branch corresponds to rotation around an axis with precession angle
β = 4.9◦

now A = ∓m2M1 sin θ, B = m2M3 cos θ, and C = m2(M1 −M3) cos θ. In this case,

BC = m2
2(M1 −M3) cos

2 θ > 0, so that one of the eigenvalues λ± is always positive

and the other negative. Thus the second family of solutions is always unstable.

In Fig. 5.4 we plot the swimming velocity versus the frequency for the first and

second families of solutions, for a helix with n = 2, P = 4R and chirality χ = 1.

In the plots we use the dimensionless frequency specified by ω̃ = ωζ∥R
3/(mH), and

the dimensionless velocity Ṽs = Vsζ∥R
2/(mH). Note that for a given swimmer, the

nondimensionalization of Vs that we use is not affected by changes in frequency [unlike

another possibility, Vs/(ωR)]; thus, our plots directly reflect the dimensional velocity-

frequency plots commonly presented for experimental swimmers. For this chirality
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C11 > 0 and C33 < 0, so the stable first family is the one with positive slope that

exists over a larger range.

For this geometry of helix (n = 2, P = 4R), we can also characterize the rotation

via the precession angle β (Fig. 5.1), which is the angle the axis of rotation makes

with the helical axis (x̂). For the first family, this is just the angle between ê1 and x̂,

giving β = 4.9◦, while for the second family, it is the angle between ê3 and x̂, giving

β = 85◦.

To conclude this section, we have shown that a moment perpendicular to the

principal axis rather than helical axis leads to a linear velocity-frequency response.

Although the resulting rotation axis (along ê1) is not along the helical axis, for many

helices it is relatively close. The dependence of precession angle on helical geometry

will be explored in more detail in Section 5.9. Finally, note that although we only

analytically proved that the propulsion solution is stable and tumbling solution is

unstable for moment along the 2-direction, for all helical geometries we have tested,

we observed numerically that only the propulsive solution is stable so long as the

moment is perpendicular to the first principal axis.

5.7 Comparison to experimental swimming speeds

To validate our results, we compare to experimental results for microswimmers. The

examples of microscale swimming magnetic helices in the literature do not exactly

correspond with the scenario which we discuss here. Ghosh and Fischer [61] and

Ghosh et al. [2] examine permanently magnetized helical swimmers with attached

heads (which therefore do not have the symmetry of a helix). Other swimmers are

soft ferromagnetic helices with heads (e.g., [60]). While Peters et al. [3] examine

a helical ribbon with no head, their swimmer is paramagnetic. Nonetheless, we can

make rough comparisons between these and our calculations to ensure that our models
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are reasonable. Because typically the magnetic moment of these swimmers is not

measured the most appropriate measure for comparison is the slope of the velocity-

frequency curve when nearly linear behavior is observed. If the frequency is measured

in Hertz (revolutions/second), the slope corresponds to the distance traveled per

revolution, which is a property dependent only on the geometry of the helix in our

model. Therefore, in the following we calculate the slope for the propulsion solution

with rotation about the first principal axis ofM, and compare to experimental results.

Ghosh et al. [2] report artificial swimmers that consist of a spherical head attached

to a helix, which has a filament diameter which tapers at the end away from the head.

In their paper, they find that swimming speeds are best modeled using an “effective

pitch,” the amount of translation after one revolution about the helical axis, of 0.08

pitches/revolution. The effective pitch is independent of the moment direction and is a

property of geometry of the helix. We model the tail as a helix with constant diameter

(see Appendix for details). In Sections 5.6, 5.8, and 5.9, we use resistive force theory

to calculate mobility matrices. Although resistive force theory is useful for obtaining

analytical expressions that reflect the symmetry of helices and can reveal qualitative

trends, it is not expected to be quantitatively accurate for experimental swimmers

with thick filaments. We find that resistive force theory is only accurate for filament

radii less than 0.035P , which are much thinner than experimental microswimmers

(see Appendix for details).

Thus, we calculate the mobility matrix using the method of regularized stokeslets

[51] (see Appendix for details). For our model helix, we calculate a velocity-frequency

slope of 0.09 pitches, and a precession angle of < 1◦, which means that the rotation

axis is nearly the same as the helical axis. Our calculation does not include the

spherical head; its effect can be approximated by calculating the increase in drag in the

direction of the helical axis when a head is included in the mobility matrix calculation,

and decreasing the effective pitch by the same proportion. With this correction,
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the estimated velocity-frequency slope is 0.085 pitches/revolution, comparable to the

experimental effective pitch of 0.08 pitches/revolution.

Peters et al. [3] report superparamagnetic ribbons wound into a helix with no head,

which they can rotate nearly without wobble. Again, for such a thick and noncircular

cross section resistive force theory is not expected to be accurate so we calculate

the mobility matrix using the method of regularized Stokeslets (see Appendix for

geometry). The resulting velocity-frequency slope is 2.64 microns/revolution, which

is in good agreement with the slopes from Figs. 8 and 9 of Peters et al., which have

slopes of 2.6− 2.8µm/revolution.

In contrast, Ghosh and Fischer [61] report a microswimmer with similar (but

smaller) geometry to that of Ghosh et al. [2], and find that the velocity corresponds

to 0.64 pitches per revolution. However, our model for this helix (see Appendix for

details) leads to a velocity-frequency slope about an order of magnitude smaller. We

cannot explain the discrepancy; but we note that in addition to being inconsistent

with our calculation, the quite large value of 0.64 pitches per revolution is also in-

consistent with the effective pitch reported by Ghosh et al. [2] as well as biological

helical propulsion, which always involves a significant amount of slip of the helix with

respect to the fluid.

Based on our numerics and the imprecision of microswimmer geometries, we expect

our results to be accurate within 15% (see Appendix for details). Thus, the results for

our model are in good overall agreement with the results from two different research

groups (Ghosh et al. [2] and Peters et al. [3]).
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5.8 Comparison to moment perpendicular to heli-

cal axis

In this section, we calculate the rotational and swimming dynamics for a moment

along ẑ, which is perpendicular to the helical axis, but not perpendicular to the prin-

cipal axis. We compare it to the case described in section 5.6 to show how moments

perpendicular to the helical axis can lead to undesirable swimming properties.

Returning to Eq. 5.4, but referred to the symmetry axes x̂, ŷ, ẑ, we substitute

magnetic field directions specified in spherical coordinates by Eq. 5.5, where θ is the

angle from the x-direction. This yields

0 = −m3 cosϕ sin θ [(Mx −My) cos θ +Mxz sinϕ sin θ] , (5.29)

which admits solutions for steady orbits in two families.

The first family is specified by

tan θ = −Mx −My

Mxz sinϕ
(5.30)

or

H =
[Mxz sinϕx̂+ (My−Mx) cosϕŷ + (My−Mx) sinϕẑ]√

M2
xz sin

2 ϕ+ (Mx −My)2
. (5.31)

From this equation, Ω and Vs can be obtained by substitution into Eqs. 5.2 and

5.6, but the expressions are not illuminating so we do not write them here. This

solution corresponds to the previously observed wobbling solutions [2].
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The second family has ϕ = π/2 and H in the x-z plane,

H = H(cos θx̂+ sin θẑ) (5.32)

Ω = MymzHxŷ = HMymz cos θŷ (5.33)

Vs = Cyy|mzHx| = ωCyy/My, (5.34)

which represents a tumbling solution around the y-axis with linear velocity-frequency

response.

Performing a stability analysis on the two families of solutions reveals that the

tumbling solutions are stable at the lowest frequencies up to a critical frequency and

become unstable at frequencies above the critical frequency ωc. Below the critical

frequency, the first family of solutions is unstable, but above it the first family of

solutions is stable. This is similar to the behavior of ellipsoids with magnetic moments

which are not perpendicular to the long axis in studies where the geometry of a helix

is approximated as an ellipsoid [39,44].

