
ASYNCHRONOUS COOPERATIVE MULTIPROCESSING WITHIN MULTICS

by

PRAKASH GURUNATH HEBALKAR

B.TECH(HON.S), Indian Institute of Technology, Bombay

(1966)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREES OF

MASTER OF SCIENCE AND ELECTRICAL ENGINEER

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1968

Signature of Author
Department of Electrical Engineering, May 17, 1968

Certified by

AcceDted by

Thesis Supervisor

Chairman, Departmental Committee on GrCduate Students

Archives

ASYNCHRONOUS COOPERATIVE MULTIPROCESSING WITHIN MULTICS

by

PRAKASH GURUNATH HEBALKAR

Submitted to the Department of Electrical Engineering
on May 17, 1968 in partial fulfillment of the require-
ments for the Degrees of Master of Science and Elec-
trical Engineer

ABSTRACT

Existing computing systems do not permit cooperative multipro-
cessing, i.e. computations consisting of several concurrently oper-
ating processes which use shared data-bases actively. When all data
references are fully synchronised to avoid conflict, such computation
is possible; however such synchronisation is nearly impossible in ex-
isting environments.With asynchronous operation of the processes,
output-functionality i.e. the property that the results of a computa-
tion are reproducible, becomes the chief consideration and also the
chief problem with current systems.

Several models for output-functional cooperative multiprocessing
have been proposed. One of these has been chosen and a sub-system
for MULTICS is proposed that ensures output-functionality of multi-
process computations. The operation of processes on segments is con-
trolled, using the access checking mechanism, so that conflicts are
avoided. Procedures for use in this control of access and for the
creation and deletion of processes in a convenient manner are des-
cribed. The procedures are defined in sufficient detail to permit
relatively easy coding.

The sub-system proposed ensures that all computations performed
within that environment will have reproducible results under minimal
restrictions. Multiprocessing in the sub-system requires fairly sub-
stantial computation on the part of each process for efficiency, as
the access control is implemented in software.

THESIS SUPERVISOR: Jack B. Dennis

TITLE: Associate Professor of Electrical Engineering

3

ACKNOWLEDGEMENT

The author is indebted to Professor J. B. Dennis for

suggesting the topic treated herein as well as for several fruit-

ful discussions and valuable suggestions. Several MULTICS system

programmer's deserve credit for making the mystery that is MULTICS

understandable. The author would also like to thank Carla Marceau,

Suhas Patil and Donald Slutz for reading through the manuscript at

various stages and giving their comments. Barbara Mutnick did a

fine job of typing the thesis.

Work reported herein was supported, in part, by Project

MAC, an M.I.T. Research Program sponsored by the Advanced Projects

Agency, Department of Defense, under Office of Naval Research Con-

tract No. Nonr-4102(01). Reproduction in whole or in part is per-

mitted for any purpose of the United States Government.

-" I

TABLE OF CONTENTS

CHAPTER 1 5

CHAPTER 2 8

CHAPTER 3 40

CHAPTER 4 65

CHAPTER 5 86

References 91

Chapter 1

The concept of multiprocessing marks a major advance in contemporary

ideas on computing. By multiprocessing, as the term is used here, is meant

the "simultaneous" execution of several processes in parallel. It includes

simple time sharing, although the execution of several processes is not strict-

ly simultaneous there, because several processes are in different stages of com-

pletion at any instant with the specific processes involved also changing dynam-

ically--a situation analogous to that where several processes are actually run-

ning simultaneously. The term is thus used in a broad sense and does not neces-

sarily imply the actual use of several processors.

Even the earlier time-sharing systems had several advantages to offer

and these in fact changed the entire attitude of people towards computer usage.

Some principal advantages of time-sharing are the reduction in investment and

operating cost to the small user while retaining the availability of a powerful

facility at all times, the reduction in response time from hours to minutes

and the associated advantage of (essentially) interacting with the computer.

This interactive use increased the possibilities of computer usage considerably,

both in terms of uses technically feasible and in terms of user acceptability.

Later systems provided facilities for on-line storage of files of programs for

use as and when required, and for permitting users to obtain files of other

users for their use.

The newest systems such as MULTICql]offer several new advantages. Thus,

the use of segmentation in NULTICS provides the user with an extremely large

address space. This, combined with the possibility of making inter-segment ref-

erences using symbolic names, as well as several other lesser facilities permit

much greater programming generality. Further, the multiprocessor configuration

provides for increased reliability and a greater measure of continuity of ser-

6

vice. Several protection mechanisms are provided. The modular design permits

easy and almost indefinite expansion of facilities.

There is, however, an important deficiency in all these systems. As

interactive use of computers became popular, a question occured to several

people viz, if two users could use the same machine "simultaneously", would it

be possible for user programs to interact? Such interaction is very desirable

both for different humans and for different devices to compute simultaneously

on data or programs supplied by some other user. Provision of such a facility

will open up the possibility of the use of computers in a whole new class of

problems. Since the two different cooperating processes need not belong to

different computations (or jobs or "users"), parallel execution of the proces-

ses of a single computation is also a possibility. The case where the pro-

cedures or data shared are unmodifiable is relatively easy to handle and many

systems do permit this either by sharing the same physical code (as in MULTICS)

or by copying programs (as in CTS?[*2]. The more interesting facility is, how-

ever, a planned sharing of modifiable sections. Here the only case permitted

so far is a scheme where the individual processes are laboriously pre-checked

for correct synchronisation and for prevention of errors on account of read-

ing off of incorrect data (say) because of differences in execution times of

the processes. Moreover even with such pre-checking there is no guarantee that

synchronisation will occur, because there is a large number of unknowns as, for

instance, in a multiprocessing environment. The case where processes run

asynchronously and must still cooperate has not been implemented yet.

The principal problem when asynchronous processes cooperate is one of

functionality, i.e. of ensuring that the sequence of outputs produced by a

given computation depends only on the input-data and on the specification of

the computation, not on non-intrinsic (and perhaps unknown) factors such as

the relative speeds of execution of the various parts of the computation. It

is easily shown that functionality is ensured if determinacy is ensured; deter-

U -

minacy is the property of a computation whereby the sequence of values of any

variable (or element in the address space) is completely and uniquely defined

by the input data and the specification of the computation (variations in

other factors affecting the computation notwithstanding)..

Several models have been proposed for determinate asynchronous nulti-

processing. Van Horn's model [3] is one such model that also seems relatively

easy to implement in existing systems. For this reason this model is picked

for implementation here. MULTICS provides a suitable basis for such an imple-

mentation because it provides several useful facilities in varying measures such

as segmentation, protection mechanisms, facilities for creation of several pro-

cesses in a computation, facilities for inter-process communication,etc. The

goal is thus to describe a sub-system operating within the framework of MULTICS

that permits determinate asynchronous cooperative multiprocessing, use being

made of Van Horn's model to guide the implementation.

The chapters that follow describe the model and the implementation.

Chapter 2 describes briefly Van Horn's model,which he terms Machines forCoordin-

ated Mutiprocging ,and relevant portions of MULTICS. Chapter 3 describes

aspects of the implementation that relate to a situation where a number of pro-

cesses and segments are in existence. Chapter 4 generalises to the case where

processes and segments can be created and destroyed. The last chapter illus-

trates how this system might be used to solve problems.

8

Chapter 2

Part 1

MACHINES FOR COORDINATED MULTIPROCESSING

A Machine for Coordinated Multiprocessing (MCM) is an abstract device

that is similar to common computing systems but also possesses additional

desirable properties. It consists (cf. Fig 2.1) principally of cells, a

Count Matrix (CM) and a Scheduler.

2.1 Cells

Cells, which are identified by names, can perform two types of functions.

