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Entanglement preserving local thermalization
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We investigate whether entanglement can survive the thermalization of subsystems. We present two equivalent
formulations of this problem: (1) Can two isolated agents, accessing only preshared randomness, locally
thermalize arbitrary input states while maintaining some entanglement? (2) Can thermalization with local
heat baths, which may be classically correlated but do not exchange information, locally thermalize arbitrary
input states while maintaining some entanglement? We answer these questions in the positive at every nonzero
temperature and provide bounds on the amount of preserved entanglement. We provide explicit protocols and
discuss their thermodynamic interpretation: we suggest that the underlying mechanism is a speed-up of the
subsystem thermalization process. We also present extensions to multipartite systems. Our findings show that
entanglement can survive locally performed thermalization processes accessing only classical correlations as a
resource. They also suggest a broader study of the channel’s ability to preserve resources and of the compatibility
between global and local dynamics.
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I. INTRODUCTION

Entanglement is a core feature of quantum theory and one
of the most representative resources in quantum information
science. In fact, it is at the basis of quantum advantages
in metrology [1], cryptography [2], communication [3], and
computation [4]. Entanglement also impacts quantum ther-
modynamic protocols, e.g., by allowing one to extract more
work than would be possible with classical correlations [5–7],
resulting in negative work cost of erasure [8] and strong heat
backflows [9]. Entanglement is also a crucial ingredient to
understand local equilibration [10] and its compatibility with
global unitary evolution [11,12].

While being a powerful resource, entanglement often does
not survive interactions with an external environment. It is
therefore a central question whether entanglement can be
maintained by certain classes of dynamics. From a thermo-
dynamic point of view, one important class is thermalization,
describing the evolution of generic states toward thermal
equilibrium. Formally, thermalization is defined as a trans-
formation mapping arbitrary input states to a fixed output
state—the thermal state. While entanglement is distributed at
spatially separated locations, thermalization often acts locally
and is known to destroy quantum correlations. It is therefore
important to know whether quantum theory allows global en-
tanglement to persist after locally performed thermalizations.

One way to formalize this question is as follows. Suppose
an unknown input state is distributed to two agents at spatially
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separated locations. We assume that the agents neither share
additional quantum resources, such as another entangled state,
nor can they communicate with each other. Each of them
has access to a local heat bath, and we allow for the two
baths to be classically correlated across the bipartition. Each
party thermalizes their half of the (unknown) input state
by coupling their local systems to the correspondent local
bath. We assume the two dynamics remain independent, for
example due to the timescales involved. Our central question
is whether entanglement can survive when the local systems
are thermalized [Fig. 1(a)].

We will show that the above question admits an equivalent
reformulation as follows. Suppose two agents are restricted
to perform local operations (LO) and can exploit preshared
randomness (SR)—a set of physical dynamics (or simply
channels [13]) denoted by LOSR. The question above is then
equivalently phrased as follows: Is there an LOSR channel
that (i) locally thermalizes every input to predefined thermal
states (i.e., is locally indistinguishable from a thermaliza-
tion) and (ii) the output is entangled at least for some input
[Fig. 1(b)]? Such channels, whose existence we want to
explore, will be called entanglement preserving local thermal-
izations (EPLTs).

Ultimately, these are fundamental questions concerning
the structure of quantum mechanics, specifically about the
interplay between subsystem thermalization and quantum cor-
relations. Here we ask if classical correlations/shared ran-
domness alone allow for the preservation of entanglement in
thermalizations. The answer that we find suggests that shared
randomness can be a useful resource to sustain entanglement
during thermalization.

II. MAIN QUESTION

We first formalize the question described in the intro-
duction in terms of a local thermalization task under LOSR
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FIG. 1. Schematic interpretation of the two formulations for the
EPLT question. Dashed lines represent classical correlations and
continuous lines represent quantum correlations. (a) Thermodynamic
formulation. In this formulation, we ask whether entanglement can
survive after subsystem thermalizations are achieved by coupling to
classically correlated heat baths. (b) Information-theoretic formula-
tion. In this formulation, we ask whether entanglement can survive
after a local operation plus shared randomness (LOSR) channel that
is locally indistinguishable from a thermalization process.

channels, which are local dynamics assisted by preshared
classical correlations. Formally, a bipartite LOSR channel is
defined as

E =
∫ (

Eλ
A ⊗ Eλ

B

)
pλdλ, (1)

with pλ � 0 and
∫

dλpλ = 1, where Eλ
A, Eλ

B are channels on
the local systems for every λ. To illustrate how to realize
an LOSR channel, two local agents can share classical ran-
domness, e.g., a third party samples λ and, according to the
probability distribution pλ, distributes the outcomes to them,
at the beginning of the task. Each λ corresponds to a specific
local operation for each local agent (captured by Eλ

A, Eλ
B).

The local agents apply the corresponding local operations
conditioned on the received λ.

Now, consider two spatially separated agents Alice (A) and
Bob (B). Each of them holds a system with local Hamiltonian
HX (X = A, B), and the total Hamiltonian is HA ⊗ I + I ⊗
HB. By means of a local process, they want to thermalize their
local system to some local environment temperature TA and
TB, respectively. Denote the thermal state γX := e−HX /kTX

tr(e−HX /kTX ) ,
where k is Boltzmann’s constant. We can now state the main
definition:

Definition 1. A channel E on AB is a local thermalization
to (γA, γB) if

(1) E is an LOSR channel;
(2) trA[E (ρAB)] = γB, trB[E (ρAB)] = γA, ∀ ρAB.

E is an entanglement preserving local thermalization (EPLT)
if, furthermore, there exists some input ρAB such that the
output E (ρAB) is entangled.

In other words, a local thermalization E is local in two
senses: that is, it is an LOSR channel (condition II) that locally
thermalizes every input (condition II). An example of local
thermalization is the channel ρAB �→ γA ⊗ γB for every ρAB,
which is not an EPLT.

