503 research outputs found

    Validating modelling assumptions of alpha particles in electrostatic turbulence

    Full text link
    To rigorously model fast ions in fusion plasmas, a non-Maxwellian equilibrium distribution must be used. In the work, the response of high-energy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well-confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a high-temperature Maxwellian gives incorrect estimates for the radial alpha particle flux, and a method of correcting it is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowing-down distribution.Comment: 23 pages, 13 figures, submitted to the Journal of Plasma Physic

    Optimisation of confinement in a fusion reactor using a nonlinear turbulence model

    Full text link
    The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A two-fold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.Comment: 32 pages, 8 figures, accepted to JP

    The Zero Turbulence Manifold in Fusion Plasmas

    Full text link
    The transport of heat that results from turbulence is a major factor limiting the temperature gradient, and thus the performance, of fusion devices. We use nonlinear simulations to show that a toroidal equilibrium scale sheared flow can completely suppress the turbulence across a wide range of flow gradient and temperature gradient values. We demonstrate the existence of a bifurcation across this range whereby the plasma may transition from a low flow gradient and temperature gradient state to a higher flow gradient and temperature gra- dient state. We show further that the maximum temperature gradient that can be reached by such a transition is limited by the existence, at high flow gradient, of subcritical turbulence driven by the parallel velocity gradient (PVG). We use linear simulations and analytic calculations to examine the properties of the transiently growing modes which give rise to this subcritical turbulence, and conclude that there may be a critical value of the ratio of the PVG to the suppressing perpendicular gradient of the velocity (in a tokamak this ratio is equal to q/{\epsilon} where q is the magnetic safety factor and {\epsilon} the inverse aspect ratio) below which the PVG is unable to drive subcritical turbulence. In light of this, we use nonlinear simulations to calculate, as a function of three parameters (the perpendicular flow shear, q/{\epsilon} and the temperature gradient), the surface within that parameter space which divides the regions where turbulence can and cannot be sustained: the zero- turbulence manifold. We are unable to conclude that there is in fact a critical value of q/{\epsilon} below which PVG-driven turbulence is eliminated. Nevertheless, we demonstrate that at low values of q/{\epsilon}, the maximum critical temperature gradient that can be reached without generating turbulence is dramatically increased.Comment: Doctoral Thesis, University of Oxford, 151 Page

    First principles of modelling the stabilization of microturbulence by fast ions

    Get PDF
    The observation that fast ions stabilize ion-temperature-gradient-driven microturbulence has profound implications for future fusion reactors. It is also important in optimizing the performance of present-day devices. In this work, we examine in detail the phenomenology of fast ion stabilization and present a reduced model which describes this effect. This model is derived from the high-energy limit of the gyrokinetic equation and extends the existing "dilution" model to account for nontrivial fast ion kinetics. Our model provides a physically-transparent explanation for the observed stabilization and makes several key qualitative predictions. Firstly, that different classes of fast ions, depending on their radial density or temperature variation, have different stabilizing properties. Secondly, that zonal flows are an important ingredient in this effect precisely because the fast ion zonal response is negligible. Finally, that in the limit of highly-energetic fast ions, their response approaches that of the "dilution" model; in particular, alpha particles are expected to have little, if any, stabilizing effect on plasma turbulence. We support these conclusions through detailed linear and nonlinear gyrokinetic simulations.Comment: 29 pages, 10 figures, 3 table

    Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST

    Full text link
    Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{\epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).Comment: 6 pages, 3 figures, submitted to PR

    Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    Full text link
    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the "anti-phase-mixing" effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the "critical balance" between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).Comment: 45 pages (single-column), 3 figures, replaced with version published in JP

    Turbulent transport in tokamak plasmas with rotational shear

    Full text link
    Nonlinear gyrokinetic simulations have been conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal E x B shear value for plasma confinement. Local maxima in the momentum fluxes are also observed, allowing for the possibility of bifurcations in the E x B shear. The sensitive dependence of heat flux on temperature gradient is relaxed for large flow shear values, with the critical temperature gradient increasing at lower flow shear values. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.Comment: 4 pages, 5 figures, submitted to PR

    Transition to subcritical turbulence in a tokamak plasma

    Full text link
    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.Comment: 16 pages, 5 figures, accepted to Journal of Plasma Physic

    Zero-Turbulence Manifold in a Toroidal Plasma

    Full text link
    Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/\epsilon, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E, q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.Comment: 5 Pages, 4 Figures, Submitted to PR

    Ion-scale turbulence in MAST: anomalous transport, subcritical transitions, and comparison to BES measurements

    Full text link
    We investigate the effect of varying the ion temperature gradient (ITG) and toroidal equilibrium scale sheared flow on ion-scale turbulence in the outer core of MAST by means of local gyrokinetic simulations. We show that nonlinear simulations reproduce the experimental ion heat flux and that the experimentally measured values of the ITG and the flow shear lie close to the turbulence threshold. We demonstrate that the system is subcritical in the presence of flow shear, i.e., the system is formally stable to small perturbations, but transitions to a turbulent state given a large enough initial perturbation. We propose that the transition to subcritical turbulence occurs via an intermediate state dominated by low number of coherent long-lived structures, close to threshold, which increase in number as the system is taken away from the threshold into the more strongly turbulent regime, until they fill the domain and a more conventional turbulence emerges. We show that the properties of turbulence are effectively functions of the distance to threshold, as quantified by the ion heat flux. We make quantitative comparisons of correlation lengths, times, and amplitudes between our simulations and experimental measurements using the MAST BES diagnostic. We find reasonable agreement of the correlation properties, most notably of the correlation time, for which significant discrepancies were found in previous numerical studies of MAST turbulence.Comment: 67 pages, 37 figures. Submitted to PPC
    • …
    corecore