A cell that only stores a value passively is a value cell; on the other hand,

a clerk cell is active and can perform operations. Whether a cell is a clerk

cell or a value cell at any instant is determined by the contents of the CM.

It is therefore possible for a cell to change its function with time. The

number of clerk cells increases and/or decreases with time; the total number

of cells in the system is, however, fixed (say N).

Certain cells are permanently designated output cells. When an output

cell is written into, the value is both stored and put out. There is thus a

one-to-one correspondence between output cells and the output streams of an

MCM.

2.2 Transactions

The basic operations performed by a clerk cell are called transactions.

There are five types of transactions. Two of these are the get and put trans-

actions. The transaction get which is "get of i replace f(.)", causes replace-

ment of the contents of cell x (the clerk cell performing the get) with f(c(i))

where c(.) is the content function for cells, The content of a cell is called

a word. A put transaction is "put of i with v replace w" and it causes the

9

CE LLS

MCM Essentials

Figure 2.1

C-)RRENT
S'rA-rUS

CLtERK.

/A LUEF

C-LCRK

VALL'E

COUNt M ATRIX

clerk cell to hold the word w and cell i to hold the word v. The particular

v or w to be used by a cell is determined by its transaction table

which lists the transactions to be performed corresponding to the contents

of the cell (it is meaningful only when the cell is a clerk cell).

In the descriptions of get and put, i is the operandname, v is the

pperand word, f(e) is the replacement function and w is the repgaement word.

In the put transaction, if i = x, v is ignored. The use of get and put is

illustrated by the instruction STO Y which stores the accumulator into loca-

tion Y. It can be mimicked by the following instructions (x is the clerk cell

and value cell K contains the STO Y instruction):

get of x replace f (-)
put of y with A replace Z.

Here the initial contents of x are equivalent in ordinary machine terms to

Instruction Register- (IR), Location Counter- (LC), Instruction Cycle- and

Address Register- information. LC contains "k". The function f(.) is such

that f(x) is the put instruction (found in k) and the equivalents of incre-

mented LC information and Execution Cycle information. Cell A corresponds to

the Accumulator and Z is the word which will cause x to "fetch the next instruct-

ion" in the usual sense, i.e. Z = C(x) with cycle information modified to indi-

cate an instruction cycle.

The above example also serves to point out the need for a clerk cell to

possess certain capabilities. For instance, when cell x performs a transaction

it needs to read its own contents to determine what transaction to perform.

It also needs to write into itself the new word that specifies what transaction

it is to perform next. Again, to perform a get of i (put of i) it needs to

read from (write into) cell i. One of the restrictions on the activity of

clerk cells is that they need gapgility or permission to perform any reading

or writing. For this reason and because a clerk cell needs to write into itself

as an essential part of its activity, clerk cells are defined to be precisely

those cells that have write capability for themselves. The next section des-

cribes the Count Matrix which is an important adjunct of the capability concept.

2.3 Capabilities and the Count Matrix

The Count Matrix is a table that defines the capabilities of each cell

for every cell in the MCM. It is an NXN array, each element of which is an

integer and is called a count. If the count at position (x,i) is greater than

zero, cell x is said to have read capability for cell i. If, in addition, cell

x is the only cell having read capability for cell i, it is said to posses write

capability for cell i. Thus, if the only entry in the nth column of CM that is

positive (greater than zero) is the nth one, then n is a clerk cell.

It was said earlier that a cell can change function with time. In terms

of the Count Matrix this implies that some means of altering CM entries must

exist. These means are provided by the remaining three transactions a cell can

perform, viz, the send, done and bye transactions.

"Send of i to e replace w"1 is the form of the send transaction. The par-

ameter "e"l is called the sendee name; "i" is the operand name and "w" the re-

placement word. When a cell n performs such a transaction it increments the

count at (e,i) and causes itself to hold w. The sendee may not be the clerk call it-

self. In order to perform a send, cell x must have write capability for itself

and read capability for cell i.

"Done of i replace w" decreases the count at (n,i) by one and causes the

clerk cell performing the done, i.e. n, to hold w. A cell need only be a clerk

cell to perform a "done". -A bye transaction is "bye to e replace w". When

cell n performs a bye it simultaneously decrements the count at (n,n) and incre-

ments the count at (e,n); it then causes cell n to hold w. It is clear that

cell n must have write capability for itself (i.e. be a clerk cell) in order

perform a bye. Bye serves to change the status (or function) of a clerk

cell n to value-status.

Some salient features of the capability mechanism are, then, that a

cell can neither give itself a capability nor be deprived of its capability

by another cell. Further, by means of send's and done's a value cell can be

made aclerk cell while done's, send's and bye's make it possible for a clerk

cell to become a value cell.

2.4 The Computation State

The pa-----s-- s of an MCM is defined by the information contained

in the MCM's cells and count matrix. The computation state changes at discrete

time instants when transactions take place. Transactions occur in zero time.

The MCM thus starts out with an initial computation state, defined by the in-

itial contents of the N cells and the CM, and enters successive computation

states after each instant. The computation state at the instant a transaction

is taking place is undefined. The computation being performed by an MCM is

complete when the computation state reaches a steady state value (i.e. no trans-

actions are possible).

2.5 The Scheduler

The computation state changes because of transactions taking place at well

defined instants of time. At these instants the scheduler sends out gopulses

to a subset of the set of all clerk cells. The cells in this subset then per-

form their transactions, after which the MCM is in a new state. It is the job

of the scheduler to select this subset of clerkcells using the information in

the CM and a set of rules.

A clerk cell is said to be enabled when it possesses all the capabilities

it requires to perform the transaction it would perform if it received a go

13

pulse. The set of enabled cells constitutes the enable set. The choice

collection is a subset of the power set of the enable set, this subset sat-

isfying the condition that no element in it contains the names of two (or

more) cells that would modify the same element of the GM. The scheduler

picks some one element (a set) of the choice collection and sends simultaneous

go-pulses to the elements of this set at the next instant. It then re-constructs

the enable set and choice collection for use at the next instant. The only

other restriction on the scheduler is that it be reasonable, i.e. each enabled

clerk cell must receive a go-pulse within a finite time of its becoming enabled.

The above rules imposed on the scheduler's choice ensure that simulta-

neously performed transactions do not conflict, i.e. during a change of com-

putation state

1. each cell is written into by no more than one clerk cell;

2. each cell that is both read from and written into is written by

the same clerk cell that reads the cell and

3. each element of the Count Matrix is altered by no more than

one clerk cell.

2.6 Determinacy of McM's

An MCM is well-defined if and only if during no computation performed

by the MCM is an evaluation of a transaction table or a replacement function

ever attempted with an argument for which no value is defined. Van Horn has

shown that the computation performed by a well-defined MCM is always determinate

and, therefore, functional. This is precisely why a computation performed in

the proposed sub-system, which models an MCM, is determinate.

14

Part 2

MULTICS

This part of the chapter gives a brief description of MULTICS. The

reader is referred to reference [4] for further details. MULTICS is the acro-

nym for Multiplexed Information and Computing System. As its name implies, it

is a computing system for general use. A user is one who is using the system

to perform a computation. The activity of a processor in executing a sequence

of instructions constitutes a process. More precisely, "A process is a locus

of control within an instruction sequence" [5]. It is thus an abstraction of

the activity of a processor. Consequently, it is possible for a process to ex-

ist (albeit suspended) at an instant when no physical processor is carrying

out the activities of the process (as for instance in time-sharing). A com-

putation is defined by a set of instruction sequences and data bases. It can

be performed by one process or by several processes acting concurrently. MULTICS

is a multiprocessing system i.e. several processes can be (and usually are) in

existence at any instant. It also happens to be a multi-processor system. It

permits multiprocess- or concurrent- computation, i.e. a user's computation

can require concurrent activity by several processes on the data bases.