To gather intuition on the above definition, note that drop-
ping either of the two conditions trivializes the dynamical
question. If we drop condition II, E can be any channel and, in
particular, it can be any state preparation; then, our dynamical
question concerning the existence of EPLTs is reduced to
the “static” question of the existence of entangled states with
given thermal marginals. Condition II avoids this trivialization
by asking that E is an LOSR channel, which means that
entanglement cannot be created [14].

Also, note that if we drop the requirement that condition
II holds for every state, then again the existence of entan-
gled locally thermal states and the identity channel would
trivially satisfy the requirements. For example, if HA = HB =
E |E〉〈E |, and TA = TB = T , it would be enough to observe
that the two-qubit state

√
1/Z|00〉 +

√
e−E/kT /Z|11〉 (with

Z = 1 + e−E/kT ) is locally thermal and entangled for every
T > 0. Hence, condition II crucially requires that the ther-
malization protocol does not depend on the input, which is
also realistic from an operational point of view.

On the other hand, one may ask whether we could
strengthen condition II by asking E to be a local operation
without shared randomness. However, as expected, no corre-
lation, even classical ones, can be preserved in this scenario:

Proposition 1. Any product local thermalization to the
marginals (γA, γB) coincides with the constant channel (·) �→
γA ⊗ γB. In other words, no correlation can be preserved by
product local thermalizations.

Proof. Suppose E is a product local thermalization given
by E = EA ⊗ EB. By definition EX is identical to the constant
channel (·) �→ γX , which is a measure and prepare chan-
nel, thereby being an entanglement-breaking channel [15].
This means E (ρAB) = (EA ⊗ EB)(ρAB) is always a separable
state. Since (EA ⊗ EB) ◦ (EA ⊗ EB) = EA ⊗ EB, for an arbi-
trary ρAB, we have (EA ⊗ EB)(ρAB) = ∑

i fiρ
i
A ⊗ ρ i

B for some
fi � 0,

∑
i fi = 1. Then, for an arbitrary ρAB,

(EA ⊗ EB)(ρAB) = (EA ⊗ EB) ◦ (EA ⊗ EB)(ρAB)

= (EA ⊗ EB)

(∑
i

fiρ
i
A ⊗ ρ i

B

)

=
∑

i

fiγA ⊗ γB

= γA ⊗ γB, (2)

which completes the proof. �
Hence, the simplest EPLT, if it exists, must exploit shared

randomness to preserve entanglement during a local thermal-
ization process.

What we have formalized here is the information-theoretic
formulation of the main problem [Fig. 1(b)]. An alternative
formulation is the thermodynamic one [Fig. 1(a)], where
LOSR is replaced by classically correlated heat baths, as men-
tioned in Sec. I. The formal definition of the thermodynamic
formulation and the proof of the equivalence between two
formulations are given in Sec. IV. This equivalence allow us
to rigorously analyze the problem in the information-theoretic
formulation, while ensuring that we can always map back to a
thermodynamic setting for a clearer physical meaning.
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Our main question is then as follows: Do entanglement
preserving local thermalizations exist?

III. EXISTENCE OF EPLT

We now turn to the existence of EPLT at every nonzero
local temperature. From now on, we assume equal finite local
dimension d , no degeneracies, and finite energies. First, we
need to introduce the (U ⊗ U ∗)-twirling operation [16,17],
which is defined by

T (ρAB) :=
∫

U (d )
(U ⊗ U ∗)ρAB(U ⊗ U ∗)†dU, (3)

where the integration is taken over the group U (d ) of unitary
operators in dimension d with Haar measure dU . Opera-
tionally, twirling results from the application of coordinated
random local unitaries. This turns the local systems into
maximally entropic states, while correlations between them
can still exist after the operation.

The output of T is always an isotropic state [17],

ρiso(p) := p|�+
d 〉〈�+

d | + (1 − p)
IAB

d2
, (4)

where |�+
d 〉 := 1√

d

∑d−1
n=0 |n〉 ⊗ |n〉 is maximally entangled,

and p ∈ [− 1
d2−1 , 1] due to the positivity of quantum

states. Furthermore, it can preserve entanglement since
〈�+

d |T (ρAB)|�+
d 〉 = 〈�+

d |ρAB|�+
d 〉 [17], together with the

fact that ρiso is entangled if and only if 〈�+
d |ρiso|�+

d 〉 >
1
d [17]. Hence, T (ρAB) is entangled if and only if
〈�+

d |ρAB|�+
d 〉 > 1

d .
Formally, we introduce the first candidate EPLT,

Eε (·) := D(1−ε)
ηε

A⊗ηε
B
◦ T (·), (5)

Dp
σ (·) := pσ + (1 − p)I (·), (6)

where ηε
X := γX + ε

1−ε
(γX − IX

d ), with ε ∈ [0, 1] to be de-
fined, and γX is the given local thermal state. In the
information-theoretic formulation, this channel can be under-
stood in two steps: First, local agents A and B realize the
twirling operation T , and then they use preshared randomness
to mix the output of the twirling with the state ηε

A ⊗ ηε
B, with

the desired probability 1 − ε.
Before stating the main result, first we show that the

channels defined by Eq. (5) are local thermalization in certain
parameter regimes.

Lemma 1. Eε is a local thermalization to (γA, γB) for all
0 � ε � ε∗ := dPmin, where Pmin is the smallest eigenvalue
among γA and γB.

