161 research outputs found

    Non-Perturbative Quantum Geometry III

    Full text link
    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stokes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stokes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.Comment: 34 pages; v2: Minor correction and refs added; v3: Table 2 modified, clarifying comment and footnote adde

    Non-Perturbative Quantum Geometry

    Get PDF
    The beta-ensemble with cubic potential can be used to study a quantum particle in a double-well potential with symmetry breaking term. The quantum mechanical perturbative energy arises from the ensemble free energy in a novel large N limit. A relation between the generating functions of the exact non-perturbative energy, similar in spirit to the one of Dunne-Unsal, is found. The exact quantization condition of Zinn-Justin and Jentschura is equivalent to the Nekrasov-Shatashvili quantization condition on the level of the ensemble. Refined topological string theory in the Nekrasov-Shatashvili limit arises as a large N limit of quantum mechanics.Comment: 20 page

    Modelling conditional probabilities with Riemann-Theta Boltzmann Machines

    Full text link
    The probability density function for the visible sector of a Riemann-Theta Boltzmann machine can be taken conditional on a subset of the visible units. We derive that the corresponding conditional density function is given by a reparameterization of the Riemann-Theta Boltzmann machine modelling the original probability density function. Therefore the conditional densities can be directly inferred from the Riemann-Theta Boltzmann machine.Comment: 7 pages, 3 figures, in proceedings of the 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2019

    Exact Chern-Simons / Topological String duality

    Full text link
    We invoke universal Chern-Simons theory to analytically calculate the exact free energy of the refined topological string on the resolved conifold. In the unrefined limit we reproduce non-perturbative corrections for the resolved conifold found elsewhere in the literature, thereby providing strong evidence that the Chern-Simons / topological string duality is exact, and in particular holds at arbitrary N as well. In the refined case, the non-perturbative corrections we find are novel and appear to be non-trivial. We show that non-perturbatively special treatment is needed for rational valued deformation parameter. Above results are also extend to refined Chern-Simons with orthogonal groups.Comment: 32 page

    Riemann-Theta Boltzmann Machine

    Full text link
    A general Boltzmann machine with continuous visible and discrete integer valued hidden states is introduced. Under mild assumptions about the connection matrices, the probability density function of the visible units can be solved for analytically, yielding a novel parametric density function involving a ratio of Riemann-Theta functions. The conditional expectation of a hidden state for given visible states can also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta function. The conditional expectation can be used as activation function in a feedforward neural network, thereby increasing the modelling capacity of the network. Both the Boltzmann machine and the derived feedforward neural network can be successfully trained via standard gradient- and non-gradient-based optimization techniques.Comment: 29 pages, 11 figures, final version published in Neurocomputin

    A gauge theory analog of some "stringy" D-instantons

    Full text link
    We argue that one can see a specific class of "stringy" D-instantons in the underlying 4D gauge theory as the UV completion of an ordinary gauge instanton of a completely broken gauge group corresponding to the "empty" cycle the D-instanton is located on. In this sense, the D-instanton induced non-perturbative superpotential can be qualitatively inferred directly from pure field-theory considerations.Comment: 4 pages, 3 figures; typos corrected; discussion of dynamical scale extende
    corecore