The space in which all the objects (information) defining a computation

(i.e. instructions and data) reside or appear is the address space of the user.

Thus all objects can be referred to by their location in the address space.

The activities of a process consist of the execution of instructions in the

address space using data objects from the space. The address space is thus

an abstraction which is to physical memory what a process is to the activity

of a physical processor. With the concepts of a process and address space

explained, the description of the components can be taken up.

2.7 Organisation of Information

An important aspect of the address space seen by a MULTICS user is that

this space is composed of segments i.e. distinguishable and identifiable pieces

of linearly organised data, each piece being potentially infinite in length

(actually a segment can be only as long as 256 K words because of physical re-

strictions on memory size). Thus, any object in the address space has a two

dimensional address, viz a segment name and a relative location in the segment.

In secondary storage segments are what are usually called files. There is thus

a one-to-one correspondence between files in secondary storage and segments.

One of the functions of the file system is to make the physical location of a

piece of data irrelevant to the user i.e., a data object is always referred to

as if it were a segment, it being the responsibility of the file system to

bring the object into active (core) memory if it is not there already. All

the data objects appear in one common heirarchical structure of nodes and

branches called the directory heirarchy (cf. Fig. 2.2). All segments are

terminal nodes in this tree-like structure and vice versa. Intermediate nodes

and the root of this heirarchy are directories. In this sense the structure

is a tree with leaves which are segments and nodes which are directories.*

Directories and segments appear at the end of branches emanating from other

(parent) directories (the root directory has no parent).

There are also links between pairs of intermediate nodes. The structure

is thus a network rather than a pure tree. Any object in the heirarchy is

identified by a tree-name i.e. a sequence of names of branches and/or links

leading to the object from the root node. The tree-name of a directory is also

called a path-name. The tree-name of a node is the concatenation of the path-

* As all information appears as segments, directories are also segments, but
they will not be so termed in order to avoid confusing terminology.

'- s a " -J-

Directory Structure

Figure 2.2

(Adapted from [4])

LINK

17

name of the directory in which the file resides and the entry-name of the

entry (branch) in that directory which points to the node, i.e. path-name>

entry-name where ">" indicates concatenation (eg. A > B or A > B > C > E).

A branch in a directory points to a data-object (either a directory or

a segment). In addition, associated with every branch is an Access-Control-

List (ACL) which is a list of user-id's (user-identification's) and assoc-

iated access modes for the object pointed to by the branch. There are five

possible access types, an access mode being a meaningful combination of these.

The types are "WATER" i.e. write (W), append (A), trap (T), execute (E) and

read (R). All except T indicate the kind of access or use permitted. "T"

indicates that control is to trap to a procedure that returns a mode consist-

ing of some substring of REWA. The mode given in the ACL is the apparent

mode. This is also the effective-mode when T is absent. When T is present in

the apparent mode, the mode returned by the trap procedure is the effective mode.

Various primitives to make/delete entries in the data structure, to change

access rights, to add/delete links exist. These will be indicated in the fol-

lowing discussion as the need arises.

Two directories in the whole heirarchy are particularly interesting

from the point of view of the user. These are the working directory and the

process directory. It should be noted that these names are conceptual and

relate to usefulness; they are not actual (entry-or path-) names of directories.

Every process has its own distinct process directory. Several processes may

share the same working directory, however. Ordinarily, all the segments a

user creates and uses (other than MULTICS segments) appear in one of the fol-

lowing three directories: the working directory, the process directory and

the MULTICS command-and-subroutine library. A process is given a fresh process

directory when it is created, and cannot change its own process directory: The

process directory is destroyed with the process. The working directory is also

18

assigned at creation time, but can be changed by the user by means of a MULTICS

primitive. Ordinarily, a user should have no use for this primitive. The

nebulous nature of the working-directory- and process-directory- concepts will

lessen in section 2.8.

A final fact about the information structure relates to copying of seg-

ments. When a non-directory entry is created in a directory, the user who cre-

ated it can specify whether all users of this entry should share a unique ver-

sion (segment) or get separate copies for their use. In the latter case, when

a process asks for (a segment corresponding to) the entry, file system routines

copy the entry into a segment in the process directory of this process and this

is the segment the process uses.

2.8 Use of the directory hierarchy

At first it appears that use of a data-object requires that its tree name

be known in order to locate it in the heirarchy. That is indeed the way to make

access to elements of the structure. However, it is possible to leave some of

the work to system routines, making it possible for a process to demand an

object by merely specifying its entry name (the last component of the tree name).

The job of finding the correct object in the heirarchy is that of the Search

Module.

The search module takes a proferred name and looks in different directories

for an object with that name; when an object is found, the tree-name of that

object is returned as the (complete) identifier of the object. The sequence of

directories to be searched is indicated by search rules which can be specified

by the user. When no rules are specified by a user, MULTICS provides a set of

rules, a characteristic of which is that the process directory is the first

searched with the working directory next. In this sense segments which are

Iprivate" to a process are found before those with the same name elsewhere.

19

From the description of the search module given above, it is clear that,

as the same entry name can appear in several directories, the segment sought,

when an entry name is used, need not be the same as the segment found by the

search module. The user must, therefore, have a means of ensuring that the

correct segment is found. One way, of course, would be for the user to use

the tree-name of the segment. However, the tree-name is long and cannot be

used in the address part of an instruction if only because of the inconvenience.

The solution MULTICS provides is to permit the user to associate specific seg-

ments with procedure segments so that when dontrol is in that procedure seg-

ment those pre-associated segments are found when just entry-names are used.

This process of association is called relating. The segments are daughters

of the (mother) procedure segment. The means whereby these relations are stored

and remembered are described in the following paragraphs.

When a segment is related to a procedure segment a relationship segment

is created in the directory heirarchy. This segment contains the actual path

name of the mother segment and for each daughter, among other things, the call

name*, the tree-name, a global usage switch and a create switch. The global

usage switch indicates whether the daughter segment is available to users other

than the creator as well. The create switch indicates whether this daughter

segment exists or is to be created. That a segment is a relationship segment

for another procedure segment is indicated by a switch on the branch pointing

to the former segment. The system arranges that a reference to the procedure

results in the relationship segment being found. The information in this seg-

ment is used to set up information in the Segment Name Table, as described be-

low, and to bring up the procedure segment itself. The relationship segment is

thus seen to be a repository of association information.

*
A segment can be assigned any number of (call-) names for purposes of calls, by
the use of the "initiate" primitive. The name of a segment need not be a call
name. Thus "call alpha$alpha" may call a procedure in segment beta.

The use of a procedure using related segments is illustrated by the fol-

lowing example: Let a user decide to relate segments tall-talk and snob to the

procedure "do-nothing" which is in segment alpha. Then suppose the name of the

relationship segment as returned by the relate command is beta. The user then

refers to the procedure as "beta$do-nothing" and not as "alpha$do-nothing". In

fact neither this user nor another need be aware (for calling purposes) of what

segment (alpha) the procedure resides in or that beta is a relationship segment.

It appears as if it is in segment beta and in fact the creator gives another

user a link (or access) to beta and not alpha. This conceptual inelegance is

a result of the peculiarity of the relation mechanism in MULTICS.

The Segment Name Table (SNT) is a table listing associations of symbolic

names and segment numbers (segments are identified by numbers in the hardware).

Every process has its own SNT as a segment in its process directory. This table

serves as a quick means of converting symbolic names to addresses during the

process of linking which is described in section 2.10.