Proof. First, the definition of ηε
X implies that Eε will locally

behave as a thermalization. More precisely, Eq. (5) and the
definition of ηε

X give

trA[Eε (·)] = (1 − ε)ηε
B + ε

IB

d
= γA, (7)

and the same by exchanging A and B. Hence, it suf-
fices to show that Eε is an LOSR channel in order to
prove it is a local thermalization. From the definition,
it suffices to prove that ηε

X is a quantum state when ε

falls into the prescribed region. Write γX = ∑d−1
n=0 PX

n |n〉〈n|X

with 1 � PX
0 � PX

1 � · · · � PX
d−1 � 0. From the definition

ηε
X := γX + ε

1−ε
(γX − IX

d ), we have ηε
X = ∑d−1

n=0 QX
n |n〉〈n|,

with

QX
n = 1

1 − ε
PX

n − ε

d (1 − ε)
. (8)

Since ε � 1, we have the hierarchy QX
0 � QX

1 � · · · � QX
d−1

and the normalization condition
∑d−1

n=0 QX
n = 1. Hence, it

suffices to impose QX
d−1 � 0 to make sure ηε

X is a quantum
state. This gives ε � dPX

d−1 (we have PX
d−1 � 1

d , since γX is a
thermal state) for X = A, B, which leads to the desired range
0 � ε � ε∗ := dPmin. �

With the above lemma in hand, our first main result can
be stated as follows (note again that we only consider finite-
energy Hamiltonians):

Theorem 1. Eε∗ is an EPLT to (γA, γB) for all TA, TB > 0.
Proof. It suffices to show that the output state is entangled

when the input state is |�+
d 〉. We use the positive partial

transpose (PPT) criterion [18,19] to detect the entanglement
of the output. Again, write ηε

X = ∑d−1
n=0 QX

n |n〉〈n|; then we
have

Eε∗ (|�+
d 〉〈�+

d |)

= ε∗|�+
d 〉〈�+

d | + (1 − ε∗)
d−1∑

n,m=0

QA
n QB

m|nm〉〈nm|

=
d−1∑

n,m=0

[
ε∗
d

|nn〉〈mm| + (1 − ε∗)QA
n QB

m|nm〉〈nm|
]
. (9)

Now we take the partial transpose on the subsystem B, which
gives the following operator:

d−1∑
n,m=0

[
ε∗
d

|nm〉〈mn| + (1 − ε∗)QA
n QB

m|nm〉〈nm|
]

=
( ⊕

n �=m

Mnm

)
⊕ D, (10)

where

Mnm :=
(

(1 − ε∗)QA
n QB

m
ε∗
d

ε∗
d (1 − ε∗)QA

mQB
n

)
, (11)

and

D :=
d−1⊕
n=0

[
ε∗
d

+ (1 − ε∗)QA
n QB

n

]
(12)

is the contribution of the diagonal terms. To see that the
output is entangled, it suffices to show that there exists a
negative eigenvalue of at least one Mnm. To this end, we
first note that when we substitute ε = ε∗ = dPmin in Eq. (8),
we have QA

d−1 = 0 (without loss of generality, we assume
Pmin = PA

d−1). This means that for every m < d − 1, we have

Md−1,m =
(

0 ε∗
d

ε∗
d (1 − ε∗)QA

mQB
d−1

)
, (13)

which will have a negative eigenvalue if the off-diagonal terms
are positive; namely, when ε∗ > 0. This completes the proof.
�
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Theorem 1 shows the existence of EPLT in the most
general case for bipartite systems, apart from the special
case of zero temperature. We leave the discussion of the
zero-temperature case and further remarks for the following
independent sections. We note that as TA, TB → +∞, we have
ε∗ → 1 and Eε∗ → T (this also means twirling operation is
an EPLT with infinite local temperatures or fully degenerate
local Hamiltonians). In this sense, Eε can be considered as a
finite-temperature extension of the twirling operation.

A. Zero-temperature case discussion

The previous theorem leaves out only the case TA = TB =
0, which we treat separately here. Again assuming equal
finite local dimension d , we separately consider two cases,
depending on whether or not there is ground-state degeneracy
on the systems. In the latter case, the corresponding local
thermal state will be given by the unique pure ground state
of the local Hamiltonian. Then one can immediately conclude
that no entanglement can be preserved because a pure state
cannot be correlated with any other system. Hence, no EPLT
exists. On the other hand, if both local systems admit ground-
state degeneracy, then EPLTs exist even when TA = TB = 0.
This can be realized by means of an energy measurement,
a standard thermalization of the local systems conditioned
on the measurement results, and a global (U ⊗ U ∗)-twirling
operation within the ground-state energy subspace. We leave
the details to Appendix A. This confirms that EPLTs exist in
all nontrivial scenarios.

B. Improved entanglement certification of qubit-qubit systems

As we discussed, EPLTs exist for all nonzero temperatures
and finite-energy Hamiltonians by using the sufficiency of the
PPT criterion. In fact, since it is also a necessary condition
in two-qubit systems, a more detailed characterization of the
output entanglement can be given in this case:

Proposition 2. For a two-qubit system with γA = γB �=
|0〉〈0|, one has that Eε∗ (ρAB) is entangled if and only if
〈�+

2 |ρAB|�+
2 〉 > 1

2 .
Proof. Setting γX = (1 − q)|0〉〈0|X + q|1〉〈1|X , a di-

rect computation shows η
ε∗
A ⊗ η

ε∗
B = |00〉〈00| and, if p =

4〈�+
2 |ρAB|�+

2 〉−1
3 ,

Eε∗ (ρAB) = (1 − 2q)ηε∗
A ⊗ η

ε∗
B + 2qρiso(p)

= A|11〉〈11| + B|00〉〈00|
+C(|10〉〈10| + |01〉〈01|)
+ D(|11〉〈00| + |00〉〈11|), (14)

where

A = q × 1 + p

2
, B = (1 − 2q) + q × 1 + p

2
,

C = q × 1 − p

2
, D = qp. (15)

We note that A, B,C, D are all non-negative. This means the
partial transpose on Bob’s side has a negative eigenvalue
if and only if C − |D| < 0, which gives p > 1

3 , or, equiv-
alently, 〈�+

2 |T (ρAB)|�+
2 〉 > 1

2 . Since 〈�+
2 |T (ρAB)|�+

2 〉 =

〈�+
2 |ρAB|�+

2 〉, the result follows by using the PPT
criterion. �

C. Bounds on preserved entanglement of EPLT

Since we proved that EPLTs universally exist, a natural
question is whether it is possible to quantify the output
entanglement. For the sake of measuring quantum correlations
at the end of the local thermalization, we consider the fully en-
tangled fraction (FEF) [20,21]. For a given bipartite quantum
state ρAB acting on Cd ⊗ Cd , FEF is defined by