We can obtain an expression for the critical frequency by examining the stability

matrix Q of Eq. 5.7 for the second (tumbling) family, which is

Q = Hmz


−Mx sin θ 0 (Mx −My) cos θ

0 −My sin θ 0

My cos θ −Mxz sin θ 0 Mxz cos θ

 . (5.35)

The eigenvalues are λ1 = −My sin θ, which is less than zero over the entire range

of θ, and λ± = [(A + D) ±
√

(A+D)2 − 4(AD −BC)]/2. Here, A = −Mx sin θ,

B = (Mx −My) cos θ, C = My cos θ −Mxz sin θ, and D = Mxz cos θ. In order for the

tumbling solution to be stable, both of the λ± must also be negative, which requires
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Figure 5.5: The a) swimming velocity and b) precession angle vs frequency for the
stable solutions of a rotating helix with 2 turns, P = 4R, and a moment along the
z-direction, which is perpendicular to the helical axis but not the first principal axis.
The inset to (a) zooms into the low frequency regime, illustrating the transition be-
tween tumbling with rotation about the y-axis at the smallest frequencies, to wobbling
rotation with varying precession angle at frequencies above the critical frequency ωc.
The inset to (b) shows a log-log plot of the precession angle vs frequency. The straight
line has slope -1, demonstrating the relation β ∼ ω−1.

that both (A + D) < 0 and (AD − BC) > 0. Using Eq. 5.33, it can be shown

that if Mx > My (which holds for helices with aspect ratio larger than 1), then both

inequalities are satisfied for

ω2 < ω2
c =

(mzMyH)2

1 + (Mx −My)2/M2
xz

. (5.36)

In Fig. 5.5a, we plot the (nondimensional) velocity vs frequency for the stable

solution as a function of frequency, for a helix with n = 2, P = 4R. The inset

shows the transition from the tumbling solution at low frequencies to the wobbling

solution above ωc. Note that both the existence of the transition and the frequency

dependence of the wobbling solutions lead to nonlinear dependence of the velocity

on frequency, which are disadvantageous for precise swimmer control, especially at

low frequencies. At higher frequencies the velocity depends on the frequency nearly

linearly. The form of the dependence is similar to that observed for helices by Ghosh
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et al. [2], and modeled for ellipsoids with moment non-perpendicular to the long axis

by Ghosh et al. [44] and Morozov and Leshansky [39]. However, those previous studies

had found that in the ellipsoidal approximation, any moment perpendicular to the

helical axis did not have stable tumbling solutions. Here, we show that by taking into

account the helical geometry, even moments perpendicular to the helical axis lead to

tumbling-wobbling transitions and nonlinear velocity-frequency response. In order to

achieve the linear velocity-frequency response, one must instead target rotation about

the principal axis using a moment perpendicular to ê1.

In Fig. 5.5b, we plot the precession angle β as a function of frequency for the

stable solution. Below the critical frequency, the tumbling solution rotates around

the y-axis, so β = 90◦. Above the critical frequency, the wobbling solution starts

with β = 90◦ and decreases as frequency increases. Man and Lauga have shown that

β ∼ ω−1 for asymptotically straight helices. In the inset of Fig. 5.5b, we plot the

precession angle as a function of frequency in a log-log plot, to show that for a range

of frequencies our precession angle has the same ω−1 dependence (straight line).

Fig. 5.5 shows that for a helix with n = 2 and P = 4R, the critical frequency is

relatively small compared the the step-out frequency, so that the nonlinear response

regime is quite small. Is the nonlinear response regime always small? To investigate

this, in Fig. 5.6 we plot the velocity-frequency response for helices with a number of

different geometries. The general trend is that as the aspect ratio (helix length/helix

diameter) decreases, the critical frequency increases and the nonlinear regime grows

in size. For a helix with n = 1 and P = 2R, ωc is about a third of the stepout

frequency, and the nonlinear regime is a significant portion of the frequency range

below stepout. Thus results from the ellipsoidal approximations, which predict that

rotation about the helical axis can be achieved for moments perpendicular to the

helical axis, fail strongly when the aspect raio of helices is no longer large.
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Figure 5.6: The swimming velocity (a) and precession angle (b) vs frequency for the
stable solutions of rotating helices with moment along the z-direction. From left to
right [for (a), as measured by location of sketched helices], and bottom to top [for (b)],
curves correspond to helices with: 2 turns, P = 4R [same case as in Fig. 5.5]; 2 turns,
P = 2R; 1 turn, P = 5R; 1 turn, P = 3R; 1 turn, P = 2R. Curves are only plotted
for frequencies below the step-out frequency. As the aspect ratio (length/diameter)
of the helix decreases, a greater portion of frequencies below stepout exhibit tumbling
rotation.
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Figure 5.7: The precession angle of a helix with moment along the y-direction, per-
pendicular to the first principal axis, as a function of ratio of helical pitch and radius
(P/R), for helices with different numbers of turns: one turn (red, thick solid), 2 turns
(orange, thick dashed), 4 turns (green, thin solid), and 8 turns (blue, thin dashed).

5.9 Dependence on helical geometry

In this section, we continue to investigate the influence of helical geometry on swim-

ming properties. We return to our proposed momentm = m2ŷ which is perpendicular

to the principal axis ê1 and leads to rotation about ê1 and a linear velocity-frequency

response. For this moment direction, we investigate what helical geometries will lead

to a) low precession angles, b) maximum velocity:frequency slopes, and c) greatest

maximum velocity.

In Fig. 5.7 we plot the precession angle of the swimmer as a function of helical

pitch for various numbers of turns. Recall that this precession angle is simply the angle

between ê1 and the x-axis. A small precession angle may be desirable if one wishes to

precisely control the location of the tip of the helix during swimming. Typically, the
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Figure 5.8: The velocity:frequency ratio of a helix with moment along the y-direction,
perpendicular to the first principal axis, as a function of ratio of helical pitch and
radius (P/R), for helices with different numbers of turns: one turn (red, thick solid),
2 turns (orange, thick dashed), 4 turns (green, thin solid), and 8 turns (blue, thin
dashed).

precession angle decreases for larger aspect ratios. Specifically, in order to achieve a

precession angle β < 10◦, for n ≥ 2 the pitch must satisfy P > 2R, while for n = 1,

the pitch must satisfy P > 8. These results are in accord with the arguments made by

Morozov and Leshansky about the effect of helical geometry on rotational dynamics

modeled using ellipsoids [39]; here we quantify how the helical geometry leads to a

breakdown of the ellipsoidal approximation.

In Fig. 5.8 we plot the slope of the velocity-frequency response Ṽs/ω̃ of the

swimmer as a function of helical pitch for various numbers of turns. Recall that

the dimensionless frequency is ω̃ = ωζ∥R
3/(mH), and the dimensionless velocity

is Ṽs = Vsζ∥R
2/(mH); thus the dimensionless slope is nondimensionalized by the

helical radius R, i.e. Ṽs/ω̃ = (Vs/ω)/R. Therefore, Fig. 5.8 is best interpreted as
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investigating the variation of the slope as the helical pitch changes but the helical

radius stays fixed.

For a fixed number of turns, the maximum slope occurs for a pitch around 8-10

R. As the number of turns increases, the slope increases, but saturates around n = 8.

In Fig. 5.9a we plot the maximum velocity Ṽ max
s of the swimmer as a function

of helical pitch for various numbers of turns. Note that the maximum velocity is dis-

tinct from the velocity:frequency slope, since it is the product of the velocity:frequency

slope and the step-out frequency. The choice of whether it is more important to opti-

mize velocity:frequency slope or maximum velocity depends on the application. For

a fixed number of turns, the maximum velocity occurs for pitches around 4-6 R, at

smaller pitch values than the maximum slope. This can be rationalized by observing

how the step-out frequency ω̃stepout behaves for different helical geometries, as plotted

in Fig. 5.9b. For a fixed number of turns, the stepout frequency is highest for small

pitches near R. Since the maximum velocity is the product of the slope (Fig. 5.8)

and the stepout frequency (Fig. 5.9b), it at intermediate pitch. Similarly, one can ra-

tionalize why swimmers with many turns (n = 8) have the largest velocity:frequency

slope in Fig. 5.8 but the smallest maximum velocity in Fig. 5.9; the large veloc-

ity:frequency slope is multiplied by a small step-out frequency (Fig. 5.9b) to yield

small maximum velocities.

Based on Fig. 5.9a, the fastest swimmers would be obtained for n = 1 and

P ≈ 5R; however, these would have relatively large precession angles (β ≈ 15◦). For

n = 2 and P = 4R, the maximum velocity is about half as much, but the precession

angle is reduced to β ≈ 5◦.

Note that all the discussion of geometrical dependence in this section uses the

helical radius R to nondimensionalize the velocities. Thus, the results should be

interpreted as keeping the helical radius R fixed while the pitch and number of turns

are varied. For the most common fabrication processes, it is easiest to maintain
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Figure 5.9: a) The maximum velocity of a helix with moment along the y-direction,
perpendicular to the first principal axis, as a function of ratio of helical pitch and
radius (P/R), for helices with different numbers of turns: one turn (red, circles), 2
turns (orange, squares), 4 turns (green, diamonds), and 8 turns (blue, triangles). b)
The step-out frequency of the same helices as a function of P/R.



112

constant helical radius R as we have done. However, if one wished to design helices

with varying R, the results would be different since the scaling of our plotted results

with R would need to be taken into account.

5.10 Discussion

We investigated the rotational and swimming dynamics of rigid helical microswim-

mers rotated by an external magnetic field. We investigated how the rotation axis

and dependence of velocity on frequency is affected by the direction of magnetic mo-

ment and geometry of the helix. We use resistive force theory to obtain mobility

matrices that capture the helical geometry of the swimmers, going beyond approxi-

mations which treat the rotational dynamics of such swimmers as that of ellipsoids.

