321 research outputs found

    Alternative protocol to initiate high-frequency oscillatory ventilation: an experimental study

    Get PDF
    INTRODUCTION: The objective was to study the effects of a novel lung volume optimization procedure (LVOP) using high-frequency oscillatory ventilation (HFOV) upon gas exchange, the transpulmonary pressure (TPP), and hemodynamics in a porcine model of surfactant depletion. METHODS: With institutional review board approval, the hemodynamics, blood gas analysis, TPP, and pulmonary shunt fraction were obtained in six anesthetized pigs before and after saline lung lavage. Measurements were acquired during pressure-controlled ventilation (PCV) prior to and after lung damage, and during a LVOP with HFOV. The LVOP comprised a recruitment maneuver with a continuous distending pressure (CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP level was identified during the decrease in CDP, which assured a change of the P(a)O(2)/F(I)O(2 )ratio < 25% compared with maximum lung recruitment at CDP of 45 mbar (CDP45). Data are presented as the median (25th–75th percentile); differences between measurements are determined by Friedman repeated-measures analysis on ranks and multiple comparisons (Tukey's test). The level of significance was set at P < 0.05. RESULTS: The PaO(2)/FiO(2 )ratio increased from 99.1 (56.2–128) Torr at PCV post-lavage to 621 (619.4–660.3) Torr at CDP45 (CDP45) (P < 0.031). The pulmonary shunt fraction decreased from 51.8% (49–55%) at PCV post-lavage to 1.03% (0.4–3%) at CDP45 (P < 0.05). The cardiac output and stroke volume decreased at CDP45 (P < 0.05) compared with PCV, whereas the heart rate, mean arterial pressure, and intrathoracic blood volume remained unchanged. A TPP of 25.5 (17–32) mbar was required to preserve a difference in P(a)O(2)/F(I)O(2 )ratio < 25% related to CDP45; this TPP was achieved at a CDP of 35 (25–40) mbar. CONCLUSION: This HFOV protocol is easy to perform, and allows a fast determination of an adequate TPP level that preserves oxygenation. Systemic hemodynamics, as a measure of safety, showed no relevant deterioration throughout the procedure

    A case of prolonged exertional rhabdomyolysis in a MHS individual

    Get PDF

    Konfliktmatrix: Instrument des Risikomanagements im Operationssaal

    Get PDF
    Hintergrund In der Wirtschaft sind Konflikte als Ursache von hohen Kosten und Leistungseinbußen lange bekannt. Bei der Prozessoptimierung im OP-Management findet dieser Aspekt noch keine Beachtung. Gerade im Bereich der Ablauforganisation im OP führen unklare Arbeitsteilungen und mangelnde Kommunikation oft dazu, dass sich die verschiedenen Berufsgruppen als „Konkurrenten“ im Umfeld der Patienten sehen, anstatt als „multiprofessionelles Team“ zu agieren. Dies führt unweigerlich zur Entstehung und zur Eskalation von Konflikten. Fragestellung Die von uns entwickelte Konfliktmatrix soll es ermöglichen, mit minimalem Aufwand das Ausmaß der Konflikteskalation im multiprofessionellen OP-Team objektivierbar zu erfassen. Material und Methoden Im Bereich eines OP-Bereiches mit 8 OP-Tischen werden alle leitenden Mitarbeitenden aufgefordert, die Konflikteskalation zwischen den einzelnen Berufsgruppen auf einer Skala vonBackground In business conflicts have long been known to have a negative effect on costs and team performance. In medicine this aspect has been widely neglected, especially when optimizing processes for operating room (OR) management. In the multidisciplinary setting of OR management, shortcomings in rules for decision making and lack of communication result in members perceiving themselves as competitors in the patients environment rather than acting as art of a multiprofessional team. This inevitably leads to the emergence and escalation of conflicts. Objective We developed a conflict matrix to provide an inexpensive and objective way for evaluating the level of escalation of conflicts in a multiprofessional working environment, such as an OR. Material and methods The senior members of all involved disciplines were asked to estimate the level of conflict escalation between the individual professional groups on a scale of 09. By aggregating the response data, an overview of the conflict matrix within this OR section was created. Results No feedback was received from 1 of the 11 contacted occupational groups. By color coding the median, minimum and maximum values of the retrieved data, an intuitive overview of the escalation levels of conflict could be provided. The value range of all feedbacks was between(VLID)354395

    Konfliktmatrix: Instrument des Risikomanagements im Operationssaal

    Get PDF

    Effect of a lung recruitment maneuver by high-frequency oscillatory ventilation in experimental acute lung injury on organ blood flow in pigs