Fmax(ρAB) := max
|	d 〉

〈	d |ρAB|	d〉, (16)

where the optimization is taken over all maximally entangled
states |	d〉 ∈ Cd ⊗ Cd . A well-known fact about FEF is its
capacity to characterize different entanglement and nonlocal
properties [20–28]. Then a direct computation shows the
following bound for the output entanglement for the channel
given in Eq. (5):

Proposition 3. For all input states ρAB, we have

Fmax[Eε (ρAB)] � ε〈�+
d |ρAB|�+

d 〉. (17)

Proof. Recall 〈�+
d |T (ρAB)|�+

d 〉 = 〈�+
d |ρAB|�+

d 〉 [17],
which implies

Fmax[Eε (ρAB)] � (1 − ε)〈�+
d |(ηε

A ⊗ ηε
B

)|�+
d 〉

+ ε〈�+
d |ρAB|�+

d 〉. (18)

Since 〈�+
d |(ηε

A ⊗ ηε
B)|�+

d 〉 � 0, the proof is completed. �
By taking ε = ε∗ = dPmin, a sufficient condition for the

output of Eε∗ to be entangled is then

Pmin >
1

〈�+
d |ρAB|�+

d 〉d2
. (19)

D. Multipartite extension

The existence of EPLT in the multipartite case can be
established by using a multipartite twirling and the corre-
sponding entanglement fraction. In particular, it can be shown
that genuine multipartite entanglement of the Greenberger-
Horne-Zeilinger (GHZ) state [29] can be preserved by
local thermalizations. We leave the detailed analysis to
Appendix B.

IV. EQUIVALENCE BETWEEN
INFORMATION-THEORETIC AND THERMODYNAMIC

FORMULATIONS

So far we have analyzed the information-theoretic formu-
lation [Fig. 1(b)] and we can now formalize the thermody-
namic formulation [Fig. 1(a)]. Schematically, this formulation
depicts two local systems interacting with their individual heat
baths and thermalizing. The heat baths do not interact between
them, but can share some initial classical correlations. The
resulting dynamics can hence be characterized as follows:

Definition 2. A channel C of a bipartite system AB is a local
bath thermalization to (γA, γB) if

(i) C(ρAB) = trA′B′[VAA′ ⊗ VBB′ (ρAB ⊗ γA′B′ )], where
VXX ′ (·) := UXX ′ (·)U †

XX ′ are local unitary dynamics on XX ′
and γA′B′ is a separable thermal state.
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(ii) trA[C(ρAB)] = γB, trB[C(ρAB)] = γA, ∀ρAB.
C is an entanglement preserving local bath thermalization

if there exists ρAB such that C(ρAB) is entangled.
The above notion illustrates the thermodynamic formula-

tion, and the alternative form of the question in Sec. I is then:
Do entanglement preserving local bath thermalizations exist?
The following result allows us to rephrase the results in this
new formulation:

Theorem 2. A bipartite channel is a local bath thermaliza-
tion if and only if it is a local thermalization.

The proof is given in Appendix C. Theorem 2 has the
following consequence: If two local agents perform local
interactions with a thermal bath that thermalize their local
state for every input, even knowing that the bath has no
entanglement across the bipartition, they still cannot conclude
that their output is separable. Classical correlations alone in
the bath can allow for the preservation of entanglement in
the system, even after locally the thermalization is complete:
entanglement preserving local bath thermalizations exist, for
some separable (nonproduct) γA′B′ . We note that Proposition
1 and Theorem 2 imply that no entanglement preserving local
baths’ thermalization exists if we restrict γA′B′ = γA′ ⊗ γB′ in
the setting of Theorem 2.

As an implication, Theorems 1 and 2 imply that classical
correlations in the bath are sufficient to preserve quantum
correlations in the system for some input states, even after full
thermalizations of the subsystems, at every nonzero tempera-
ture.

V. IMPLEMENTATION AND MECHANISM

Given the existence of EPLT, a natural and important
question is the following: What is the mechanism behind
EPLT? To answer this question, we introduce another family
of EPLT and use it to study the underlying physical reason.

A. Alternative EPLT

As the first step, we want to introduce an explicit thermo-
dynamic protocol to achieve EPLTs. To this end, we consider
the following alternative EPLT construction:


(εA,εB ) := [
D(1−εA )

η
εA
A

⊗ D(1−εB )
η

εB
B

] ◦ T , (20)

with Dp
σ given in Eq. (6). The same proof shows that 
(εA,εB )

is a local thermalization to (γA, γB) for all 0 � εX � dPX
min,

where PX
min is the smallest eigenvalue of γX . Moreover,

we have Fmax[
(εA,εB )(ρAB)] � εAεB〈�+
d |ρAB|�+

d 〉. This es-
timate means that the family 
(εA,εB ) includes EPLT when the
local temperatures are not too low.

Equation (20) has a clear thermodynamic interpretation.
First, Alice and Bob perform the twirling (by applying random
unitaries using preshared randomness). Then, they perform a
sudden quench of the local system Hamiltonians HX �→ H εX

X
(where the energies are tuned, but not the eigenstates), with
η

εX
X ∝ e−H

εX
X /kTX . At this point, by thermal contact with their

local environments, they let their local system undergo a
partial thermalization [30],

P t
γ (·) := e− t

τγ (·) + (
1 − e− t

τγ

)
γ , (21)

where τγ ∈ (0,∞) is the thermalization timescale corre-

sponding to γ . Note that P t
γ = Dp

γ with p = 1 − e
−t
τγ , and

hence Dp
γ can be realized by a partial thermalization. Finally,

they quench their Hamiltonians back to HX . At this point,
whatever the input was, the local states are γX , i.e., A and B
both have thermalized. However, quantum correlations can be
preserved once local thermality is reached. This is in contrast
to what happens if they each let their local system thermalize
to an independent bath according to Eq. (21): in this case,
local thermality is only reached when the global state is
γA ⊗ γB [31].

