5,602 research outputs found

    General model of photon-pair detection with an image sensor

    Full text link
    We develop an analytic model that relates intensity correlation measurements performed by an image sensor to the properties of photon pairs illuminating it. Experiments using both an effective single-photon counting (SPC) camera and a linear electron-multiplying charge-coupled device (EMCCD) camera confirm the model

    MD boundary conditions for pressure gradient flows : nano-mixing and nano-droplet deformation in extensional flows

    Get PDF
    We present new algorithms for simulating pressure gradient flows in molecular dynamics (MD) simulations. Nano-channel inlet and outlet non-periodic boundary conditions are implemented using hydrodynamic state reservoirs and flux boundary models at arbitrary boundaries of the domain geometry. We demonstrate the new method in a complex nano-mixer configuration and for droplet deformation in extensional flow channels. The technique which we propose is applicable to any complex nano-channel configuration, and may serve as a useful tool in engineering design of nano-scale applications

    Generic Connectivity-Based CGRA Mapping via Integer Linear Programming

    Full text link
    Coarse-grained reconfigurable architectures (CGRAs) are programmable logic devices with large coarse-grained ALU-like logic blocks, and multi-bit datapath-style routing. CGRAs often have relatively restricted data routing networks, so they attract CAD mapping tools that use exact methods, such as Integer Linear Programming (ILP). However, tools that target general architectures must use large constraint systems to fully describe an architecture's flexibility, resulting in lengthy run-times. In this paper, we propose to derive connectivity information from an otherwise generic device model, and use this to create simpler ILPs, which we combine in an iterative schedule and retain most of the exactness of a fully-generic ILP approach. This new approach has a speed-up geometric mean of 5.88x when considering benchmarks that do not hit a time-limit of 7.5 hours on the fully-generic ILP, and 37.6x otherwise. This was measured using the set of benchmarks used to originally evaluate the fully-generic approach and several more benchmarks representing computation tasks, over three different CGRA architectures. All run-times of the new approach are less than 20 minutes, with 90th percentile time of 410 seconds. The proposed mapping techniques are integrated into, and evaluated using the open-source CGRA-ME architecture modelling and exploration framework.Comment: 8 pages of content; 8 figures; 3 tables; to appear in FCCM 2019; Uses the CGRA-ME framework at http://cgra-me.ece.utoronto.ca

    Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries

    Get PDF
    We present a new parallelised controller for steering an arbitrary geometric region of a molecular dynamics (MD) simulation towards a desired thermodynamic and hydrodynamic state. We show that the controllers may be applied anywhere in the domain to set accurately an initial MD state, or solely at boundary regions to prescribe non-periodic boundary conditions (PBCs) in MD simulations. The mean molecular structure and velocity autocorrelation function remain unchanged (when sampled a few molecular diameters away from the constrained region) when compared with those distributions measured using PBCs. To demonstrate the capability of our new controllers, we apply them as non-PBCs in parallel to a complex MD mixing nano-channel and in a hybrid MD continuum simulation with a complex coupling region. The controller methodology is easily extendable to polyatomic MD fluids
    corecore