47 research outputs found

    Re-architecting the failure analysis supply chain

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Manufacturing Program at MIT, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references.With customer satisfaction and lifecycle product quality becoming a competitive advantage, technology companies are motivated to look beyond their historical focus on forward supply chain management. Operational excellence in customer returns management, failure analysis, and closed loop corrective action is taking on an increasingly important role as companies strive to improve their business processes, policies and supply chains to achieve a world-class leadership position in their industry. In the competitive high-tech industry, companies face a number of challenges in managing customer returns and re-architecting their failure analysis supply chains to support a closed loop corrective action approach to product quality. Supporting globally distributed customers through a diverse network of outsourced manufacturing, repair, failure analysis and logistics partners increases the complexity of the supply chain architecting problem. This thesis proposes a holistic enterprise architecting approach, including governance, process, network design, organization, enabling technology, and performance management elements that should be considered when re-architecting the failure analysis supply chain. During this process, strategic decisions need to be made regarding supply chain designs that are aligned with the vision of the enterprise.(cont.) Operations managers and leaders can use data-driven, collaborative approaches supported by decision support tools like the "Decision Model for Failure Analysis Supply Chain" to align decisions with customer value and stakeholders' needs. Implementing changes based on these strategic decisions requires understanding organizational dynamics within the enterprise. An understanding of the "frame of reference" that guides decision makers can help address implementation challenges. In addition, communication, training and alignment of incentives across functional groups to encourage collaboration can allow enterprises to make strategic decisions that are successfully implemented. The strategies proposed in this thesis are intended to aid managers in making monumental changes to their "reverse" operations and exceeding customer expectations.by Tejaswini Hebalkar.S.M.M.B.A

    Asynchronous cooperative multiprocessing within MULTICS.

    Get PDF
    Massachusetts Institute of Technology. Dept. of Electrical Engineering. Thesis. 1968. E.E.Bibliography: leaf 91.E.E

    Silver Nanoparticles: Properties, Synthesis, Characterization, Applications and Future Trends

    Get PDF
    Nanotechnology is an expanding area of research where we use to deal with the materials in Nano-dimension. The conventional procedures for synthesizing metal nanoparticles need to sophisticated and costly instruments or high-priced chemicals. Moreover, the techniques may not be environmentally safe. Therefore “green” technologies for synthesis of nanoparticles are always preferred which is simple, convenient, eco-friendly and cost effective. Green synthesis of nanoparticle is a novel way to synthesis nanoparticles by using biological sources. It is gaining attention due to its cost effective, ecofriendly and large scale production possibilities. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. It has vital importance in nanoscience and naomedicines to treat and prevent vital disease in human beings especially in cancer treatment. In current work we discussed different methods for synthesis of AgNPs like biological, chemical and physical along with its characterization. We have also discussed vital importance of AgNPs to cure life threatnign diseases like cancer along with antidiabetic, antifungal, antiviral and antimicrobial alog with its molecular mode of action etc. Finally we conclude by discussing future prospects and possible applications of silver nano particles

    Rheumatoid Arthritis: Severity Classification, Factors Responsible, Pathophysiology, Current and Herbal Treatment

    Get PDF
    Rheumatoid Arthritis is the autoimmune disorder occurs due to the change in life style, improper diet plans, smoking, excessive alcohol consumption etc. It generally affects the joints and creates swelling and severe pain in joints which leads to further destruction of bone and cartilages. Due to autoimmune responses the factors like Tumor Necrosis Factor-α, Interleukins-1 are introduced to synovial and synovial membrane which creates the swelling and pain. These factors further produce reactive oxygen species and inducing osteoclasts which destruct the bone and cartilages. Along with the drugs the several natural herbal treatments are also available for the treatment of rheumatoid arthritis. This includes varies medicinal plants form which acacia species is more potent and efficient. Acacia Senegal is the plant which blocks the receptors and decreases the level of tumor necrosis factor-α. Present work on rheumatoid arthritis mainly covers classification, factors responsible, pathophysiology, severity, current treatment and its drawbacks, herbal treatment and its benefits in treatment of Rheumatoid Arthritis

    Role of Drug Repurposing in Cancer Treatment and Liposomal Approach of Drug Targeting

    Get PDF
    Cancer is the leading cause of death, and incidences are increasing significantly and patients suffering from it desperately need a complete cure from it. The science of using an already-invented drug that has been approved by the FDA for a new application is known as “drug repurposing.” Currently, scientists are drawn to drug repositioning science in order to investigate existing drugs for newer therapeutic uses and cancer treatment. Because of their unique ability to target cancer cells, recently repurposed drugs and the liposomal approach are effective in the treatment of cancer. Liposomes are nanovesicles that are drastically flexible, rapidly penetrate deeper layers of cells, and enhance intracellular uptake. More importantly, liposomes are biocompatible, biodegradable; entrap both hydrophobic and hydrophilic drugs. This chapter summarizes various approaches to drug repurposing, as well as drug repurposing methods, advantages and limitations of drug repurposing, and a liposomal approach to using repurposed drugs in cancer targeting. This chapter also summarizes liposomal structure, drug loading, and the mechanism of liposomes in targeted cancer treatment. The lipid-based liposomal approach is emerging as a powerful technique for improving drug solubility, bioavailability, reducing side effects, and improving the therapeutic efficacy of repurposed drugs for cancer treatment

    Game interpretation of the deadlock avoidance problem

    No full text

    Palladium nanowire from precursor nanowire: crystal-to-crystal transformation via in situ reduction by polymer matrix

    No full text
    Precursor nanowires of potassium palladium(II) chloride crystallized inside a poly(vinyl alcohol) film are reduced to palladium nanowires by the polymer itself under mild thermal annealing. The chemical reaction occurring in situ inside the polymer film, including byproduct formation, is investigated through electronic absorption and X-ray photoelectron spectroscopy together with atomic force and electron microscopy. The overall process can be described as a novel case of crystal-to-crystal transformation at the nanoscopic level. Optical limiting characteristics of the nanowire-embedded polymer film are explored. The fabrication procedure developed, involving chemistry inside a polymer matrix mediated by the polymer, opens up a convenient route to the fabrication of free-standing metal nanowire-embedded thin films

    Formation and growth of molecular nanocrystals probed by their optical properties

    No full text
    A red fluorescent zwitterionic molecule based on the diaminodicyanoquinodimethane framework is synthesized and structurally characterized. Formation of nanocrystals of this molecule through the reprecipitation protocol is followed by examining the optical absorption and emission. Computational modeling based on molecular and crystal structures provides insight into the assembly of molecules during colloid formation. Molecular nano/microcrystals of increasing size are fabricated through a digestion procedure, and the size-dependent optical properties are investigated by spectroscopy and microscopy. Utility of polymer wrapping to arrest the growth of these crystals is described

    Structural and optical investigations of SiO<SUB>2</SUB>-CdS core-shell particles

    No full text
    Cadmium sulfide nanoparticles (~5 nm), chemically capped using thioglycerol molecules, have been anchored onto silica particles (~80 nm) functionalized with 3-aminopropyltrimethoxysilane. Transmission electron microscopy clearly showed that at a low concentration of cadmium sulfide, nanoparticles were discretely and more or less uniformly attached onto the silica particles. At a high concentration of cadmium sulfide nanoparticles, an approximately 6-nm-thick compact shell of cadmium sulfide was formed on the silica particles. In both cases the nanocrystalline nature of cadmium sulfide particles was preserved, as is evident from X-ray diffraction and optical absorption spectra
    corecore