The basic element of the SNT is a Segment Name Block (SNB). There are

three threads linking SNB's (cf. Fig. 2.3). One set of threads links all SNB's

associated with the same symbolic name. There is thus a set of two-directional

pointers linking the Name Header, which contains the symbolic name, and the

associated SNB's. The Name Header contains a pointer to the last SNB created

in its list, in addition to other things. There is a similar thread linking

all SNB's associated with the same segment number (it will be recalled that a

segment may have several call names). Thus, there is a SegmentHeader contain-

ing the segment number, tree-name, unique-id, etc. of this segment and in each

SNB a pair of pointers constituting the link. The third thread lists all

daughter SNB's. It consists of one pointer in each SNB linking SNB's for

daughter names and an entry in each SNB indicating the segment number of the

mother segment (cf. the concept of relationships explained above). An SNB

(Adapted from [4])

Representation of SNT Entries

Figure 2.3

Note:The mother segment is alpha

The beta and delta SNB's are

daughter SNB's.Initiating the

segment alpha with either the

name'alpha'or'x,'makes'beta'and

'delta' known calling names.

also contains a ring number (cf. Section 2.11). It therefore indicates an

association of a symbolic name, a segment number and a ring. A global switch

in every SNB is interpreted as indicating availability to procedures other

than the mother.

Sgment-and Name-Tables in the SNT contain pointers to the segment-

and name-headers respectively. They are used to make access to the information

in the SNT.

2.9 The Mapping to Physical Memory

It was mentioned in section 2.7 that the virtual memory (or address

space) of a user appears segmented, with two dimensional addresses. Since

the physical memory is limited in size and since different users may use (share)

the same segment while knowing it by different names, it is necessary to pro-

vide a suitable mapping from virtual memory to physical memory. This mapping

is defined by the Descri ptr Segment of a process. This is a table that con-

tains pointers to physical blocks of memory (frequently to page tables as many

segments are paged--this paging, however, is of no concern to the user) that

correspond to segments in the address space. An index in this table, the

segment number, is as good an identification of the segment in the address

space of this process as its name. The emphasis on the last two words of the

previous sentence is because each process has its own descriptor segment and,

because of the method of construction of this table (cf. Section 2.10), two

processes can have different segment numbers for the same segment.

An entry in the descriptor segment of a process is called a descriptor

word (cf. Fig. 2.4). A descriptor word contains a pointer, as mentioned

above, a descriptgr and the length of the segment (this information is used to

detect out-of-bounds references and is, therefore, set at the current length

or maximum permissible length, depending on whether the user is not or is per-

.)E5CRI PTO R

PAGE TA BLE OR

TO e
0 SE oF SEG"ENT

Descriptor Word

Figure 2.4

24

mitted to append to the current contents of the segment). The descriptor con-

tains paging information and the user's access mode for this segment (cf. sec-

tion 2.7).

The above description does not indicate the mapping from segment name to

segment number. Once an entry in the SNT is created, it provides this mapping.

The construction of this table is

All memory references in a

The addressing mechanism uses the

in the descriptor segment to get

core; this pointer together with

Now, because of dynamic all(

by a user is much larger than the

transferred to secondary storage.

word for every process is marked w

described in section 2.10.

process are in the form segment number offset.

first part of such an address, as an index

:he pointer to the base of the segment in

:he offset, defines the location intended.

ocation of the memory (the address space seen

available physical memory) a segment may be

In this event the corresponding descriptor

ith a (missing-) segment fault indicator so

that any attempt to refer to this segment initiates activity to lead the seg-

ment into core memory. However, in such a case, the only information avail-

able about such a segment is its segment number (this is available in the ma-

chine conditions stored at the instant of the fault). More information is

required to relate this to an object in the directory heirarchy and to its

location in secondary storage. This information is provided by the Known Seg-

mentTable (KST) and the Active Segment Table (AST).

All segments are sharable because every process uses the (one and only)

directory heirarchy. It is improper to have several copies of a segment in

core. As a result, several segment numbers (in different processes, of course)

really refer to the same physical entity. The mapping from segment number to

physical location in secondary storage is therefore split up into a (per-pro-

cess) mapping from segment number to a (system-wide) unique identification for

the segment and one from the latter to a location in secondary storage. The

KST provides the first mapping and the AST the second one.

The KST contains entries indexed by segment number. An entry contains

the unique identifier for this segment (this is unique throughout the system

and over several years), the user's effective mode, the protection list

(cf. section 2.11), a list of symbolic names for this segment (if it is a

directory segment), the segment number of the directory segment in which this

segment is an entry and the index of this segment in that directory, the date

and time the branch was last modified, etc. The date and time when the branch

was last modified is compared with the corresponding item in the AST to deter-

mine possible changes in access privileges of this process (made by another

process). If the two items agree the KST access information is used for in-

sertion into the descriptor, else this information is recomputed. The informa-

tion about the parent directory is required to recover segments that have been

deactivated (i.e. entries for these segments in the AST have been removed to

make room for other entries). It is sometimes necessary to be able to refer

to entries in the KST by the unique identifier and, for this reason, a hash

coding scheme is used based on the unique identifier.

The AST is indexed by unique identifier. An AST entry contains much

information; only a part of this will be indicated. One item is the maximum

segment length. Others are the page table address, the date and time when

the branch was last modified, a pointer to the location of the file in second-

ary storage, a loaded switch, a process trailer pointer and the unique identi-

fier for the segment. All the terms except the process trailer and loaded

switch have been explained already. The process trailers are threaded into

a list and are entries that indicate how to make access to the descriptor

segment word (sdw) for this segment in all the processes using this segment.

This information is required when the access control information for a seg-

ment is changed as segment fault indicators have to be inserted in all these

sdw's to ensure that descriptors are reevaluated. A process trailer is re-

moved when for instance the process makes the segment unknown (i.e. removes

the KST entry). All process trailers are deleted when a segment is unloaded

from core. The loaded switch indicates when a segment may be unloaded. When

there is no space for additional entries in the AST, the entry for the least

used segment is removed.

A segment is known when a KST entry for it exists, otherwise it is

unknown. Similarly a segment is active if an AST entry for it exists, other-

wise it is inactive. Also, it is loaded if it has a page table in core. A

segment can be known and inactive or active and unknown (to a process but known

to some other process). A loaded segment is necessarily active.

If a segment fault occurs, the KST is consulted to get the unique ident-

ifier for the segment. This is used to look for an AST entry. If an entry

is found, the page table address and maximum length information can be used

directly, access control information being checked for time of modification

as indicated earlier. If no AST entry exists, the AST entry for the parent

directory is sought. The KST is used to get the call name for the immediately

superior directory if no AST entry for it is found. This directory can then

be sought using the Search Module, etc., and the original segment can be

activated. This chain can continue but must terminate as the root directory

is always known.

2.10 External References

The preceding section described how the mapping from segment number to

physical memory takes place. The construction of the SNT entries which map

segment names to segment numbers will be described here. The broader prob-

lem is to translate references such as alphalincome to segment number loffset.

This operation is called linking.

There are two types of references to an external segment (a segment

other than the procedure segment) that an instruction can make. One is

the "itb" or indirect to base reference. In this case a base register

number (one of eight of which only two are available to the user) and an

offset are supplied. The contents of the base register (presumably set up

correctly earlier) are used as an index to the descriptor segment and addres-

sing takes place as usual. The its or indirect to segment reference uses a

pair of words. One word contains a segment number and the other a numeric

offset. The reference takes place as usual.

An external reference almost always is compiled as an its instruction.

The pair of words in this case is called a link. All the links are put into

the linkage section which is in the linkage segment for the procedure segment.