A linear velocity-frequency response is desirable for control of such microswimmers,

and we show that this can be achieved by choosing the magnetic moment to lie per-

pendicular to the principal axis closest to the helical axis, which results in a single

stable branch of solutions which all rotate about the principal axis. We also show

that moments which are perpendicular to the helical axis rather than the principal

axis lead to nonlinear velocity-frequency response including a transition between low-

frequency tumbling and high-frequency wobbling dynamics. Finally, we explored the

dependence of swimming properties on helical geometry in the context of our pro-

posed moment perpendicular to the principal axis. Precession angle, the slope of

the velocity-frequency response, and maximum velocity were optimized for different

helical geometries.

Our work used the resistive force theory to obtain qualitatively accurate mobility

matrices for the helical swimmers. The resistive force theory is sufficient to investi-

gate the trends in behavior by providing a convenient way to calculate the mobility

matrices for arbitrary helical pitch and radius, and is sufficient to explore qualita-
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tive features of linear velocity-frequency relationships. While resistive force theory

is accurate for very slender helix filaments, we used a boundary element method to

obtain quantitatively accurate mobility matrices for the thicker helices fabricated in

experiments so far and obtained good agreement between our calculated swimming

speeds and experimental results.

We assumed a helical geometry, but if a non-helical geometry is used, the mobility

matrix may be more complicated than Eq. 5.1 due to a loss of the 180◦ rotation

symmetry. For example, although a helical microswimmer with a head or cargo [60,61]

will not have the symmetries we used in our analysis, this can be addressed in two

ways. First, if a second head is attached at the other end of the swimmer, the

symmetry upon 180◦ rotation may be restored. Second, even if the swimmer is not

symmetric, one can identify the principal axes of its mobility matrix. In that case, the

results of Section 5.6 apply insofar as a moment perpendicular to a principal axis will

admit steady rotational solutions about the principal axis for a range of frequencies.

In addition, rotation about the principal axis with the smallest rotational mobility

eigenvalue will be stable.

Our work differs from that of Ghosh et al. [44] and Morozov and Leshansky [39]

in that they approximate the rotational dynamics as those of an magnetized ellipsoid.

One conclusion of their work is that a magnetization perpendicular to the helical axis

can reduce wobbling and lead to rotation about the helical axis. As shown in Sections

5.5–5.8, using the true helical geometry means that rotation about the helical axis

is not actually feasible, and instead rotation about the principal axis, which differs

from the helical axis, is a better target. Incorporating the helical geometry, we find

tumbling-wobbling transitions and nonlinear velocity-frequency response even when

the moment is perpendicular to the helical axis. Although the difference between

principal axis and helical axis is small for helices with large aspect ratio, which justifies

the ellipsoidal approximation in those cases, the principal axis and helical axis can be
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significantly different for helices with smaller aspect ratios. Thus, the helical geometry

alters the conclusions of those earlier studies in a manner which may be significant

for the design of microswimmers. We propose that the most convenient moment to

target experimentally is one which is perpendicular to both the first principal axis

and the helical axis, rather than any direction perpendicular to the helical axis.

In this work we assumed a permanent magnetic dipole and ignored paramagnetic

response of the swimmers. Such response has been addressed by Morozov and Leshan-

sky [80]. In that study, rotational dynamics are approximated as that of an ellipsoid,

and we would expect that taking into account the helical geometry may yield similar

differences with the ellipsoidal approximation that we have found in the case of a per-

manent magnetic dipole. Note that in particular the paramagnetic response would

be expected to alter the linear velocity-frequency relations found in this work.

In this work we also ignored interactions with boundaries and walls. Although

many research groups have explored magnetically rotated microswimmers which “roll”

along surfaces, the modeling techniques used here are not directly applicable since the

presence of the wall means that the steady solutions found here do not exist; instead

there is a time-dependent mobility matrix as the swimmer rotates relative to the wall.

Treatment of such cases would require integration of such unsteady rotational orbits,

and we do not expect our statements about rotation axes to hold when interaction

with surfaces and boundaries becomes strong.
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5.12 Appendix A: Resistance and mobility matrix

for a helix

Here we report the coefficients of the resistance matrix for a helix with pitch P , radius

R, and n turns calculated using resistive force theory as described in the main text.

Due to the symmetry, the resistance matrix D has the same nonzero elements as the

mobility matrix in the x̂, ŷ, ẑ basis,

D =



D11 0 D13 D14 0 D16

0 D22 0 0 D25 0

D13 0 D33 D34 0 D36

D14 0 D34 D44 0 D46

0 D25 0 0 D55 0

D16 0 D36 D46 0 D66


(5.37)
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For integer n, the elements above are specified by:

D11 = (ζ∥R)n
(
P̃ cosα + 2πζ̃⊥ sinα

)
(5.38)

D22 = −(ζ∥R)πn
[
(ζ̃⊥ − 1) sinα− 2ζ̃⊥/ sinα

]
(5.39)

D33 = D22 (5.40)

D13 = 0 (5.41)

D44 = −(ζ∥R
3)2πn

[
(ζ̃⊥ − 1) sinα− ζ̃⊥/ sinα

]
(5.42)

D55 = (ζ∥R
3)

1

12
n

[
n2P̃ 3ζ̃⊥ cosα + 12πζ̃⊥ sinα

+
(
(15 + 2n2π2)− (9− 2n2π2)ζ̃⊥

)
P̃ cosα

]
(5.43)

D66 = (ζ∥R
3)

1

12
n

[
n2P̃ 3ζ̃⊥ cosα + 12πζ̃⊥ sinα

+
(
(2n2π2 − 3) + (9 + 2n2π2)ζ̃⊥

)
P̃ cosα

]
(5.44)

D46 = −(ζ∥R
3)nP̃χ

[
(ζ̃⊥ − 1) sinα− ζ̃⊥/ sinα

]
(5.45)

D14 = −(ζ∥R
2)2πnχ(ζ̃⊥ − 1) cos(α) (5.46)

D25 = (ζ∥R
2)
3

2
nπχ(ζ̃⊥ − 1) cosα (5.47)

D36 = (ζ∥R
2)
1

2
nπχ(ζ̃⊥ − 1) cosα (5.48)

D16 = −(ζ∥R
2)nP̃ (ζ̃⊥ − 1) cosα (5.49)

D34 = 0 (5.50)

Where P̃ = P/R and ζ̃⊥ = ζ⊥/ζ∥. The mobility matrix is the inverse of the resistance

matrix. Our resistance matrix differs from that reported in Man and Lauga [41]

since according to their Eq. 1 their origin is located at one end of the helix, while

ours is located along the symmetry axis in the center of the helix. They also include

contributions to the moment from local moment densities which resistive force theory

ignores.
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5.13 Appendix B: Quantitative calculation of mo-

bility matrices

In most of the manuscript, we used resistive force theory with the ratio of perpendic-

ular to parallel resistive force coefficients equal to two, which is the expected value

in the limit of very slender helical filaments. As the filament radius (a) becomes

thicker one can adjust resistive force coefficients; for helices, the following formulas

apply [78]:

ζ∥ =
2πµ

log(0.18P/a)
(5.51)

ζ⊥ =
4πµ

log(0.18P/a) + 1/2
. (5.52)

However, for the experimental geometries described below (e.g. P = 0.91µm, a =

0.19µm), these formulas yield negative ζ∥, implying that they are too thick to be

adequately treated by resistive force theory.

To calculate quantitatively accurate mobility matrices, we used the method of

regularized stokeslets [51, 52]. Our group has previously implemented the method

[53], including to find mobility matrices for the modeling procedure employed in this

paper [42,46], and details of the method can be found in those references.

Here, we provide geometries and results of convergence studies for the helical

microswimmers discussed in Section 5.7. We use these to provide estimates for the

error in our calculations of velocity-frequency slopes.

The helical swimmer of Ghosh et al. [2] was modeled as a helix with R = 0.16µm,

P = 0.91µm, 4 turns, and a filament diameter of 0.38µm, as shown in Fig. 5.10a.

This geometry was obtained from Fig 1 of [2]. We performed a convergence study

by discretizing the surface with varying number of regularized stokeslets (Fig. 5.11).
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Figure 5.10: a) Geometry used to model helix of Ghosh et al. [2]. b) Geometry used
to model helix of Peters et al. [3].

The results reported in the main text are for the largest number of elements, 12,134

regularized stokeslets, but we see that even for ≈ 6000 stokeslets there is < 5% error.

Based on the convergence study above, we can also investigate the accuracy of

resistive force theory results for the velocity:frequency slope. In Fig. 5.12 we compare

results from resistive force theory to the method of regularized stokeslets for the ge-

ometry above but for varying filament radius. The number of discretization elements

for the method of regularized stokeslets varies from 6974 to 15544. For filament radii

a < 0.032µm (a/P < 0.035), there is less than 5% difference between the resistive

force theory and method of regularized stokeslets. For resistive force theory, the two

largest filament radii plotted (a = 0.128µm and a = 0.19µm) give unphysical neg-

ative results, which reflect unphysical resistive force coefficients: Eqs. 5.51 and 5.52

give parallel coefficient larger than perpendicular coefficient for a = 0.128µm, and

negative parallel coefficient for a = 0.19µm.