B. Mechanism

Since, in simple thermalization models, local thermality is
reached only once correlations between the two parties are de-
stroyed, the existence of EPLT suggests that the corresponding
protocols rely on a “local speed-up” of the thermalization. We
will gather evidence for this intuition by taking the EPLT of
Eq. (20) as a model (with Dp

γ described by P t
γ ), showing that

the local thermalization process is sped up through an LOSR
channel that is able to preserve some entanglement. This
makes sure that at local equilibrium, not all the (quantum)
correlations are lost.

From Eq. (21), we learn that partial thermalization takes
infinite time to thermalize the subsystem to γX . On the other
hand, the local behavior of Eq. (20) on the subsystem X
is a random unitary followed by an incomplete partial ther-
malization with completion time t = −τη

εX
X

ln εX . Since the
completion time t is always finite [32], we conclude that the
subsystem thermalization is faster in the EPLT scheme when
the time tT to implement random unitaries is finite.

One may, however, suspect that in practice, the exact
twirling requires tT = ∞; let us show that even if that is the
case, the same speed-up argument holds. In fact, with a finite
number N of unitaries, one can realize an approximation T (N )

of T , with exponentially good precision in N [33,34]. Since
the completion time is tT (N ) = NtU , with tU the time neces-
sary to perform a single unitary, we will have tT (N ) to scale
logarithmically with the required precision δ, with a constant
prefactor tU . This implies tT (N ) → ∞ as δ → 0. However,
as long as tU is sufficiently small compared with the typical
thermalization time τγX , δ > 0 is small enough and N is large
enough, we expect a shorter time in the EPLT thermalization
scheme compared with standard thermalization described by
Eq. (21). More precisely, we show that for any ρX �= γX and
δ > 0 small enough, the EPLT scheme realizes a speed-up of
δ-thermalization [35] with probability 1 − O(δ4) whenever

τγX > tU × 8

ln 2
. (22)

We refer to Appendix D for the detailed proof and the com-
plete statement of the theorem. In practice, the thermalization
timescale τγX is often much longer than the timescale tU of
applying a single unitary operator, and hence the condition
of Eq. (22) holds in various physical settings. We finish the
discussion by providing an example. Suppose τηX = τγX =
100tU , which means it is possible to establish speed-up. If
one sets Pmin = 2

d2 and δ = 10−3, then we have N = 92 [from
Eq. (D15)]. This means we have speed-up for all ρX �= γX
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satisfying ‖ρX − γX ‖∞ > d × 0.00126 with success proba-
bility of implementation higher than 1 − 10−13.

VI. CONCLUSIONS

We studied the robustness of quantum correlations under
local thermalizations, which are a subset of local operations
and classical communication (LOCC) that locally act as stan-
dard thermalizations. The main result can be summarized
as showing that entanglement can survive under locally per-
formed thermalizations at every nonzero temperature.

This can be understood in two ways: on the one hand,
it suggests that in the presence of local environments that
degrade and eventually destroy shared quantum resources, in
principle one could partially counter this detrimental effect
by actively exploiting shared randomness. On the other hand,
the thermodynamic formulation that we presented implies that
several entangled particles thermalizing with a global bath do
not necessarily end in a nonentangled state. This result may
not seem surprising if the global bath is entangled, but is less
clear if the bath displays only classical correlations, which is
always going to be the case for high temperatures. In fact,
our results imply that this process is possible at all possible
nonzero temperatures.

We also investigated the mechanism behind the existence
of EPLTs and we suggested that it can be traced back to
a speed-up of the subsystem thermalization. We gave evi-
dence here that protocols locally realizing fast preparations
of thermal states may be exploited in conjunction with shared
randomness to preserve global entanglement during thermal-
ization processes.

From a foundational perspective, our work contributes to
the research line that tries to identify genuinely quantum
effects in a thermodynamic setting, by showing that a crucial
ingredient of the quantum world can survive local thermal-
izations, and explores the relation between local and global
thermalizations. For example, the existence of EPLTs implies
that even if a local agent has witnessed a local thermalization
of every input state, she could still subsequently witness a
stronger than classical heat backflow from the cold to the hot
body due to the residual entanglement [9]. Our results open
up research directions. Within the resource theory of channels
[36–39], they suggest a general study of free operations’ abil-
ity to preserve a given resource [40]. Furthermore, EPLTs can
be understood as an example of a “quantum channel marginal
problem,” i.e., a dynamical version of the well-known quan-
tum state marginal problem. Our work shows the compatibil-
ity between local preparations of given (full-rank) states and
global LOCC channels that are not entanglement destroying.
Given the importance of the state marginal problem [41], we
expect its dynamical version is also worth exploring.
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Cherng Liang, Jan Kołodyński, Mohammad Mehboudi, and
Marco Túlio Quintino for fruitful discussions and use-
ful comments. The authors acknowledge support from the

ICFOstepstone - Ph.D. Programme for Early-Stage Re-
searchers in Photonics funded by the Marie Skłodowska-
Curie Co-funding of regional, national and international pro-
grammes (Grant No. GA665884) of the European Commis-
sion, the European Union’s Marie Skłodowska-Curie individ-
ual Fellowships (Grants No. H2020-MSCA-IF-2017 and No.
GA794842), as well as the ERC AdG CERQUTE, the AXA
Chair in Quantum Information Science, Spanish MINECO
(Grant No. QIBEQI FIS2016-80773-P and Severo Ochoa
Grant No. SEV-2015-0522), Fundació Privada Cellex and
Mir-Puig, and the Generalitat de Catalunya (CERCA Program
and Grant No. SGR1381).

APPENDIX A: ZERO-TEMPERATURE EPLT WITH
GROUND-STATE DEGENERACY

The idea is to perform the (U ⊗ U ∗)-twirling operation
in the zero-energy subspace. To be precise, consider the
following protocol, where we assume twofold ground-state
degeneracy on both local systems to illustrate the idea.