The linkage segment for a procedure "do" is called do-link. It is clear that

at compilation time it is impossible to know the segment number for a segment.

The compiled form of an instruction is shown in Figure 2.5.

In Fig. 2.5 lp is the link pointer pair of base registers that points

(by segment number and offset) to the linkage section for the current pro-

cedure, "a",. The "tlpik,*"I indicates "indirect through the word at relative

location k with respect to the word pointed to by lp). At this location is

found a two word link. The "fi" tag is a "fault indicator" which results in

transfer of control to a routine called the "Linker" when the link is first

used. The Linker does the job of converting the link to the form shown in

Fig. 2.6 where "dof" is the segment number for the segment "do". The "4" in

the link and type pair is an addressing type which is of no interest here.

The Linker uses the pointers in the link to fetch the expression word

which points to the type pair. In case the trap pointer is non-null, a

trap-before-link situation is indicated and the Linker uses the pointers in

K

Co-DE ' 0 Fl A (I
or | o 4. SeTo

EXTERNAL SYM8OL
'aEFN U~foNJ

Z, r ITOINS S~XPR S5IoN- v"J>

-TrHE C /,J Tl-f', Vsre4cTrTof

nE~Pessrow woRnb

-ry E NuBEW -- TRAf- POINTE?

TYPE - !.

PAIR-

Sl&r, MErJ r 2r X) 01 04 M 6TZ NSEAMEva
WJAME.--

SVMOL

-LENc7THS OF CHAAC"SMi"jIS

CAu- - Axusew-

-kotJ4rP

A LrNk 'W A LINk kN

<A .L-J<> <A L#K>

Compiled or raw form of a link and associated information for

'sto dolmore+6'

Figure 2.5

OFFSET 0 4

Completed link for 'sto dolmore+6'

Figure 2.6

l

the trap word to construct and issue a call to a user-specified procedure.

Upon return the Linker proceeds to complete the link. It gets the symbolic

segment name and calls the Segment Management Module (an interface with the

File System) primitive "1smmfget-segment" with this symbolic name and a pointer

to the procedure segment that caused the linkage fault.

The primitive "lsmmjget-segment" searches the SNT for an entry which is

related (or if no such entry exists, a global entry) to the procedure segment

and in the same ring. If such an entry exists it immediately yields the seg-

ment number of the correct segment (which is in its segment header) and this is

returned to the Linker. When no such entry exists, "smm$get-segment" calls

the Search Module to get the tree-name and unique identifier of the segment.

It then calls the primitive "estbl-seg" to return a pointer (or equivalently

a segment number) to the segment. "Estbl-seg" itself uses the KST to get a

segment number for the unique identifier (this is why the hash coding of the

KST by unique-identifier is necessary) if an entry exists. If no such entry

exists "estbl-seg" has to call the primitive "make-known" with the tree-name

of the segment as argument. "Make-known" establishes a KST entry for the

segment using the branch information in the directory heirarchy and the next

available segment number. Thus "smm$get-segment" ultimately gets a segment

number for the name. It uses this information to construct an SNT entry and

returns the segment number to the Linker.

Some additional work is required when the segment for which "smm$get-

segment" is asked to give a segment number is a relationship segment (this

information is returned by the Search Module along with the unique identifier

and path name). In fact in this case the routine makes known (by a call to

"make-known") and reads the segment found. It makes a complete entry for the

procedure segment in the SNT as before. It also puts in SNB's for the re-

lated (call) names found in the relationship segment but does not thread them

to segment headers. It then makes the relationship segment unknown (by a call

to "make-unknown") and returns. The remaining threading (to segment headers)

for daughter SNB's will be done when those call names are actually used. In

that event, the SNB's give the tree name of the correct segment (it will be

recalled that SNB's contain tree names) so that the aim of relating is ful-

filled (as the tree name is not obtained by calling the Search Module).

The Linker, it will be recalled, has now obtained a segment number. The

offset part of the link is obtained from the expression word and the external

symbol definitions. The link is complete and the Linker returns. The indirect

reference now proceeds. It is possible, however, that this is the first ref-

erence to this segment in this process. In this case it should be clear from

the previous discussion that the correct descriptor word for this segment has

not yet been set up. By convention every word in a descriptor segment is initi-

ally set up with a segment-fault indicator (a template descriptor segment is

used) for all segments. As a result, the first use results in a missing seg-

ment fault and ultimately a call to "segfault" which sets up the descriptor

word.

Segfault uses the KST to get -the unique identifier for the segment number

for which a fault arose. The unique identifier indexes the AST to yield an

entry which gives the page table address (a page table may have to be set up

in this process). The KST entry also yields the segment length and access

control information for this segment. Segfault can now put in all this

information into the descriptor word.

One noticeable aspect of all the operations described above is that

no activity takes place unless explicitly demanded. This is a basic principle

in MULTICS.

Passing reference to the Associative Memory is in order. This is a

sixteen word memory which is used in a 'last-used-first-out manner to con-

tain the sixteen most used descriptor segment words and the associated seg-

ment numbers (actually also Page Table Words but this may be ignored here).

This memory saves memory references to the descriptor segment, page table,

etc., and thus speeds up the addressing mechanism when a segment is used fre-

quently.

2.11 Protection

The existence of only one information structure (viz the directory heir-

archy) in the whole system ensures that all its elements are available to all

users. This sharing has, however, to be controlled to ensure that privacy is

guaranteed where required. This is the function of the protection mechanism.

Part of the mechamism is in the access control list and in descriptors. This

part ensures accessibility of segments in an appropriate mode to each user.

However, no distinction is made between procedures attempting such access.

The latter kind of protection is provided by the ringstructure.

The ring structure defines a classification of all the segments in the

system. There are sixty-four rings and they define a heirarchy of protection

with inner rings representing rings of greater- protection. The ring-numbers

are assigned outwards from the core beginning with zero. Associated with every

segment is an ordered set of three ring numbers called the p2rotection list.

The three numbers must be in non-decreasing order. The first pair defines the

access bracket while the second pair defines the call bracket.

A segment is accessible to all procedure segments in the access bracket

or in lower rings with the mode specified by the owner of the segment. A

procedure segment cannot be read or written but can be called at pre-specified

entry points (called gagg) by procedures in the call bracket.

From the above description it is clear that the ring protection mech-

anism affords intra-user protection in addition to inter-user protection.

Sensitive and vital information and procedures are put into lower rings.

Multics system routines, for instance, are assigned to rings 0 to 31 and user

procedures can only be in rings 32 to 63 so that the system is protected from

the user. Moreover, a finer sub-division of the protection is made with most

sensitive procedures in ring 0 (thehard-corering), less sensitive pro-

cedures in ring 1 (the administrative ring), etc.

The state vector of a process at any instant includes the ring number

of the currently executing procedure. This number is used to validate all

references (as for instance in looking for SNT entries). A ticklish situ-

ation arises with inward calls as a request may be made to make access to data

not in the caller's domain of access but in that of the called procedure. In

this case all arguments are validated by the "gate-keeper"l which checks the

legitimacy of the call. In the case of outward calls arguments must be copied

into the outer ring for availability there. This discussion glosses over

implementational complications as they are not of importance here. (For instance

no outwarid calls or input-output activity from ring 0 are permitted so as to

ensure that ring 0 is entered only for a bounded time -- this is not true of

other rings).

2.12 Processes

It will be recalled that a computation consists of one or more processes

operating on the information structure. A process can have one of three states.