The helical ribbon of Peters et al. [3] was modeled as a helix with R = 2.9µm,

P = 16µm, 3 turns, and a cross section with width 2.8µm and depth 1.5µm. The ge-

ometry is shown in Fig. 5.10b. This geometry was obtained from Fig. 1 of [3]. Based

on the convergence study performed for the Ghosh et al. helix, the reported results

are obtained from discretizations involving 5,832 regularized stokeslets, for which we

expect discretization error of ≈ 5%. Finally, we note that we observed that changes in
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Figure 5.11: Convergence study for modeling helix from [2]: velocity-frequency slope
as a function of number of regularized stokeslets used in discretization.

Figure 5.12: Comparison of velocity:frequency slopes calculated using resistive force
theory (blue circles) and method of regularized stokeslets (blaack squares) as a func-
tion of filament thickness. The helix geometry is from [2], but with the filament radius
a altered.
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geometry, particularly in the length of the helix, could produce roughly proportional

changes in the velocity-frequency slope. Additionally, changing the depth and width

of the Peters et al. helix to 3.3 µm and 1.8 µm (10-20% changes) reduced the swim-

ming speed by approximately 10%. Based on the imprecision of our measurements of

experimental geometries which also do not form perfectly regular helices, we therefore

expect an additional 5-10% errors in our results. Combining with the discretization

error, we estimate (conservatively) that our calculated velocity-frequency slopes are

accurate to within 15%.
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Chapter 6

Versatile Microrobotics Using

Simple Modular Subunits

6.1 Abstract

The realization of reconfigurable modular microrobots could aid drug delivery and mi-

crosurgery by allowing a single system to navigate diverse environments and perform

multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for

instance, helical shapes commonly used for magnetic swimmers cannot effectively as-

semble and disassemble into different size and shapes. Here by using microswimmers

with simple geometries constructed of spherical particles, we show how magnetohy-

drodynamics can be used to assemble and disassemble modular microrobots with

different physical characteristics. We develop a mechanistic physical model that we

use to improve assembly strategies. Furthermore, we experimentally demonstrate the

feasibility of dynamically changing the physical properties of microswimmers through

assembly and disassembly in a controlled fluidic environment. Finally, we show that

different configurations have different swimming properties by examining swimming

speed dependence on configuration size.
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6.2 Introduction

Modular microrobotics are attractive since they may allow for much greater versatility,

enabling a single system to navigate many different environments or perform multiple

tasks, which are key hurdles for in vivo biomedical applications. While existing

microrobots have demonstrated excellent capabilities to move or work in homogenous

environments and to complete a single specific task, modular robots with the ability

to change their shape can adapt to varying tasks and environments and can respond to

unpredictable situations [81]. This is advantageous for applications that requires the

use of micro/nanorobots over a wide range of different environments. Two illustrative

examples are targeted/localized drug delivery and minimally invasive surgery.

For drug delivery, recent research in nanomedicine has shown great promise to im-

prove mediated delivery to tumors via the use of nanoparticles [82], [83]. The success

rate of using nanoparticle drug delivery methods depends on many uncontrolled fac-

tors in various vastly different environments such as circulation in the blood stream,

diffusion inside tumor microenvironments, and biological barriers such as extracellu-

lar matrix (ECM) [84]. For example, in drug delivery the inability to overcome these

environments can lead to poor drug accumulation on tumor cells [85]. Current ap-

proaches in nanoparticle drug delivery focus on using diffusive transport and targeting

ligands, but there are also several studies using a microrobotics approach to enhance

targeting by using magnetic field gradients for direct manipulation [11, 86, 87] which

show the potential of using microrobotics in nanoparticle drug delivery. Nonetheless,

the challenge of traversing many different environments remains formidable. Since

microorganisms use a vast variety of shapes and propulsion methods to navigate many

different bio-environments, reconfigurable microrobots that can take many different

shapes and sizes could be useful to tackle the diversity of in vivo environments. For ex-

ample, larger swimmers can move faster according to the Resistive Force Theory [88]
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which is useful against adverse flow.

For microsurgery, recent developments in microrobotics have shown revolutionary

potential to improve minimally invasive surgical procedures through highly control-

lable and precise manipulation, which bring intraoperative and postoperative bene-

fits [5–13,20,36,89–91]. Microrobots have been tailored to move and work in specific

homogenous environments, as well as completing specific tasks such as on-surface

transportation [14, 92, 93], tissue incision [57], puncture of retinal veins [7], and cell

scaffolding [10]. However, a reconfigurable system which can travel through various

environments and then change configurations to accomplish a variety of tasks would

greatly advance microsurgery applications.

Although many types of microrobots have been successfully created, including flex-

ible swimmers [19,65], biological robots [14,15], and chemical propellers [19,21,22,25],

we focus on those actuated and controlled by magnetic fields, which is considered to be

the most effective method since magnetic fields permeate over long ranges with mini-

mal health effects and easily transmit large amounts of power [36,94]. The most com-

mon variety of magnetically-actuated microrobot are helical and chiral [60–63,95–97].

For modular microrobotics, Tottori et al. have previously introduced a method to

assemble and disassemble helical microswimmers into different configurations using

magnetic force and hydrodynamic interactions [40]. However, although their sys-

tem could dynamically reconfigure size and shape, the underlying helical geometry,

while effective for swimming, is not ideal for modularity as the maximum number of

assembled swimmers is three, reducing versatility.

In contrast, the modular microrobots we use for this work utilize magnetic beads

as the basic building blocks, allowing a much wider range of module and assembled

geometries than helical microswimmers. Much like snake-like macroscale modular

robots [81], microscale bead-based modules enable high versatility at low cost, and

furthermore synergize well with the particulate drug delivery paradigm. Our modular
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microswimmers consist of magnetic microbeads assembled by magnetic attraction.

The use of particle-based modules is enabled by our previous work on achiral, particle-

based microswimmers [42, 46, 74, 98] which showed that bodies constructed of more

than 3 beads can swim. We demonstrate directed assembly of swimmers with other

single- or multiple-bead modules, elucidate the physical mechanism of assembly, and

use the mechanism to improve assembly efficiency, culminating in a demonstration of

modular assembly and disassembly. Finally, to indicate how modular assembly can

lead to swimmers capable of different behavior, we investigate how the swimming

properties of assembled swimmers vary with size.

6.3 Results

6.3.1 Experimental observation of disassembly and assembly

We placed a sample of the microswimmers (structures with 3 or more beads) with

nonmotile module units (single beads) inside a polydimethylsiloxane (PDMS) cham-

ber (3mm diameter, 2mm height). The chamber was sealed to prevent evaporation

and to minimize flow, then placed inside approximate Helmholtz coils (see Meth-

ods Summary) for experiments. Our previous work showed that upon rotation by

an external torque, magnetic structures constructed of three or more beads can be

controllably propelled along the rotation axis. We propel swimmers constructed of

magnetic microbeads (4.35µm in diameter, Spherotech) towards additional beads or

groups of beads for assembly.

In a representative example shown in Fig. 6.1(a) [also see Supplementary Movie 1],

we observed a 7-bead swimming microswimmer rotating at 15Hz (0−9s) transformed

into different shapes and size through disassembly and assembly. To disassemble the

microswimmer, we increased the rotation frequency (10 − 15s). The hydrodynamic
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Figure 6.1: Assembly and disassembly for modular microrobotics.(a) Experimental
demonstration of assembly and disassembly by manipulation of the control inputs
(field strength and rotation frequency). (b) During a failure to assemble, the particles
orbit around the microswimmer due to hydrodynamic force.

stress on the swimmer due to the high rotation frequency physically deformed the

swimmer by creating a twisting effect [see Supplementary Movie 1] which led to

disassembly at 16s when the swimmer broke into a 3-bead and 4-bead swimmer. The

3-bead swimmer demonstrated swimming at 15Hz rotation while the 4-bead structure

remained stationary (18−65s). Cheang et al. provided a detailed explanation on why

one structure can swim while the other does not [98]. At 65−70s, the 3-bead swimmer

then approached the 4-bead structure for assembly, however, one of the beads from

the 4-bead structure detached, resulting in a final 6-bead assembled structure. From

71− 84s, the 6-bead swimmer demonstrated swimming at 15Hz rotation.

Not every approach leads to successful assembly. Figure 6.1(b) illustrates a single

bead orbiting around an approaching microswimmer at 20Hz without mechanical
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Figure 6.2: Schematic for assembly model. (a) Schematic for magnetic interaction
between two magnetic beads with dipole m1,2 rotated by magnetic field B. (b) Top
view, showing lag angle θ. (c) Spatial dependence of normalized radial force on angle
α describes (d) cones of repulsion in front and behind swimmer, and attractive region
beside swimmer.

contact [see Supplementary Movie 2]. For the 3-bead microswimmers in this paper,

most of the approaches at rotation rates higher than 20Hz resulted in failure.