Step 1. On the local system X , consider the projective mea-
surement given by {X

0 , IX − X
0 }, where X

0 is the projector
onto the ground-state energy subspace,

X
0 :=

∑
g=0,1

|0, g〉〈0, g|X , (A1)

where g is a degeneracy index and {|0, g〉}g=0,1 span the
ground-state energy subspace of the local Hamiltonian HX .
The first step of the protocol is to measure {A

0 , IA − A
0 } ⊗

{B
0 , IB − B

0 }. For each local agent, if the outcome reads
X

0 , nothing is done; if the outcome reads IX − X
0 , then the

agent discards the original input and prepares X
0

2 .
Step 2. Use shared randomness to achieve a (U ⊗ U ∗)-

twirling operation on the ground-state energy subspace, de-
noted by T 0. Formally, the channel corresponding to the
above protocol is T 0 ◦ (LA ⊗ LB), where

LX (·) := X
0 (·)X

0 + 	X
0

2

[(
IX − X

0

)
(·)(IX − X

0

)]
(A2)

for X = A, B, where 	ρ (·) ≡ ρ is the channel discarding the
input and preparing ρ.

Note that this protocol gives a local thermalization be-
cause the output states will have, independently of the input,

marginal X
0

2 on the local system X , which is the desired
thermal state in this case. The entanglement preservation can
be seen by choosing the input state as 1√

2
(|0, 0〉A ⊗ |0, 0〉B +

|0, 1〉A ⊗ |0, 1〉B), which is invariant under the whole proto-
col. This proves the existence of an EPLT.

APPENDIX B: MULTIPARTITE EPLT

First, the definition of local thermalization can be general-
ized naturally:

Definition 3. Consider a multipartite system
⊗N

i=1 Hi. For
a given collection of N single-party thermal states {γi}N

i=1,
a channel E on

⊗N
i=1 Hi is called a local thermalization to

{γi}N
i=1 if

(i) It is of the form E = ∫
λ

⊗N
i=1 Eλ

i pλdλ, where each Eλ
i is

a channel on the ith local system, pλ � 0 and
∫

pλdλ = 1;
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(ii) tr\i[E (ρ)] = γi for every ρ and i, where tr\i denotes
trace over all but the ith system.

A natural question is whether there exists genuinely mul-
tipartite EPLT; that is, a multipartite EPLT whose output is
genuinely multipartite entangled for some input. We now
show such channel exists.

To do so, we consider an N-qubit system. Using an appro-
priate sequence of N-local operations and shared randomness
(see Sec. IV B in Ref. [44]), one can define a channel, denoted
by TGHZ, which brings arbitrary N-qubit input states ρ to the
following form:

∑
σ=±

λσ
0

∣∣�σ
0

〉〈
�σ

0

∣∣ +
2(N−1)−1∑

j=1

λ j (|�+
j 〉〈�+

j | + |�−
j 〉〈�−

j |),

(B1)

where

|�±
j 〉 := 1√

2
(| j〉 ⊗ |0〉 ± |2(N−1) − j − 1〉 ⊗ |1〉), (B2)

and binary notation is used ( j = j1 . . . jN−1). We note that
|�+

0 〉 is the GHZ state 1√
2
(|0 . . . 0〉 + |1 . . . 1〉) [29]. One im-

portant feature of TGHZ is the following preservation property:
for all j = 0, . . . , 2(N−1) − 1 and σ = ±,〈

�σ
j

∣∣TGHZ(ρ)
∣∣�σ

j

〉 = 〈
�σ

j

∣∣ρ∣∣�σ
j

〉
. (B3)

In particular, a state of the following form will be invariant
under TGHZ:

x|�+
0 〉〈�+

0 | + (1 − x)
I

2N
, (B4)

and it is genuinely multipartite entangled if and only if x >
1

1+2N−1 [44]. Due to this fact, one can define the following
map for a given set of N single-qubit thermal states {γi}N

i=1
extending Eq. (5):

E (ε,N )(·) := (1 − ε)
N⊗

i=1

ηi + εTGHZ(·), (B5)

where, for each party indexed by i, we define

ηε
i := γi + ε

1 − ε

(
γi − Ii

2

)
. (B6)

Write γi = Pi
0|0〉〈0| + Pi

1|1〉〈1|. Then, by the same reasoning
as for Lemma 1, we require

0 � ε � 2 min
i

Pi
1 (B7)

in order to make sure ηε
i ’s are all quantum states.

To see why E (ε,N ) is a local thermalization, one can
use Eq. (B6) and note that tr\i[TGHZ(ρ)] = Ii

2 for all i.
Furthermore, 〈�+

0 |E (ε,N )(ρ)|�+
0 〉 � ε〈�+

0 |ρ|�+
0 〉. Since high

enough overlap with |�+
0 〉 implies genuinely multipartite

entanglement, we conclude that for high enough local tem-
peratures, by setting ε = 2 mini Pi

1, we achieve a genuinely
multipartite EPLT.

APPENDIX C: PROOF OF THEOREM 2

proof First, we note that every local bath thermalization
is by definition a local thermalization. To prove the inverse

statement, we recall that LOSR channels are of the form∫



(Eλ
A ⊗ Eλ

B)pλdλ, which is in the convex hull of the set of
all product channels. Being embedded in a finite Euclidean
space, Carathéodory theorem implies that for each LOSR
channel E , there exists a finite set of product channels and
a probability distribution {E i

A ⊗ E i
B, pi > 0}D

i=1 such that E =∑D
i=1 pi(E i

A ⊗ E i
B), where D only depends on the local di-

mensions. Then, for a given i and X = A, B, the Stinespring
dilation theorem [45] guarantees the existence of an ancillary
space X ′

i with dimension d2 and a unitary operator UXX ′
i

act-

ing on XX ′
i such that E i

X (·) = trX ′
i
{UXX ′

i
[(·) ⊗ |0〉〈0|X ′

i
]U †

XX ′
i
}.

