136 research outputs found

    Entanglement preserving local thermalization

    Get PDF
    We investigate whether entanglement can survive the thermalization of subsystems. We present two equivalent formulations of this problem: (1) Can two isolated agents, accessing only pre-shared randomness, locally thermalize arbitrary input states while maintaining some entanglement? (2) Can thermalization with local heat baths, which may be classically correlated but do not exchange information, locally thermalize arbitrary input states while maintaining some entanglement? We answer these questions in the positive at every nonzero temperature and provide bounds on the amount of preserved entanglement. We provide explicit protocols and discuss their thermodynamic interpretation: we suggest that the underlying mechanism is a speed-up of the subsystem thermalization process. We also present extensions to multipartite systems. Our findings show that entanglement can survive locally performed thermalization processes accessing only classical correlations as a resource. They also suggest a broader study of the channel's ability to preserve resources and of the compatibility between global and local dynamics.Comment: 6+7 pages, 1 figure, closed to the published versio

    The Coherent Crooks Equality

    Full text link
    This chapter reviews an information theoretic approach to deriving quantum fluctuation theorems. When a thermal system is driven from equilibrium, random quantities of work are required or produced: the Crooks equality is a classical fluctuation theorem that quantifies the probabilities of these work fluctuations. The framework summarised here generalises the Crooks equality to the quantum regime by modeling not only the driven system but also the control system and energy supply that enables the system to be driven. As is reasonably common within the information theoretic approach but high unusual for fluctuation theorems, this framework explicitly accounts for the energy conservation using only time independent Hamiltonians. We focus on explicating a key result derived by Johan {\AA}berg: a Crooks-like equality for when the energy supply is allowed to exist in a superposition of energy eigenstates states.Comment: 11 pages, 3 figures; Chapter for the book "Thermodynamics in the Quantum Regime - Recent Progress and Outlook", eds. F. Binder, L. A. Correa, C. Gogolin, J. Anders and G. Adess
    • …
    corecore