6.3.2 Hydrodynamic and magnetic interactions for assembly

Although the observations above demonstrate assembly and disassembly, it is evident

that the processes are not robustly controlled. To understand the mechanism of

assembly and to improve its effectiveness, we developed a minimal physical model of

the process.

We treat the magnetic interaction as the force between two spheres in a vis-

cous fluid with permanent magnetic dipoles rotated by an external magnetic field

(schematic in Fig. 6.2). The magnetic force between two dipoles with moments m1,2

separated by displacement r is

F =
3µ0

4πr4
[(r̂×m1)×m2 + (r̂×m2)×m1 − 2r̂ (m1 ·m2) + 5r̂ ((r̂×m1) · (r̂×m2))]

(6.1)

In the absence of interactions, each sphere rotates due to the external field. For

rotation rates below step-out, each sphere will rotate at the same rate as the field

with a fixed lag angle between each dipole and the field determined by equating the
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magnetic torque (m×B, where m is magnetic moment and B is magnetic field) and

the rotational drag of the sphere (8πµr3ω). Therefore the lag angle θ in Fig. 6.2(b)

is constant while ϕ steadily increases. Note that upon adding magnetic interaction

between two rotating spheres, the rotation axis and dynamics are not strongly altered:

dipole fields decay quickly with separation, and for the typical moments of our beads

(≈ 10−15J/T ) dipole fields only approach the magnitude of our external fields (≈

1mT ) at distances ≪ 1µm. Nonetheless, even small non zero radial attraction or

repulsion (via equation (6.1)) can ultimately lead to approach and successful assembly.

Experimentally, it is observed that swimmers rotate quickly compared to changes

in position; hence, it is appropriate to average the magnetic force over the angle ϕ.

The result of such averaging is a radial component of magnetic force proportional

to cos θ (1 + 3 cos 2α) /r4, where α is the angle between the displacement vector and

rotation axis (Fig. 6.2(a)), which is also in the direction of average swimming. Since

the difference in lag angles (θ) is always less than π/2, the radial component of the

magnetic force (Fig. 6.2(c)) is positive or repulsive at small and large α (in front or

behind the swimmer) and negative or attractive for α in a range around π/2 (towards

the side of the swimmer). Thus, there are cones of repulsive magnetic force in front of

and behind the swimmer and a zone of attraction beside the swimmer (Fig. 6.2(d)).

This simplified magnetic model suggests that during assembly, as a swimmer swims

towards a module, it is in the repulsive region (α < α0) and gets pushed off axis.

Only when the swimmer moves beside the module can the module get attracted to

and assemble with the swimmer.

Turning towards hydrodynamic interactions, the simplest model of the hydrody-

namics is to treat the module as advected by the swimmer’s velocity field, so that

it behaves as a Lagrangian tracer particle. To produce swimming, we model the

swimmer as a rigid three-sphere assembly with a permanent magnetic dipole (m).
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We calculate the mobility matrix of the swimmer using the method of regularized

Stokeslets [52]. The mobility matrix relates the instantaneous velocity and angular

velocity to the external magnetic torque (N = m×B); for homogeneous fields there

is no magnetic force on a dipole. As in our previous work, we find a steadily rotating

solution to the dynamics when the angular velocity is equal to the rotation of the

field, which requires a specific orientation of the swimmer relative to the rotation

axis and magnetic field [42, 46]. Once the orientation of the swimmer is known, the

total torque, linear velocity, and angular velocity of the swimmer are determined and

hence the velocity field around the swimmer can be calculated from the method of

regularized Stokeslets.

Without magnetic interactions, integrating the velocity field around a rotating

swimmer yields the trajectory of a nonswimming module. To interpret trajectories,

we compute a Poincare return map that reveals where a particle moves after one orbit

around the swimmer (Fig. 6.3(a)). The map takes a point on the horizontal plane

in the swimmer frame which contains the rotation axis, and maps it to the second

intersection of its trajectory with the plane, i.e., its position after a full orbit around

the swimmer. Examining the map of all points of the plane (Fig. 6.3(b)) yields insight

into the dynamics; for example, long-term behavior of particles can be deduced from

repeated applications of the map. Notably, without magnetic interactions, there is no

strong tendency towards attraction or repulsion; rather particles get advected past

the swimmer (upwards in the Fig. 6.3) due to the swimming flow.

Magnetic and hydrodynamic interactions can be combined by altering the in-

stantaneous velocity of the module in the above by the Stokes drag velocity v =

F/ (6πµα2) resulting from the magnetic interaction force, which alters the time-

integrated trajectories and hence Poincare return map (see Fig. 6.3(c) for an ex-

ample). With the addition of magnetic interactions, the Poincare map reveals that

(1) there is a stagnation region in front of (below in the Fig. 6.3) the swimmer mag-
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Figure 6.3: Poincare return map. (a) Velocity field on one vertical plane and la-
grangian particle trajectory in swimmer frame. Poincare return map reveals move-
ment of bead after one orbit around swimmer, mapping an initial position on hori-
zontal plane (blue point) to the second intersection of its trajectory with the plane
(red point). (b) Poincare return map of lagrangian particle trajectories for swimmer
moving downwards. Initial positions (blue) are mapped to final positions (red). (c)
Poincare return map when magnetic interactions are included. The shaded area is
the area of attraction for particles in front of swimmer.

netic repulsion pushes the module away, leading to difficulty in approach; and (2)

all particles in an attraction zone surrounding the front and sides of the swimmer

(shaded and delineated by dashed line in Fig. 6.3) eventually move towards the side

of the swimmer as a result of cumulative magnetic forces, even if they are initially

repelled in front of the swimmer.

We used the model to improve the success rate of approaching modules for as-

sembly. The model predicts an attractive zone in front of and beside the swimmer.

Assembly will only occur if the swimmer can be steered such that the module enters

the attractive zone. One method to place the module in the attractive zone is to steer

the swimmer so that the module is in front of the swimmer and then swim towards

the module. This method requires a relatively small approach angle α. Previously,

we steered the swimmer to approach the module head-on. The model suggests that

head-on approach may be slower due to the stagnation region; instead, a slightly off-

center approach may be better. In addition, the model determines how far off-center

the approach can be: the range of allowable module placements can be quantified
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by the width of the attraction region at the bottom of Fig. 6.3(c), which we call

∆x. We varied the frequency of rotation in our model to investigate the frequency-

dependence of the size of the attraction region and ∆x. Although there was not a

one-to-one correlation due to the fact that the rotation axis of the swimmer changes

as frequency changes [52], in general increasing the frequency decreased both the size

of the attraction region and ∆x. A second method of assembly is, instead of steering

so that the module approaches at a small approach angle, to swim near the module,

and then turn suddenly by a large angle so that the module is beside the swimmer,

i.e. the module enters the side lobes of the attraction region.

6.3.3 Qualitative investigation of assembly

We performed a set of experiments (Fig. 6.4) to corroborate the predictions of our

physical model for assembly and to improve the assembly process. During approach

to a single bead, we measured the angle α between the swimmer rotation axis and

the displacement vector r from the swimmer centroid to the approached bead. Due

to 2D images from the recorded videos, we were restricted to measuring α and r

once per rotation, when the particle and the swimmer lie in the focal plane. First,

we note that in each of these and other observations, during approach the particle

orbits around the swimmer as predicted from the velocity fields calculated in our

model. Second, we verified the existence of an attractive region. In Fig. 6.4(a-c), we

show pairs of approaches at similar frequencies; in each pair there is one unsuccessful

approach and one successful approach. As predicted, for each pair the successful

approach starts with smaller α, placing the module in the attractive width ∆x, while

the unsuccessful approach has larger α. Third, the frequency dependence of the size of

the attraction zone can be seen by comparing Fig. 6.4(a-c): for Fig. 6.4(a), the width

of the attraction zone is between α = 33.4◦ (successful) and α = 66◦ (unsuccessful)
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for 45Hz rotation, while at the higher frequencies the width of the attraction zone

is between α = 11.3◦ (successful) and α = 26.2◦ (unsuccessful) for 10Hz rotation, or

α = 14.5◦ (successful) and α = 73◦ (unsuccessful) for 1025Hz rotation. In addition,

in Fig. 6.4(b), there are much smaller orbital distances for the unsuccessful approach

than in the unsuccessful approach in Fig. 6.4(a) as the particle passes the swimmer.