Since X ′
i � Cd2

for all i, we can simply choose them to be
the same Hilbert space, denoted by X ′ � Cd2

, and write the
corresponding unitary operator as U i

XX ′ . Then we have

E (·) = trA′B′

{
D∑

i=1

pi
(
U i

AA′ ⊗ U i
BB′

)
[(·)

⊗|00〉〈00|A′B′]
(
U i

AA′ ⊗ U i
BB′

)†}
. (C1)

Now we define a space HD := span{|i〉}D
i=1, and we introduce

two additional ancillary spaces A′′ � HD and B′′ � HD.
Then we can write

E (·) = trA′B′A′′B′′

{
(VAA′A′′ ⊗ VBB′B′′ )

[
(·) ⊗ |00〉〈00|A′B′

⊗
D∑

i=1

pi|ii〉〈ii|A′′B′′

]
(VAA′A′′ ⊗ VBB′B′′ )†

}
, (C2)

where

VXX ′X ′′ :=
∑

i

U i
XX ′ ⊗ |i〉〈i|X ′′ , (C3)

which is a unitary operator acting on XX ′X ′′. The separable
state

∑D
i=1 pi|ii〉〈ii|A′′B′′ is full rank, hence it can be identified

with a thermal state on A′′B′′ by an appropriate choice of the
Hamiltonian on these ancillas. �

This result shows that, as it is intuitive, the set of local bath
thermalizations coincides with the set of local thermalizations.

APPENDIX D: SPEED-UP FOR INFINITE TWIRLING TIME

In this section, we will go through the detailed proof
of the speed-up result with infinite twirling time, which is
Eq. (22) (and the statement above it). The strategy is to
consider a finite-time one-shot approximate implementation
of the twirling operation. Then we replace the exact twirling
operation in Eq. (20) by this approximation, and then com-
pute the realization time of δ thermalization: Here we say
a channel 
 δ-thermalizes a state ρ to a thermal state γ if
‖
(ρ) − γ ‖∞ < δ.

As the first step, we recall that the twirling operation is
defined as [16,17]

T (·) :=
∫

U (d )
(U ⊗ U ∗)(·)(U ⊗ U ∗)†dU, (D1)
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where the average is over the Haar measure. We will consider
the implementation of T by means of a finite sequence of
unitaries as introduced in Ref. [33],

T (N )
U :=

N∏
k=1

Tk, (D2)

with

Tk (·) := 1
2I (·) + 1

2 (Uk ⊗ U ∗
k )(·)(Uk ⊗ U ∗

k )†, (D3)

where each Uk represents a random unitary and U =
(U1, . . . ,UN ) is a vector of random variables. Setting
‖E‖∞ := supρ ‖E (ρ)‖∞ for a given channel E , it was proven
in Ref. [33] that

〈∥∥T − T (N )
U

∥∥2
∞

〉
<

1

2N
, (D4)

where 〈(·)〉 := ∫
(·)dU1dU2 . . . dUN is the average over the

Haar measure. This follows from Eq. (22) of Ref. [33] and
the fact that the sup norm is upper bounded by the other p
norms. In order to establish the speed-up result, we will first
give a more detailed version of the result in Ref. [33] by as-
sessing the probability that a given realization of T (N )

U is close
to T :

Lemma 2. For every λ > 0, we have

Prob

(∥∥T − T (N )
U

∥∥2
∞ − 1

2N
> λ

)
<

1

λ22N
. (D5)

Proof. This fact can be seen by applying Chebyshev’s

inequality on the random variable ‖T − T (N )
U ‖2

∞, whose vari-
ance can be shown to be upper bounded by 1

2N via direct

computation. To see this, we let � := ‖T − T (N )
U ‖2

∞ and
computation shows

〈(� − 〈�〉)2〉 = 〈�2〉 − 〈�〉2� 〈�2〉� 〈∥∥T −T (N )
U

∥∥2
2

〉
<

1

2N
,

(D6)

where ‖E‖2 := supρ ‖E (ρ)‖2 for the Hilbert-Schmidt norm
‖ · ‖2, and the last inequality is due to the relation

〈‖(T − T (N )
U )(ρ)‖2

2〉 = 1
2N (‖ρ‖2

2 − ‖T (ρ)‖2
2) < 1

2N given by
Eq. (22) in Ref. [33]. Hence, the only thing to be checked
is the applicability of Chebyshev’s inequality, which re-
quires the given random variable to be integrable. It suffices
to show the continuity of ‖T − T (N )

U ‖∞ in the argument
U = (U1, . . . ,UN ) with respect to the metric dN defined by
dN (U, V) := ∑N

i=1 ‖Ui − Vi‖∞.
Consider a given pair of sequences of unitaries U and V.

Using the notation Ui(·) := (Ui ⊗ U ∗
i )(·)(Ui ⊗ U ∗

i )†, Vi(·) :=
(Vi ⊗ V ∗

i )(·)(Vi ⊗ V ∗
i )†, we get∣∣∥∥T − T (N )

U

∥∥
∞ − ∥∥T − T (N )

V

∥∥
∞

∣∣ � ∥∥T (N )
U − T (N )

V

∥∥
∞

� 1

2N

∑
s

∥∥∥∥∥
js∏

i=1

Usi −
js∏

i=1

Vsi

∥∥∥∥∥
∞

, (D7)

where we repeatedly used the triangle inequality and the sum-
mation

∑
s is over all the possible strings of ordered indices

s = {s1, s2, . . . , s js} ⊆ {1, 2, . . . , N} with js � N . Since∥∥∥∥∥
js∏

i=1

Usi −
js∏

i=1

Vsi

∥∥∥∥∥
∞

=
∥∥∥∥∥Us js

◦
js−1∏
i=1

Usi − Vs js
◦

js−1∏
i=1

Vsi

∥∥∥∥∥
∞

�
∥∥∥∥∥Us js

◦
(

js−1∏
i=1

Usi −
js−1∏
i=1

Vsi

)∥∥∥∥∥
∞

+
∥∥∥∥∥(
Us js

− Vs js

) ◦
js−1∏
i=1

Vsi

∥∥∥∥∥
∞

=
∥∥∥∥∥

js−1∏
i=1

Usi−
js−1∏
i=1

Vsi

∥∥∥∥∥
∞
+∥∥Us js

− Vs js

∥∥
∞,

(D8)

we conclude that∥∥∥∥∥
js∏

i=1

Usi −
js∏

i=1

Vsi

∥∥∥∥∥
∞

�
js∑

i=1

∥∥Usi − Vsi

∥∥
∞. (D9)