A process is running if a processor is currently allocated to it. It is ready

if it is merely awaiting allocation of a processor as soon as one becomes avail-

able(it is on the ready list). A process is blocked or idle if it cannot be

allocated a processor unless some actions (such as Input-Output activity) take

Place. Clearly means must exist to change the state of process. These are

provided by the primitives "block", "wakeup"f, and "guit". The first primitive

makes the process using it blocked. The wakeup primitive makes a blocked pro-

cess ready. Quit makes a ready or running process blocked (as soon as any

masks on interrupts are removed).

In very broad terms, a scheduler picks up processes on the ready list

and allocates processors to them as processors get freed. The switching of

a processor to a different process is done by setting up the state vector for

the new process. For instance, in order to ensure that the correct address

space is set up, the descriptor segment must be loaded and the descriptor base

register set to point to it. Several other segments such as the KST, etc.,have

to be loaded too. A process is made ready by putting it on the ready list.

Each process is identified by an identifier (process-id) which is unique

throughout the system and over several years (it is obtained by reading a clock,

say). Processes are further grouped into prgcssgps with their prgcess-

group-id's.

This grouping is for accounting and administrative purposes. It also

corresponds to a computation because all user-created processes are associated

with the process group of the creating process. In this sense a process group

also corresponds to the computation initiated at a console. Processes in a

group typically share certain attributes and objects such as a working directory.

The creation of a process consists of setting up a few basic segments

a process requires (such as the KST, the process directory, etc.), initial-

ising them and creating entries in certain tables (such as the working directory

table which specifies the working directories of processes). Two primitives,

"create-wp" and "delete-wp", permit a user process to create and delete pro-

cesses. The acronym "wp" stands for "working process" and is a term used for

all processes of a user's computation. Processes which perform only system

work are called system processes.

A process consists of the execution of a sequence of procedures. All

Multics procedures are pure i.e. they do not modify themselves. In order

to allow recursive execution of pure procedures, a stack is used for allocation

of variables and to record arguments, return addresses, etc. The stack is also

useful for implementation of the block structure of PL/I. Recursivity of pro-

cedures is a desirable property and it is essential for the proper operation

of Multics (for example "segfault" in trying to get fresh access information

on branches might refer to a directory segment which might be missing and thus

cause a recursive call to segfault).

The base register pair "sp" (stack pointer) points to the current frame

of the stack while "ap" (argument pointer) points to the base of the argument

list. As lp, sp and ap are dedicated base register pairs, only the remaining

one is available to a user.

2.13 Interprocess Communication

Some means of communication between processes is required for multi-

process computation. The Interprocess Communication Module which consists of

the Event Channel Manager and Wait Coordinator modules provides this communi-

cation by controlled use of the "block" and "wakeup" primitives.

The basic element of the communication mechanism is an event channel

in a shared segment called the EventChannelTable. A process expecting to

receive communication sets up an event channel and conveys the channel name

and the process-id to the process which will send the message (e.g., putting

this information in some prearranged spot). The process anticipating a mes-

sage can then wait for an event to be signalled on the channel. This is the

basic principle of communication. Some of the details are given below.

Event channels are of two sending types viz device-signal channels and

communication channels. The former are connected with input-output devices

36

and interrupts and will be of no significance here. Channels also have two

receiving types viz event-wait-and event-call- types. In the case of the first

type, channels have to be explicitly interrogated, whereas the second type of

channel causes a prespecified procedure of the receiving process to be called

when an event is signalled over it. Further channels can be of event-count

or event-fqueue mode. In the case of the former a counter is incremented every

time an event is signalled on the channel. In the case of the latter additional

information identifying each event (vent-id__) and the senders' process-id's

are supplied; read-out of the channel thus yields a sequence (queue) of event-

id's instead the event-id of the first event signalled since the channel was

reset (as with event-count mode).

The primitives "ecm$create-ev-chn" and "ecm$delete-ev-chn" serve to create

and delete event channels. It is possible to make a channel accessible to other

process groups by explicitly calling certain primitives. The two primitives

above are available in all rings but a channel is accessible to other process

groups only in ring 0. The primitives "ecm$set-ev" and Iipgecm$set-ev" put

event-id's (anything-clock times, say) into channels to signal events to pro-

cesses in the same and in other process groups respectively. The rings of

availability are as above. The primitive "lwc$wait" permits a user process to

block awaiting signalling of an event on a specified channel by a process be-

longing to the same process group.

2.14 Miscellaneous Aspects of Multics

A very brief reference to fault handling and input-output activity is in

order. The latter is quite straightforward and not of particular significance

to the system being designed. The reader is referred to reference [4] for

details. Faults arec-converted into conditions (in the PL/I sense) as soon as

possible and treated by condition handlers.

37

Because segments are shared, races in access to segments can arise and

so can incongruities (e.g., one process reading from a data-object while another

is writing into it). For this purpose Multics provides a facility to lock data

objects. Four words are used as a lock. The primitive to lock an object is

"locker$wait". When the locker is invoked (in process A say) it creates an

event-queue-mode channel (having an event channel name "a"l say). It then at-

tempts to set the lock word (the first of the four) using its own process-id

for a locking value (the lock is set if the lock word is non-zero). If the

attempt is successful (the lock was not set earlier) it puts "all into "x.

channel" (the remaining three words) and returns to the caller. If the attempt

is unsuccessful it reads an event channel name (say "b") out of x.channel. It

then sends process B (which has locked "1x"1) an event signal over event channel

"b" using "1a" as an indicator and returns. The primitive "locker$reset" un-

locks an object. It compares process-id for the current process with that in

the lock word. An error return is made if there is a mismatch. Otherwise,

it resets the lock structure. It then reads event channel "b" and using the

event indicator read ("a"l) as an event channel name signals process A (as

the object has been unlocked). It does this until channel b is exhausted,

deletes event channel "b" and returns.

Locking in the basic file system is slightly different and permits sev-

eral processes to read an object while a process attempting to write-lock the

object causes inhibition of requests to read and a wait for the number of cur-

rent readers to drop to zero before the object is locked.

Part 3

ADAPTATION OF THE MCM MODEL

The reader has seen MCM's and a typical large multiprocessing system

as represented by Multics. It is clear that if the aim is to implement a sub-

system for determinate multiprocessing, an interpretation of the principles of

MCM's in the context of systems is necessary. Such an interpretation is given

here.

Because they can perform operations, processes and clerk cells are anal-

ogous. Similarly data-units such as segments are the elements in systems that

correspond to value cells. Transactions alter the contents of cells and cor-

respond to the operations performed by instructions. Transaction tables cor-

respond to the instruction repertoire. There is a difference, however, as

there is no correlation between the number of processes and that of segments

in the system while the total number of cells in an MCM is fixed and clerk

cells can become value cells or vice versa. However, it seems clear that the

aspect of MCM's that is of consequence is the discipline. As long as this

discipline is followed determinacy is guaranteed. The non-convertibility of

processes and data-units is thus irrelevant; for, processes and data-units

can be created and destroyed just as the number of clerk and value cells can

change.

Again, the part of the count matrix which displays the capabilities of

value cells for other cells serves only (while the cells are value cells) to

detect change of status of these cells. As processes and data-units are dis-

tinguishable in the system, the equivalent of the count matrix need only dis-

play the capabilities of processes for data-units and the bye transaction is un-

necessary.

39

The aim, then, is to discipline the interaction of processes and data-

units using the CM and the other rules governing MCM behaviour, the results

proved for MCM's ensuring that computations performed in such a framework are

determinate.

Chapter 3

The case where a number of processes and data units are in existence

and their numbers do not change with time will be considered in this chapter.

For the purpose of this discussion it will be assumed that these processes and

data units have been created somehow and are in existence. The chief imple-

mentational problem in this case is that of permitting controlled access to

the data units and of permitting transfer of capabilities for these data

units.