All of this evidence supports the prediction that increasing the rotation frequency

decreases the size of the attractive zone. Fourth, in the initial portions of Fig. 6.4(d),

we show how a head on approach at very small α can be disadvantageous due to

the stagnation region predicted by the model. For top case in Fig. 6.4(d), the

microswimmers approached the modules at α = 17.9◦ resulting in the particle being

trapped inside the stagnation region; as a result, α decreased to 7.5◦ and r plateaued

at 5µm until 6.1s. The same phenomena was observed for the bottom case in Fig.

6.4(d) where the microswimmers approached the modules at α = 2◦ and r plateaued

at 9µm until 20.8 s. Fifth, starting from the head-on configurations in Fig. 6.4(d), we

demonstrate the second method of assembly suggested by our model: we were able

to trigger assembly by a change of (34.1◦ at 8.2s, top; α = 38.9◦ at 30.4s, bottom)

placing the module beside the swimmer rather than in front of it. To summarize, we

found that slower frequencies and small (but not exactly head-on) approach angles

were efficient assembly strategies.

6.3.4 Demonstration of modular microrobotics

Finally we describe a representative experiment showing the extent of modular capa-

bilities by starting with a microswimmer with minimal number of beads (3 beads) and

modulating into a nine-bead swimmer. In accord with the assembly strategy discussed

above, at each of the stages involving assembly, the rotation of the microswimmer was

decreased in order to promote magnetic assembly. Figure 6.5 is a collage of the exper-
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Figure 6.4: (a) Assembly under low rotation rate (45Hz). The large attractive zone as
a result of the slow rotation yields unsuccessful assembly when the orbital distance is
very large (top) and successful assembly when the orbital distance is smaller (bottom).
(b) Assembly under moderate rotation rate (10Hz). The small attractive zone as a
result of the increased rotation rate yields unsuccessful assembly when the orbital
distance is very small (top) and successful assembly when the swimmer approaches
the single bead at a very small α (bottom). (c) Assembly under fast rotation rate
(2025Hz). The attractive zone becomes very small due of the fast rotation rate which
results in the single particle being repelled radial causing a very large orbital distance
and failure of assembly (top). Successful assembly was possible when the swimmer
approach the single bead at a very small α, similar to (b) (bottom). (d) Initial α was
small resulting in very small orbital distances and trapping in magnetohydrodynamic
stagnation region in front of swimmer. When α was increased by steering the swimmer
to different direction, assembly became possible.
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Figure 6.5: Representative experiment of a modular microrobot.From (a), a 3-bead
robotic microswimmer approaches and assemble with a single non-motile bead and
transform into a 4-bead microswimmer. From (bf), the microswimmer continues to
approach and combine with single beads, and eventually modulate into a 9-bead
microswimmer. At (g), the 9-bead microswimmer breaks into three different mi-
croswimmers under high rotation frequency due to increased shear stress leading to
structural flexing.

iment showing 7 stages [see Supplementary Movie 3]. At stage 1, the microswimmer

started as a 3-bead microswimmer and assembled with a single non-motile bead to

become a 4-bead microswimmer. Likewise from stage 2 to 6, the microswimmer con-

tinued to assemble with nearby single beads until it formed a 9-bead microswimmer.

At stage 7, a high rotation frequency was introduced which sequentially breaks the

microswimmer into three entities: a 2-bead structure, a 3-bead microswimmer, and

a 4-beads microswimmer. The 3-bead and 4-bead microswimmers swim controllably,

whereas the movement of the 2-bead is not controlled hence we speculate to be driven

by neighboring flow fields.
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6.3.5 Assembled swimmers of various sizes have varying swim-

ming behavior

Modular microrobotics is most useful if swimmers of different geometries can be con-

structed with varying abilities to navigate diverse environments or to perform diverse

tasks. We have demonstrated modular assembly and disassembly, but our modular

microrobotic system has not been optimized for accomplishing such diverse tasks.

However, to suggest the potential of a modular approach, we investigate whether the

swimmers of different sizes that we create through our modular microrobotics display

different behavior. The particle based microswimmers have different configurations

which we refer to as 3-bead, 4-bead, 5-bead, etc. While the minimal geometry re-

quirement for low Reynolds number swimming is three beads [46], microswimmers

with more than three beads also demonstrated swimming capability. Usually, dipole-

dipole interactions lead to linear assembly [99], but in the context of our modular

system, nonlinear geometries can easily be generated, as seen in Fig. 6.6, which shows

representative examples of three, eight, and thirteen bead microswimmers. This is

in fact advantageous since perfectly straight structures cannot generate propulsion

upon rotation. To show that different modular configurations have different swim-

ming characteristics, we statistically measured the swimming speed of microswimmers

with different body lengths. Microswimmers with more beads tend to swim faster,

as shown in Fig. 6.6. Data for each configuration from Fig. 6.6 was taken from

multiple microswimmers; the three bead swimmers rotating at 6Hz have an average

velocity of 2.53± 0.56µm/s and the eleven bead swimmers have an average velocity

of 17.85± 1.51µm/s (see Supplementary Movie 4). The standard deviations are gen-

erally larger for microswimmers with more beads due to geometrical reasons, since

each additional bead adds to geometrical variability.
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Figure 6.6: Characterization of swimming capability for microswimmer at various
lengths. Swimming speed plotted as a function of rotation frequency for magnetic
swimmers with different number of beads. This highlights the increase in swimming
power as the size and aspect ratio of the swimmers increase.

6.4 Discussion and conclusions

We have demonstrated that magnetic microbeads can be used as modular units to

create dynamically reconfigurable microswimmers. Versatile modularity is enabled by

the ability of generic geometries to be propelled by a rotating magnetic field. Both

assembly and disassembly can be achieved. We developed a mechanistic physical

model incorporating magnetic and hydrodynamic interactions to understand the as-

sembly process, and used it to find improved assembly strategies, enabling controlled

assembly from 3-bead to 9-bead microrobotic systems. Finally, we showed that dif-

ferent configurations have different swimming properties. While we investigated how

swimming speed depends on the number of beads in assembled swimmers, for the

applications of drug delivery and minimally invasive microsurgery future work re-

mains to demonstrate that different assembled configurations can achieve navigation
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through various in vivo environments, and can be constructed to accomplish differ-

ent tasks during operative procedures. We believe that the mechanistic insight into

the assembly process we discussed in the manuscript will greatly aid future efforts at

developing configurations capable of achieving these crucial abilities.

6.5 Methods

6.5.1 Magnetic control system

To generate the rotating magnetic field which actuates the achiral microswimmers,

we used a control system consisting of three pairs of electromagnetic coils arranged in

an approximate Helmholtz configuration, three Kepco power supplies (BOP 205M),

a National Instruments data acquisition (DAQ) system, a computer, an inverted

microscope (Leica DM IRB), and a high speed camera (FASTCAM SA3). Through

the use of a DAQ system, the power supplies generate sinusoidal outputs to the

coils to create a rotating magnetic field. The high speed camera provides visual

feedback and records videos at high frame rates (60100fps). The computer is used as

interface for the camera and the DAQ system. The three pairs of coils are designed

to exert torque on the swimmer without introducing translational force by creating

a spatially uniform magnetic field with any specified time-dependent magnitude and

direction in a 2mm × 2mm × 2mm region. Experiments take place with swimmers

immersed in distilled water (viscosity of 1mPa · s) in a 3mm × 3mm × 2mm (L ×

W × H) polydimethylsiloxane (PDMS) chamber, sealed to minimize fluid flow and

evaporation, and placed at the center of the Helmholtz coil system mounted on the

microscope.

The coil system is designed to exert constant torque on the microswimmer without

introducing translational force. The coils are arranged in a slightly different configu-
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ration than that of the normal Helmholtz coil. Conventionally, Helmholtz coil restrict

the distance between two coils of the same size to be the radius of the coils. Given

the space constraint of our microscope, our configuration was designed to optimize

the magnetic field profile in order to create a near constant region at the center of

the coils. In this study, the distance between the coils is equal to the outer diameter

of the coils plus the thickness for the coil, creating a cube-like configuration for the

3D coil system.

Computer simulation and direct measurements from a tesla meter were used to

model the magnetic field generated from the 3D coil system. With 1 Amp of current

passing through two pairs of coils, the simulation result yielded a value of 5.06mT at

the center of the field, which matches the experimentally measured value of approx-

imately 5mT . We also investigated the field profile and demonstrated the ability of

the coil system to generate a near-constant magnetic field at the center region approx-

imately within a 2mm diameter. The size of this region approximately matches the

size of the area where experiments take place. Given the size of the microswimmers

being tested, the 2mm region provides sufficient space needed for experimentation.

