28 research outputs found

    Privacy-preserving power usage control in smart grids

    Get PDF
    The smart grid (SG) has been emerging as the next-generation intelligent power grid system because of its ability to efficiently monitor, predicate, and control energy generation, transmission, and consumption by analyzing users\u27 real-time electricity information. Consider a situation in which the utility company would like to smartly protect against a power outage. To do so, the company can determine a threshold for a neighborhood. Whenever the total power usage from the neighborhood exceeds the threshold, some or all of the households need to reduce their energy consumption to avoid the possibility of a power outage. This problem is referred to as threshold-based power usage control (TPUC) in the literature. In order to solve the TPUC problem, the utility company is required to periodically collect the power usage data of households. However, it has been well documented that these power usage data can reveal consumers\u27 daily activities and violate personal privacy. To avoid the privacy concerns, privacy-preserving power usage control (P-PUC) protocols are proposed under two strategies: adjustment based on maximum power usage and adjustment based on individual power usage. These protocols allow a utility company to manage power consumption effectively and at the same time, preserve the privacy of all involved parties. Furthermore, the practical value of the proposed protocols is empirically shown through various experiments --Abstract, page iii

    BRCA1 Interacts with Smad3 and Regulates Smad3-Mediated TGF-ÎČ Signaling during Oxidative Stress Responses

    Get PDF
    BRCA1 is a key regulatory protein participating in cell cycle checkpoint and DNA damage repair networks. BRCA1 plays important roles in protecting numerous cellular processes in response to cell damaging signals. Transforming growth factor-beta (TGF-beta) is a potent regulator of growth, apoptosis and invasiveness of tumor cells. TFG-beta activates Smad signaling via its two cell surface receptors, the TbetaRII and ALK5/TbetaRI, leading to Smad-mediated transcriptional regulation.Here, we report an important role of BRCA1 in modulating TGF-beta signaling during oxidative stress responses. Wild-type (WT) BRCA1, but not mutated BRCA1 failed to activate TGF-beta mediated transactivation of the TGF-beta responsive reporter, p3TP-Lux. Further, WT-BRCA1, but not mutated BRCA1 increased the expression of Smad3 protein in a dose-dependent manner, while silencing of WT-BRCA1 by siRNA decreased Smad3 and Smad4 interaction induced by TGF-beta in MCF-7 breast cancer cells. BRCA1 interacted with Smad3 upon TGF-beta1 stimulation in MCF-7 cells and this interaction was mediated via the domain of 298-436aa of BRCA1 and Smad3 domain of 207-426aa. In addition, H(2)O(2) increased the colocalization and the interaction of Smad3 with WT-BRCA1. Interestingly, TGF-beta1 induced Smad3 and Smad4 interaction was increased in the presence of H(2)O(2) in cells expressing WT-BRCA1, while the TGF-beta1 induced interaction between Smad3 and Smad4 was decreased upon H(2)O(2) treatment in a dose-dependent manner in HCC1937 breast cancer cells, deficient for endogenous BRCA1. This interaction between Smad3 and Smad4 was increased in reconstituted HCC1937 cells expressing WT-BRCA1 (HCC1937/BRCA1). Further, loss of BRCA1 resulted in H(2)O(2) induced nuclear export of phosphor-Smad3 protein to the cytoplasm, resulting decreased of Smad3 and Smad4 interaction induced by TGF-beta and in significant decrease in Smad3 and Smad4 transcriptional activities.These results strongly suggest that loss or reduction of BRCA1 alters TGF-beta growth inhibiting activity via Smad3 during oxidative stress responses

    Occurrence and removal of free and conjugated estrogens in wastewater and sludge in five sewage treatment plants

    No full text
    The occurrence and fate of free and conjugated estrogens were investigated in wastewater and sludge from five sewage treatment plants (STPs) in Guangdong Province, China. Estrone (E1) and 17ÎČ-estradiol (E2) were found in all influent samples at concentrations of 69.3–280 ng L−1 and 1.3–30 ng L−1, respectively. The concentrations of conjugated estrogens were from ND (not detected) to 7.6 ng L−1. High concentrations (27.6–235 ng g−1) of E1 were found in sludge of some STPs indicating that sorption was an important estrogen removal mechanism. According to the mass flux analyses for estrogens in STP-A, E2 was mainly removed in the anaerobic process and E1 removal was the combined efforts of biodegradation and sorption. Abnormally high concentrations of EE2 (42.6–246 ng L−1), detected with gas chromatography-mass spectrometry, were found in all influent samples of the STPs, therefore interlaboratory analysis with liquid chromatography-tandem mass spectrometry was conducted for confirmation, which detected no EE2 at all. In consideration of the rather lower estimated EE2 concentration than the measured value, it was speculated that the presence of interfering substances like tetracosanic acid in the matrix could lead to overestimation of EE2 concentration. Overall, the effluents still pose potential estrogenic effect to the downstream aquatic organisms

    Influence of polysorbate 80 on the flotation of zinc oxide ores with amines

    No full text
    In this study, the influence of polysorbate 80 on zinc oxide flotation was investigated with an amine collector. The results indicated that the pretreatment of amines with polysorbate 80 enhanced the Zn grade and recovery obtained using zinc oxide flotation. Desliming prior to flotation is not suggested based on the results of this study. The appropriate temperature for flotation was as low as 8 °C, and this flotation method also could be applied to different types of zinc oxide ores. Under optimum flotation conditions, a concentrate with a Zn grade of 48.34% and a Zn recovery of 95.97% was obtained

    Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO2

    No full text
    Abstract A novel triphenylphosphine-based porous polymer (TPDB) with a high Brunauer–Emmett–Teller (BET) surface area was synthesized through Friedel–Crafts alkylation of triphenylphosphine and α-dibromo-p-xylene. Then, the functional hydroxyl groups were successfully grafted onto the polymer framework by post modification of TPDB with 3-bromo-1-propanol (BP) and triethanolamine (TEA). The resulting sample TPDB-BP-TEA was characterized by various techniques such as FT-IR, TG, SEM, EDS mapping, ICP-MS, and N2 adsorption–desorption. This new polymer was tested as the catalyst in the solvent-free cycloaddition reaction of CO2 with epoxides, which exhibited excellent performance, with high yield, selectivity, and stable recyclability for several catalytic cycles. The comparison experiment results demonstrate that the bromide ions and hydroxyl groups, as well as high surface area, are key factors in improving the catalytic activity of this new catalyst
    corecore