To ensure determinacy it is necessary to impose strict control on all

the data units in the processes. However, it will be seen later that the

checking of capabilities consumes some time. In the case of MULTICS routines

and data units which will be used very often, such control of access is a

*
heavy drain on system resources. Again, if MULTICS were non-determinate

(actually non-functional), even an ordinary one-process computation would

have non-determinate results, thus making MULTICS useless! It seems reason-

able, therefore, to assume that such is not the case and that control of access

by MULTICS procedures to MULTICS data bases is unnecessary. Consequently, only

those data bases which the user creates need be guarded; in other-words only

those data units in rings relatively outer to a certain ring (r.) need be
min

guarded.

3.1 The Unit of Access Control

Before the mechanism of checking access is examined, the data unit which

is to be used for this purpose must be determined. This unit should ideally be

a word of the address space. However, the obvious inefficiency and large com-

*
The term "system" will be used throughout the sequel to mean the system
proposed here.

41

putational demands of such a scheme make it impracticable. For example, the

count matrix would have to have a large number of columns, and a large number

of sends and dones would become necessary. The unit has, therefore, to be

larger than one word. It could be a page of virtual memory, but the number of

pages is still too large to permit efficient system operation. The obvious

choice is, therefore, a segment. This choice is also suggested by the fact th

MULTICS itself checks access control information on a per segment basis only.

Moreover, a strong motivation is that the segment is logically the next larger

data unit after the single word.

3.2 The Mechanism of Access Checking

The chief problem of access checking is that of preventing all references

to a segment that are of a type not permissible according to Van Horn's rules.

That is, it is necessary to prevent say read references to a segment when the

process concerned lacks read capability for that segment. Since all user pro-

cedures in the system will be required to be pure, the only accesses to be

controlled are those to external semens i.e., to segments other than the

procedure segment itself. This last fact suggests two possible schemes for

access checking which are described before-.

The first scheme utilises the fact that references to external segments

occur via links in the linkage section of that procedure segment. It will be

recalled (from Chapter 2) that links are originally raw-and set up so that the

first attempt to use a link results in a fault to the linker. This first scheme

uses the trap-before-link feature of the linking mechanism to trap control to

a system procedure which picks up the symbolic segment name using the pointer

in the still raw link. The procedure then consults the Count Matrix (CM) to

The discussion concerns only segments because other data objects such as

scalar quantities cannot be shared between processes (except when explicitly

passed as arguments). This is a MULTICS restriction.

a MULTICS convention requires all procedures to be in one segment only.

at

42

determine the capability of the current process for the segment. Clearly the

kind of reference sought to be made must be known for the procedure to take

appropriate action. This is done by requiring the compiler to mark all write-

references by a non-zero value in the middle field of the second world of the

pair of words constituting the link (cf. Fig. 2.6). The system procedure thus

knows the type of reference sought and the type permitted by the contents of

the GM. If the two types differ, the system procedure sets up an event-signal

channel and calls the MULTICS primitive "we$wait". The process is thus blocked

(because it lacks the capability it seeks) until it receives the capability

sought. If the process possesses the capability it seeks, the system procedure

returns, permitting linking as usual. Subsequent references continue unhindered

until the process loses its capability.

The other part of this scheme concerns the action taken when a process

loses its capability. Every time the process calls the "send" or "done" sys-

tem primitives, the primitives check whether write-or read- capabilities for

a segment are lost. In either case they call a system routine that puts di-

rected-fault 5 tags in place of "its" in every link of the corresponding type

(i.e., read or write reference) that has the segment number of this segment in

it. The system procedure called upon acceptance of the directed fault 5 checks

CM for the Van Horn capability and either, replaces the "directed-fault 5" tag

by "its",or sets up an event-signal channel and calls the MULTICS wait co-

ordinator, depending on whether the process posseses or lacks the capability

sought respectively.

The scheme described above suffers from a major defect, for a user can

dispose of the old linkage section and get a new one or change his present

linkage section. What is worse is that a reference to an external segment

need not use a linkage section at all; rather a process can get pointers di-

rectly from the MULTICS primitive "generate-ptr". This defect thus precludes

43

use of this scheme. The other scheme, which is also adopted for use, will now

be described in some detail.

The reader will recall that except when the address of the page table

(or the page itself) is found during readout of the associative memory, all

references to external segments take place via the descriptor segment. Also,

the descriptor word for a segment has a descriptor field which specifies access

restrictions, if any, for this process. This field, and the associated fault-

handler therefore, serve as an excellent way to check access. Thus, suppose

*
all fields are initially set to "directed fault 5 ". Then, the first time a

segment is used, control traps to a system routine (cf. Fig. 3.1) called "Access-

Checker" (AC for short) which checks whether the process has read or write ca-

pability for this segment by consulting the CM. If the process has read capabil-

ity only, AC sets bit 35 of the descriptor "on", indicating read capability

only. If the process has write capability it obviously has read capability too

and both these are indicated by turning "on" bits 30 and 35. If the process

lacks either capability it calls the system routine "await-read" in which it

stays blocked as explained later.

Consider the situation where the segment descriptor of a process indicates

permission only to read while the process tries to write; a hardware "illegal

procedure fault-access violation sub-condition" results. The fault handler

signals the Condition (in the PL/I sense) known as Access Violation. Suppose

it is arranged that the procedure called upon occurrence of an Access Violation

Condition is. the system procedure AC. AC can determine if the ring number of

the segment is less than r m . If it is, AC calls the routine Multics handler.

Otherwise, AC checks the descriptor field to determine what permission is

This will be changed later (in section 3.5).

44

ACCESS VIOLA-rlotN

WRITE'

LF

GET- SE.NO,. AND~

PIRCr6Mo USE SECNO4

Cr-4 fiWTKY. AbTb GfNO

equivALUNMT L=N-TRy p

N5C655AAY -LOC c OM-

ENrMY A..JV comeu
P.EAD cftPA81LYY

IF
G'Fr 5C."o.AQ.D
ftccr-jo. US6 seq-

E-QU I VAL VV7S TO c I

<:"i At.J coviJT iCwT*If
UIft" 5EQAJOSQ9ViAL-f

fvJS IF F CESSAY oc

5FP-JQiEs CoA"4LnTI

W-RiIE cApAbILrrY.

Access Checker
figure3.

indicated by the descriptor. It then determines if the fault is due to an

attempt to write (read) into the segment, and if so, it gets the path name of

the segment and checks the CM for write (read) capability. If such capability

is present, AC sets the descriptor field to indicate this and returns. If not,

AC calls the system primitive "await-write" ("await-read") in which the process

blocks. If, however, the descriptor showed permission to write (read), a hard-

ware malfunction has occurred, and so AC calls the regular MULTICS handler for

the Access Violation Condition.

Clearly, just as a mechanism for issuing permission is necessary, so too

is a means of denying it. When a process calls the system primitives "send"

and "done" which implement the corresponding Van Horn primitives, these routines

also check to see if write capability or read capability, respectively, are lost

When a capability is lost, they call the ring 0 system procedure "put-descriptor"

to change the descriptor for that segment in the descriptor segment for this

process to indicate read-permission or no permission according as the process

has only read capability or no capability at all, respectively.

From the preceding three paragraphs it is clear that all references to

data segments occuring through the descriptor segment of a process occur only

if the process has the capability (in the Van Horn sense) demanded. It was

mentioned that only pure procedures are to be used by the user. An Access

Violation Condition for a procedure segment is therefore genuine and so is

passed on to the regular MULTICS handler.

As regards references using data from the associative memory, one may

note that since the descriptor field is picked up from the corresponding des-

It is possible to determine if the instruction causing the fault was attempt-
ing to write into the segment from the snapshot of machine conditions stored
in the process-data segment at the instant of fault.