6.5.2 Steering microswimmers using magnetic fields

The magnetic field strength (mT ), rotational direction of the magnetic bead (CW

or CCW), and rotational frequency (Hz) of the field generated by the coils can be

controlled through LabVIEW. The effective magnetic field (B) is the vector resultant

of the x−, y−, and z−components. To create a rotation, there must be at least two

pairs of electromagnetic coils; for example, one pair in the y direction and one pair

in the z direction create a rotating field in the yz−plane. The two pairs generate

sinusoidal outputs with 90◦ phase lag. Using xy− planar control, the resultant field
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can be expressed as [74]

B = B0


sin θ sin (ωt+ ϕ) î

cos θ sin (ωt+ ϕ) ĵ

cos (ωt+ ϕ) k̂

 (6.2)

which rotates with angular velocity ω around the unit vector

n =


− cos θ

sin θ

0

 (6.3)

where B0 is the maximum amplitudes of the magnetic field generated by the x, y,

and z pair coils respectively, ω is the rotational frequency of the field, ϕ is the phase,

θ is the direction of rotation, and is time. By controlling the field strength of x, y,

and z components and the frequency; the frequency of the microswimmers rotation

and the corresponding mode of motion can be fully controlled.

6.5.3 Tracking algorithm

A MATLAB tracking algorithm was used for the analysis of the microswimmers tra-

jectories. Data taken from experiment are avi video files which can be decompressed

in MATLAB and analyzed frame by frame. For each frame, the algorithm processes

the image using four main steps: image binarization using grayscale thresholding,

structure definition based on pixel continuity, size thresholding to filter out unwanted

pixels, and calculation of geometrical centroid. First, in image binarization, a thresh-

old defines a grayscale cutoff value for each pixel and converts the image to binary

(black/white). Afterward, the interior of the microswimmer is filled and sequentially
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labelled as 1, 2, 3, etc. Next, unwanted objects such as debris or out of focus particles

are removed using size thresholding which filters out objects bigger and smaller than

the microswimmer. At this stage, the only remaining object is the microswimmer

and the size of the microswimmer is defined as the number of pixel they occupied.

Finally, the geometrical centroid (x, y) is calculated.
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Chapter 7

Soft-Magnetic Swimmers

7.1 Introduction

The models discussed so far focus on hard magnets: ferromagnets with permanent

magnetization. The soft-magnetic materials, on the other hand, do not preserve their

magnetization upon the removal of the external magnetic field. As we discussed in

chapter 2, soft magnets possess lower coercivity and in many cases, lower remanence

relative to hard magnets. Figure 7.1 indicates this prominent difference between

hard and soft magnets. There are a number of studies that proposed models for

permanent magnets [2, 41–43] and paramagnets [2]. In 2007, Abbott et al. provided

models for magnetic force and torque of soft-magnetic bodies [100]; however, to this

date, no model has been reported for soft-magnetic microswimmers. In this chapter,

we develop a model for swimmers that are fabricated from soft magnetic material in

saturation regime based on the torque equations derived by Abbott et al. [100].To

present our model, we assume a swimmer comprising of a prolate ellipsoidal head

made from a soft ferromagnetic material and a nonmagnetic helical tail. the magnetic

head is assumed to be polycrystalline with many randomly oriented grains, neglecting

the magnetocrystalline anisotropy. Hence, the shape anisotropy is the only plausible
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Figure 7.1: Typical hysteresis loops for hard (a) and soft (b) magnets. Hard magnets
require higher magnetic fields to reach saturation, but they preserve most of their
magnetization upon field removal, resulting in a permanent magnet. Soft magnets
are more easily saturated, but magnetization drops significantly as the applied field
decreases. Figure from [4].

anisotropy.

7.2 Methods

Figure 7.2 shows the schematic of the ellipsoidal head in the body frame. The e1

direction is the axis of symmetry of the ellipsoid. The directions of the magnetization

and magnetic field are specified using two sets of azimuthal and altitudinal angles

(θM , ϕ) and (θH , ϕ) respectively. Note that due to symmetry, H, M and e1 are

coplanar.

The total energy of the system is the sum of the energy due to the shape anisotropy

(ea), eq. 2.20 and the potential energy (ep), eq. 2.4. So the total energy is:

e = ea + ep =
1

2
µ0V (nr − na)M2

s sin
2 θM − µ0VMsH cos (θH − θM) , (7.1)

where na and nr are the demagnetizing factors in the axial (e1) and radial directions,

respectively. Ms is the saturation magnetization and H is the field strength. For
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Figure 7.2: Schematic of the ellipsoidal head, coordinate system, magnetization and
magnetic field.the 1 direction in chosen along the symmetry axis of the ellipsoid. Two
sets of altitudinal and azimuthal angles, (θH , ϕ) and (θM , ϕ), are used to specify the
directions of H and M respectively.

a prolate ellipsoid such as the one in figure 7.2, the demagnetizing factors can be

calculated from eq. 2.12. Assuming spontaneous dynamics of magnetic moment, we

can establish a relationship between the orientations of Ms and H by minimizing the

total energy with respect to θM .

(nr − na)Ms sin (2θM) = 2H sin (θH − θM). (7.2)

Equation 7.2 sets a relationship between allowable directions of H and M in satura-

tion regime.

The magnetic torque is associated with the changes in the states of energy, which

correspond to different orientations of H in the swimmer’s frame. To find the torque,

let’s assume that M and H are on the 1 − 3 plane without loss of generality. Any

rotation about e2 changes θM so there is a component of torque along e2. To find this

component, the total energy 7.1 needs to be differentiated with respect to θH . Using
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chain rule, we get:

T2 =
∂e

∂θH
=

∂ea
∂θ∗M

∂θ∗M
∂θH

+
∂ep
∂θ∗M

∂θ∗M
∂θH

+
∂ep
∂θH

(7.3)

where θ∗M is the angle that minimizes the energy and is found from eq. 7.2. Note that

the first two terms on the right-hand-side of eq. 7.3 vanish since ∂e
∂θM

= 0. Hence the

torque in e2 direction is

T2 =
∂ep
∂θH

= µ0VMsH sin (θH − θM) . (7.4)

Any rotation about the e1 axis does not change the state of the energy since θH re-

mains unchanged. Hence, component of toque along e1 is zero. We can show that the

component of the torque along e3 is zero as well. In this case Ĥ = (cos θH , 0, sin θH).

If we rotate the geometry by angle α about e3 the new symmetry axis will be at

e′1 = (cosα, sinα, 0) and the new altitudinal angle will be:

θ′H = arccos
(
Ĥ · e′1

)
= arccos (cos θH cosα) . (7.5)

Then we investigate the change of θ′H due to the rotation.

∂θ′H
∂α

∣∣∣∣
α=0

=

 1√
1− (cos θH cosα)2

cos θH sinα


α=0

= 0. (7.6)

Hence, θH remains unchanged through this rotation and there is no torque along e3.

This shows that the total torque is in e2 direction with the magnitude given by eq.

7.4. Therefore, the total magnetic torque in general form is precisely:

T = µ0V (Ms ×H) . (7.7)



144

It follows from eq. 7.2 and eq. 7.7 that:

T =
µ0V |nr − na|

2
M2

s sin (2θM)


0

− sinϕ

cosϕ

 . (7.8)

Then the angular velocity is given by

Ω = MT =
µ0V |nr − na|

2
M2

s sin (2θM)


−M12 sinϕ+M13 cosϕ

−M22 sinϕ+M23 cosϕ

−M32 sinϕ+M33 cosϕ

 , (7.9)

where M is the submatrix of mobility matrix that correlates the torque to angular

velocity.

Assuming that the applied magnetic field is perpendicular to its axis of rotation,

the solutions should satisfy Ω · Ĥ = 0, where Ĥ = cos θH e1 + sin θH cosϕ e2 +

sin θH sinϕ e3. The only nontrivial solution to this equation is:

θH = arctan
M13 cosϕ−M12 sinϕ

−M23 cos 2ϕ− (M33 −M22) cosϕ sinϕ
. (7.10)

Equation 7.10 imposes a constraint on the allowable direction of the magnetic field

and can be used to find θH . Moreover, in steady state, we can set a constraint on

the direction of the magnetization by matching the magnitude of the angular velocity
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from Eq. 7.9 with the experimental rotation rate of the magnetic field ω. It yields:

θM =



1
2
arcsinA

π − 1
2
arcsinA

π
2
+ 1

2
arcsinA

π
2
− 1

2
arcsinA

, (7.11)

where

A =
2ω

M2
sµ0|na − nr|V

1√√√√√√ (M13 cosϕ−M12 sinϕ)
2 + (M23 cosϕ−M22 sinϕ)

2

+(M33 cosϕ−M23 sinϕ)
2

.

(7.12)

We can use Eq. 7.11 to find θM .

Equations 7.2, 7.10 and 7.11 establish a determined system from which we can

numerically solve for θH , θM and ϕ. Once the H and M are determined, the angular

and linear velocities can be calculated.

