139 research outputs found

    Generalized Boundaries from Multiple Image Interpretations

    Full text link
    Boundary detection is essential for a variety of computer vision tasks such as segmentation and recognition. In this paper we propose a unified formulation and a novel algorithm that are applicable to the detection of different types of boundaries, such as intensity edges, occlusion boundaries or object category specific boundaries. Our formulation leads to a simple method with state-of-the-art performance and significantly lower computational cost than existing methods. We evaluate our algorithm on different types of boundaries, from low-level boundaries extracted in natural images, to occlusion boundaries obtained using motion cues and RGB-D cameras, to boundaries from soft-segmentation. We also propose a novel method for figure/ground soft-segmentation that can be used in conjunction with our boundary detection method and improve its accuracy at almost no extra computational cost

    Labeling the Features Not the Samples: Efficient Video Classification with Minimal Supervision

    Full text link
    Feature selection is essential for effective visual recognition. We propose an efficient joint classifier learning and feature selection method that discovers sparse, compact representations of input features from a vast sea of candidates, with an almost unsupervised formulation. Our method requires only the following knowledge, which we call the \emph{feature sign}---whether or not a particular feature has on average stronger values over positive samples than over negatives. We show how this can be estimated using as few as a single labeled training sample per class. Then, using these feature signs, we extend an initial supervised learning problem into an (almost) unsupervised clustering formulation that can incorporate new data without requiring ground truth labels. Our method works both as a feature selection mechanism and as a fully competitive classifier. It has important properties, low computational cost and excellent accuracy, especially in difficult cases of very limited training data. We experiment on large-scale recognition in video and show superior speed and performance to established feature selection approaches such as AdaBoost, Lasso, greedy forward-backward selection, and powerful classifiers such as SVM.Comment: arXiv admin note: text overlap with arXiv:1411.771
    • …
    corecore