The continuity in the argument U in the metric dN follows
from the fact that

‖Ui − Vi‖∞ � ‖(Ui ⊗ U ∗
i − Vi ⊗ V ∗

i )ρ(Ui ⊗ U ∗
i )†‖∞

+‖ − (Vi ⊗ V ∗
i )ρ(Vi ⊗ V ∗

i − Ui ⊗ U ∗
i )†‖∞

� 2‖Ui ⊗ U ∗
i − Vi ⊗ V ∗

i ‖∞ � 2(‖Ui ⊗ I‖∞‖I
⊗ (U ∗

i −V ∗
i )‖∞ + ‖(Ui −Vi )⊗I‖∞‖I ⊗ V ∗

i ‖∞)

= 4‖Ui − Vi‖∞, (D10)

where in the first step we added and subtracted (Vi ⊗
V ∗

i )ρ(Ui ⊗ U ∗
i )† and used the triangle inequality; in the sec-

ond step, we used the fact that for any two linear operators
A and B, ‖AB‖∞ � ‖A‖∞‖B‖∞ (submultiplicativity); in the
third step, we added and subtracted Ui ⊗ V ∗

i and again used
the triangle inequality and submultiplicativity; and in the last
step, we used ‖A ⊗ I‖∞ = ‖A‖∞.

The above lemma implies that for an arbitrarily small λ,
with probability 1 − O(λ−2e−N ), the realization T (N )

U is λ +
O(e−N ) close to T .

Now we formally state and prove the speed-up result,
which is Eq. (22) (and the statement above it). We recall
the following notations: In the subsystem X , we consider the
following implementation of EPLT:



(N,t )
X = P tX

η
dPX

min
X

◦ T (N )
U,X , (D11)

where T (N )
U,X := ∏N

k=1 (tr\X ◦ Tk ) and P t
γ (·) := e− t

τγ (·) +
(1 − e− t

τγ )γ is given by Eq. (21). Also, η
εX
X := γX +

εX
1−εX

(γX − IX
d ).

Theorem 3. Let γX be the local thermal state. If

τγX > tU × 8

ln 2
, (D12)

then for every ρX �= γX and p∗ ∈ (0, 1), there exists δ′ > 0
such that for every δ ∈ (0, δ′):

(i) there exists an integer Nδ := �8 log2
d2PX

min

√
2

δ
� and a

time t1 such that 

(Nδ ,t1 )
X δ-thermalizes ρX to γX with success
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probability

1 −
[

δ

d2PX
min

√
2

]4

, (D13)

which can be chosen to be larger than p∗.
(ii) P t

γX
δ-thermalizes ρX to γX only if t � t2.

(iii) t1 < t2.

Proof. We use the shortcut notation ηX for the state η
dPX

min
X .

To get an explicit estimate on time, we take λ = 2− N
4 and use

Lemma 2. By noting that tX = −τηX ln dPX
min, we start with the

computation of the local state,∥∥

(N,t )
X (ρX ) − γX

∥∥
∞ = ∥∥P tX

ηX
◦ T (N )

U,X (ρX ) − γX

∥∥
∞

= ∥∥dPX
min × T (N )

U,X (ρX )

+ (
1 − dPX

min

) × ηX − γX

∥∥
∞

= dPX
min

∥∥∥∥T (N )
U,X (ρX ) − IX

d

∥∥∥∥
∞

� d2PX
min

∥∥T (N )
U − T

∥∥
∞

< d2PX
min

√
2 × 2− N

8 , (D14)

which holds with probability 1 − 2− N
2 . In the first inequal-

ity, we used the relation ‖trY (·)‖∞ � ‖trY (·)‖1 � ‖ · ‖1 �
d‖ · ‖∞ and ‖Q(ρ)‖∞ � ‖Q‖∞ for all superoperators Q and
states ρ; in the second inequality, we used

√
λ + 2−N <√

2λ = √
2 × 2− N

8 . This estimate means that for any given
δ ∈ (0, 1), there exists a sufficiently large N = Nδ to let the
above upper bound be smaller than δ; that is, this choice of N
ensures δ thermalization of every local input ρX , with success
probability 1 − 2− N

2 . It suffices to take

Nδ :=
⌈

8 log2
d2PX

min

√
2

δ

⌉
, (D15)

where �x� is the smallest integer larger than x.
Now consider a given δ ∈ (0, 1) and a given local in-

put state ρX . Then, tX = −τηX ln dPX
min and Nδ gives us the

following total implementation time of the channel 

(Nδ ,t1 )
X :

t1 = tX + NδtU = τηX ln
1

dPX
min

+ NδtU . (D16)

Now, if Alice and Bob simply leave their local systems in
contact with local independent baths, the partial thermaliza-
tion model δ-thermalizes the local state ρX in a time

t2 = τγX ln
‖ρX − γX ‖∞

δ
. (D17)

Combining Eqs. (D15)–(D17), we learn that t1 <

t2, with probability 1 − 2− Nδ
2 , if 0 < τγX ln ‖ρX −γX ‖∞

δ
+

τηX ln (dPX
min) − NδtU . This is true if

‖ρX − γX ‖∞ > f × δ
(1− tU

τγX

8
ln 2 )

, (D18)

where f := (dPX
min)

− τηX
τγX e

tU
τγX (d2PX

min

√
2)

tU
τγX

8
ln 2 is a constant in

δ. Note that f is finite for all possible values of
τηX
τγX

. This
means that when the exponent of δ in Eq. (D18) is positive,
it is always possible to find a small enough δ to achieve
Eq. (D18). Specifically, suppose

τγX > tU × 8

ln 2
≈ tU × 11.5416. (D19)

Then, for any given ρX �= γX , a successful implementation of
twirling will demonstrate t1 < t2 (i.e., a speed-up effect) for
every δ > 0 small enough, where the success probability is
given by

1 −
[

δ

d2PX
min

√
2

]4

. (D20)

This completes the proof. �
Since in most cases tU � τγX , δ thermalization with small

enough δ is faster in the EPLT than in the standard thermal-
ization model, even taking into account the time to implement
the random unitaries.
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