The stability of solutions can be investigated using a method similar to what we

discussed in [42]. The steady-state solutions are perturbed using an infinitesimal

vector, σ. The main difference between the stability analysis of soft magnets and

hard magnets is that in the hard magnet case, the perturbed magnetization is not

simply a rotation of the original magnetization by σ. The new magnetization in the

swimmer’s basis is

M′s = Ms +D ·∆H, (7.13)

where D = ∂Ms

∂Hs and ∆H = −σ ×H. In these equations, the superscript s refers to

the values in swimmer’s basis. Tensor D is calculated using the chain rule from Eq.
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7.2. Hence, the rate of change of σ with time can be formulated as:

dσi

dt
= (ϵijkDjlϵlmnHmHk +MijϵjklMkϵlmnHm − ϵijnMjkϵklmMlHm)

≡ Qinσn. (7.14)

Solutions are stable when all eigenvalues of Q have negative real parts. Note that in

this work, we are not reporting the stability of solutions since our stability analysis

is still in the verification stage.

We use Buckingham-π theorem to find the dimensionless groups. The dimension-

less groups involved are: |nr − na|, the dimensionless angular velocity Ω̃ = η
M2

sµ0
Ω

which can also be interpreted as the ratio of viscous torque to anisotropy torque,

dimensionless magnetic field H̃ = H
Ms

and the dimensionless velocity ṽ = η
µ0MsL

v. In

these equations, η is the viscosity of the fluid and L is the characteristic length of the

swimmer, which we choose to be the total length of the swimmer.

Abbott et al. [100] explain the criterion for establishment of the saturation regime

as:

Hs =
Msnanr√

n2
a sin

2 θH + n2
r cos

2 θH
. (7.15)

For a prolate ellipsoid, nr > na; therefore, the maximum and minimum of Eq. 7.15

correspond to H̃s = nr and H̃s = na, occurring at θH = π/2 and θH = 0, respectively.

It is clear that for H̃ < na the material cannot be saturated for any direction of the

field and therefore, the presented model is not valid. The present model is always

valid for H̃ ≥ nr since it guarantees saturation for any direction of the magnetic field.

When na ≤ H̃ < nr, solution is not always guaranteed since the material will be

saturated only for certain direction of the applied field. Therefore, for this range of

field strengths, solutions are valid only for frequencies that result in directions of the

magnetic field that correspond to a saturation scenario.
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Figure 7.3: geometry used for the analysis. The ellipsoidal head has a semi-major
axis of a = 2µm and a semi-minor axis of b = 1µm. The head is discretized using
313 collocation points. The tail consists of a ellipsoid which is tapered where it
connects to the head and a spherical cap at the free end. The tail is discretized by
3479 collocation points. The helix has a radius of R = 0.5µm, filament radius of
r = 0.1µm and axial pitch of 2µm, and it consists of n = 4 total turns.

7.3 Results and discussion

To illustrate the behavior of saturated soft-magnetic swimmers, we compare a swim-

mer of this type with a swimmer made from permanent magnetic material of iden-

tical geometry. For the soft-magnetic swimmer, we use an ellipsoidal head with

semi-principal axes of a = 2µm and b = 1µm made from a soft magnetic material.

Attached to the head is a nonmagnetic tapered helical tail of length 8µm such that

the axis of rotational symmetry of the helix is pointing in the e2 direction. The same

geometry is used for the permanent magnetic swimmer. In this case, the magnetic

head possesses a permanent dipole of magnitude VMs in the e2 direction. We calcu-

late the mobility matrix of the swimmers using the method of regularized stokeslet.

Figure 7.3 shows the discretized surface of the swimmer.

From the experimental point of view, swimming speed needs to be controlled by

the field’s strength and rotational frequency. These parameters directly affect H̃ and
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Ω̃ in an independent fashion. Hence, we investigate the Ω̃ − Ṽs response for a range

of H̃. Figure 7.4 illustrates the velocity-frequency response of both the hard- and the

soft-magnetic swimmers for H̃ = nr. The response of the hard-magnetic swimmer is

linear. This behavior is very similar to that of headless permanent magnetic helices

with magnetization in the e2 direction as was discussed in our earlier work [43].

The response of the soft-magnetic swimmer consists of a relatively short branch of

negative velocities (marked with red circles) and a longer branch of positive velocities

(marked with blue circles) that exist until the step-out frequency, Ω̃0. The blue branch

associates with the propulsion solutions. [42,43] These solutions correspond to when

the axis for rotation (Ω̂) is close to the long axis of the swimmer (e3). The red branch

pertains to the tumbling solutions. [42,43] Tumbling solutions occur when the axis of

rotation is almost perpendicular to the long axis of the swimmer. As demonstrated by

the graph, the hard- and soft-magnetic swimmers exhibit very similar responses for

the propulsion solutions. Figure 7.4 amplifies two main differences between the soft-

and hard-magnetic cases. Firstly, the soft-magnetic swimmer experiences a tumbling

solution at lower frequency domain while the hard-magnetic swimmer does not have

a stable tumbling solution. Secondly, the step-out frequency of the soft-magnetic

swimmer is significantly lower than that of the hard-magnetic swimmers. For the

conditions in figure 7.4, the dimensionless step-out frequency is about 0.076 for the

hard-magnetic swimmer and about 0.024 for the soft-magnetic swimmer. Above the

step-out frequency, steady orbits no longer exist.

We investigated the velocity-frequency response for different values of H̃ and found

that they all obtain the same slope as in figure 7.4. However, the step-out frequency

of the swimmers change with changing H̃. Figure 7.5 illustrates the nondimensional

step-out frequency at different nondimensional field strengths. These results signify

another important difference between the hard- and soft-magnetic swimmers. Ω̃0 of
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Figure 7.4: The dimensionless swimming velocity versus the dimensionless angular
velocity at H̃ ≈ 0.65 for the hard-magnetic swimmer (orange dashed line) and soft-
magnetic swimmer with |nr − na| ≈ 0.48. The blue circle markers correspond to the
propulsion solutions and the red diamond markers correspond to tumbling solutions
of the soft-magnetic swimmer.
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Figure 7.5: Nondimensionalized step-out frequency versus nondimensional magnetic
field strength for the hard-magnetic swimmer (orange line and square markers) and
the soft-magnetic swimmer (blue line and circular markers).

the hard-magnetic swimmer scales with H̃ and linearly increases with increasing H̃.

For the soft-magnetic swimmer, however, Ω̃0 does not depend on H̃ for the ranges

that we inspected. It is important to mention that the results presented here include

all the solutions. The stability of these solutions has not been investigated.

The design implication of these results is that in order to achieve the highest

steady-state swimming speed for soft-magnetic swimmers in the saturation regime,

the swimmers need to be operated near their step-out frequencies. Additionally, Since

the step-out frequency does not depend on the field strength, the swimmer can be

operated at any saturating field.

In summary, we found that swimmers, made from saturated hard-magnetic mate-

rial can exhibit tumbling and propulsion modes and that linear velocity-frequency re-

sponses are achievable. For equal field strengths, step-out frequencies of soft-magnetic

swimmers are lower than those of their corresponding hard-magnetic swimmers. Fi-

nally, with increasing field strength, the step-out frequency increases for the hard-

magnetic swimmers but remains constant for the soft-magnetic swimmers in the range
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that we studied.

For future work, we are going to analyze the stability of solutions. We will in-

vestigate different geometries for the magnetic head and find the effects of various

demagnetizing factors on the dynamics of the swimmers. Additionally, we are inter-

ested in deriving models for the low-field regime.
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Chapter 8

Conclusion

The works presented in this dissertation aim to address two important technical

difficulties pertaining to the implementation of magnetic microswimmers for their

various biomedical applications.

The first issue is the fabrication of the microrobots. This can be challenging both

from the material properties perspective and manufacturing process perspective. The

notion of the minimum geometric requirements as was set forth in this work opens up

opportunities for simpler and more cost-effective manufacturing processes. Moreover,

the concerns about the appropriate size and shapes of swimmers for performance in

various environments can be addressed by the modular units suggested in this work.

From the material perspective, we developed predictive models for both the hard and

soft magnetic material. These models can be used to inform design decisions.

Another practical difficulty associated with magnetic microswimmers is the con-

trollability complications. The swimming speed and direction of swimming are often

adjusted by varying the strength and frequency of rotation of the external magnetic

field. However, the frequency-velocity response in many cases are not linear. More-

over, experimentalists have reported switching between different swimming modes at

the same frequencies as well as wobbling motions which lead to lower swimming veloc-
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ities and inefficiencies. Our models help expand our understanding of the dynamics

of microswimmers. These models are capable of predicting the swimming velocities

for different experimental settings. Based on these models, we explain how linear

velocity-frequency responses can be obtained for helical swimmers and how wobbling

motions can be minimized. We also illustrated that multiple stable orbits can exist

at the same frequencies and showed that multistability can be avoided by changing

the angle between the applied field and its axis of rotation. This gives a physics-

based model of control. In case of modular microswimmers, our proposed model can

help adapt effective strategies for successful assemblies. Our model for soft-magnetic

swimmers describes the steady-state orbits and exhibits velocity-frequency response

and the effect of the strength of the magnetic field. These predictions can be employed

to implement control strategies.
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