    Get PDF
    INTRODUCTION: The objective was to study the effects of a lung recruitment procedure by stepwise increases of mean airway pressure upon organ blood flow and hemodynamics during high-frequency oscillatory ventilation (HFOV) versus pressure-controlled ventilation (PCV) in experimental lung injury. METHODS: Lung damage was induced by repeated lung lavages in seven anesthetized pigs (23–26 kg). In randomized order, HFOV and PCV were performed with a fixed sequence of mean airway pressure increases (20, 25, and 30 mbar every 30 minutes). The transpulmonary pressure, systemic hemodynamics, intracranial pressure, cerebral perfusion pressure, organ blood flow (fluorescent microspheres), arterial and mixed venous blood gases, and calculated pulmonary shunt were determined at each mean airway pressure setting. RESULTS: The transpulmonary pressure increased during lung recruitment (HFOV, from 15 ± 3 mbar to 22 ± 2 mbar, P < 0.05; PCV, from 15 ± 3 mbar to 23 ± 2 mbar, P < 0.05), and high airway pressures resulted in elevated left ventricular end-diastolic pressure (HFOV, from 3 ± 1 mmHg to 6 ± 3 mmHg, P < 0.05; PCV, from 2 ± 1 mmHg to 7 ± 3 mmHg, P < 0.05), pulmonary artery occlusion pressure (HFOV, from 12 ± 2 mmHg to 16 ± 2 mmHg, P < 0.05; PCV, from 13 ± 2 mmHg to 15 ± 2 mmHg, P < 0.05), and intracranial pressure (HFOV, from 14 ± 2 mmHg to 16 ± 2 mmHg, P < 0.05; PCV, from 15 ± 3 mmHg to 17 ± 2 mmHg, P < 0.05). Simultaneously, the mean arterial pressure (HFOV, from 89 ± 7 mmHg to 79 ± 9 mmHg, P < 0.05; PCV, from 91 ± 8 mmHg to 81 ± 8 mmHg, P < 0.05), cardiac output (HFOV, from 3.9 ± 0.4 l/minute to 3.5 ± 0.3 l/minute, P < 0.05; PCV, from 3.8 ± 0.6 l/minute to 3.4 ± 0.3 l/minute, P < 0.05), and stroke volume (HFOV, from 32 ± 7 ml to 28 ± 5 ml, P < 0.05; PCV, from 31 ± 2 ml to 26 ± 4 ml, P < 0.05) decreased. Blood flows to the heart, brain, kidneys and jejunum were maintained. Oxygenation improved and the pulmonary shunt fraction decreased below 10% (HFOV, P < 0.05; PCV, P < 0.05). We detected no differences between HFOV and PCV at comparable transpulmonary pressures. CONCLUSION: A typical recruitment procedure at the initiation of HFOV improved oxygenation but also decreased systemic hemodynamics at high transpulmonary pressures when no changes of vasoactive drugs and fluid management were performed. Blood flow to the organs was not affected during lung recruitment. These effects were independent of the ventilator mode applied

    Meperidine and skin surface warming additively reduce the shivering threshold: a volunteer study

    Get PDF
    INTRODUCTION: Mild therapeutic hypothermia has been shown to improve outcome for patients after cardiac arrest and may be beneficial for ischaemic stroke and myocardial ischaemia patients. However, in the awake patient, even a small decrease of core temperature provokes vigorous autonomic reactions-vasoconstriction and shivering-which both inhibit efficient core cooling. Meperidine and skin warming each linearly lower vasoconstriction and shivering thresholds. We tested whether a combination of skin warming and a medium dose of meperidine additively would reduce the shivering threshold to below 34 degrees C without producing significant sedation or respiratory depression. METHODS: Eight healthy volunteers participated on four study days: (1) control, (2) skin warming (with forced air and warming mattress), (3) meperidine (target plasma level: 0.9 mug/ml), and (4) skin warming plus meperidine (target plasma level: 0.9 mug/ml). Volunteers were cooled with 4 degrees C cold Ringer lactate infused over a central venous catheter (rate asymptotically equal to 2.4 degrees C/hour core temperature drop). Shivering threshold was identified by an increase of oxygen consumption (+20% of baseline). Sedation was assessed with the Observer's Assessment of Alertness/Sedation scale. RESULTS: Control shivering threshold was 35.5 degrees C +/- 0.2 degrees C. Skin warming reduced the shivering threshold to 34.9 degrees C +/- 0.5 degrees C (p = 0.01). Meperidine reduced the shivering threshold to 34.2 degrees C +/- 0.3 degrees C (p < 0.01). The combination of meperidine and skin warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C (p < 0.01). There were no synergistic or antagonistic effects of meperidine and skin warming (p = 0.59). Only very mild sedation occurred on meperidine days. CONCLUSION: A combination of meperidine and skin surface warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C via an additive interaction and produced only very mild sedation and no respiratory toxicity
    • …
    corecore