The details of how this is done are explained in sections 3.3 and 3.4.

criptor segment word, the only matter of concern is loss of a capability.

This situation is taken care of by instituting calls to the MULTICS ring 0

abaolute mode procedure "cam" to clear the associative memory when a mere

restrictive descriptor is inserted into a descriptor segment word.

3.3 The Count Matrix

The reader will recall that in MCM's the Count Matrix displays the capa-

bilities of a cell for all cells in the MCM. The Count Matrix has a potenti-

ally indefinite extent in either direction when one translates the concept in

terms of processes and segments (cf. Part III, Ch. 2). For, with processes cre-

ating processes, (cf. Chapter 4) the number of processes in the system has no

upper bound (barring physical restrictions) and the same holds for segments,

which too can be created.

It is convenient to handle one dimension by using segments, which natur-

ally have a length that is (theoretically) infinite. The matrix would thus be

a collection of segments. The question as yet unanswered is whether a segment

should correspond to a row or to a column. In this context one observes that

a process usually uses several segments so that at any instant the Count Matrix

has many more columns than rows. A scheme in which segments implement columns

will therefore suffer from the defect that there would be a very large number of

segments each with very few entries. For reasons of efficient use of storage,

therefore, a row wise implementation of the GM seems more desirable. It would

appear that since determination of write capability requires examination of all

the entries in a column, a one segment per column is convenient. However, it is

possible, as is shown later, to determine write capability by examining just two

entries instead of m entries (where m is the current number of processes). To-

ward this end a count of the number of positive entries in a column is stored in

a separate segment.

The Count Matrix (cf. Fig. 3.2) is implemented as in + 1 segments where,

47

again, m is the current number of processes in the system. There is one seg-

ment for each row of Van Horn's Count Matrix, i.e. for each process, its name

being prcsno-row where prcsno is the number that identifies the process (not

the MULTICS process-id) as explained in Chapter 4. The extra segment called

count contains counts of processes with read capability for each segment.

Each entry of count is seven words long. The first four are required to

lock the entry. The fifth contains the count and the sixth (the count-indica-

tor) contains the process-id of a process blocked awaiting write capability but

possessing read capability. The seventh (the created-switch) is a switch for

CM initialisation. Each entry of prcsno-row also consists of seven words. Four

are for locking of the entry, the fifth is the Van Horn count, the sixth is a

flag indicating whether or not this process is blocked awaiting read capability

for this segment (the read-blockedflag) and the seventh is a similar flag indi-

cating blocking for lack of write capability (the write-blockedflag)

Clearly some indication must be left when a process lacks read capability

and blocks. A good place is the corresponding CM entry because a "send" to

that entry is the only action that could lead to revival of the process. This

is why a CM entry contains a read-blocked flag. The write-blocked flag serves

a similar function for the case where a process is blocked for lack of write ca-

pability.

Two indices are required in order to make access to an entry in the count

matrix. Because of the way the segments are named, the identification of a pro-
**

cess, prcsno, serves as a convenient first index. The second index is

Names of segments are underlined, those of procedures are in quotation marks.

The user will not know the MULTICS process-id (which is created at process
creation time) at the time the program is written. Prcsno provides a means
of identifying processes (which is unique in a computation) even when a pro-
gram is being written.

EN-rRY FoR SEGMEmr J

7C

LocK

VA, t4 ORN COU'FJT
g Cj- tocKE FLj

12 ,2 Row L

ENTRY FOR SEa"ENT", J

o
71

12222 - Roia/ I

Structure of the Control Matrix

Figure 3.2

not so obvious, however. A segment is identified either by a symbolic name

or a segment number. In either case the identification must be converted to

a numeric offset within the segment prcsno-row. The segment number for a

given segment is, in general, different for different processes and, moreover,

unknown at the time the program is written. The user can, therefore, specify

only a symbolic segment name which must be converted to an appropriate nu-

meric offset, the second index.

The conversion of a symbolic segment name to numeric index can be done

fairly easily. A system routine ("send", "done", etc.,) takes the symbolic

segment name and gets the corresponding unique-id from the directory heir-

archy using the MULTICS primitive "getsegstatus". It then looks up a segment,

the equivalence-table, containing equivalences between unique-ids and (unique)

numbers. If an entry corresponding to this unique-id exists it uses the nu-

meric value. Otherwise, it adds an entry consisting of the unique-id and the

next highest unused multiple of 7 (since each entry in CM is 7 words long) be-

ginning with 1 X 7. This table, then, provides the numeric offset to be used

within a CM segment.

Now getting the unique-id and searching the table are both time consuming,

so that to repeat those operations each time is a waste of resources. A means

of avoiding this is therefore necessary. For instance a segment, the symbol

table, which is unique for each process (unlike the GM and equivalence table

both of which are clearly shared by all processes), can be created when the

process is created. This table lists symbolic segment names and corres-

ponding numeric offsets to be used in CM segments. Only this table need be

searched in subsequent references. In fact, even this effort can be saved

by implementing the Symbol Table not as a segment but in the manner described

a little later.

*
It resides :in the process directory.

A similar scheme is required for the use of the procedure AC which only

gets segment numbers upon access-violation. A per process segment, segno-

equivalents (cf. Fig. 3.3), containing the numeric index for the CM entry cor-

responding to each segment number, is therefore created and is maintained by

AC. It is a table that is accessible by segment number and numeric index.

The segment symbol table is eliminated as follows: Every user procedure

is required to have for each segment a declaration for an integer-type (in

the ALGOL sense) variable with the name "segment name", where "segment name"

is the symbolic name the user wishes to use for a segment. This declaration

should be placed in a suitable block of the procedure, in most cases the outer-

most block. This variable corresponds to one entry of symbol table mentioned

above. It is passed as an argument to the routines "send" and "done" which

extract the value of this variable. It if is zero (i.e., undefined), the

routine goes through the search described above. The numeric offset, the

uniguenumber, found is then made the value of the variable. Thus a unique

number is always available and easily available for subsequent references.

In case a procedure is known to change a CM entry for a given segment

only infrequently, the user may, if he so desires, omit the declaration for

the integer variable. A symbolic segment name is then used as the argument

in calls to "send" and "done". A call to "send" (cf. Fig. 3.4) is, thus:

call send(segnamevar, seg-name-char, prcsno, process-name)

where seg-name-var is the integer-type variable mentioned above

seg-name-char is the character-string symbolic segment name

prcsno and process name will be explained in Chapter 4.

Clearly only one of the first two arguments need be provided, the other

is superfluous. Similarly, a call to "done" (cf. Fig. 3.5) is

call done (seg-name-var, seg-name-char)

In this case the system routine "done" determines which row of CM to use by

FUNCTION OF

SE G No.

FNVJCTION OF
2uL ,UE NO.

The Segment segno-equivalents

(Both tables are parts of one segment)

Figure 3.3

ET PRCSP.o

LOCK CM eLNTRY
ArJZ READ 7D GEr

REAP CAPA8IL.?Y IF/F

LMJLoc< Cm ENTAY

"Send"

Figure 3.4

53

L"LOCk CoUiQ7r
1--i TR Y

UNLOCk Cm ENTRY

"Done"

Figure 3,5

54

looking in the segno-equivalents segment for this process.

Sections 3.2 and 3.3 have described the mechanism of checking access

according to Van Horn's rules. The details of just how processes are blocked

awaiting receipt of capability and how they are revived will be given in the

following section.

3.4 Signalling Considerations

It was indicated in Chapter 2 that inter-process communication in MULTICS

occurs by use of the Interprocess Communication Module. For the kind of sig-

nalling sought, one event-channel per process is necessary. The event-channel

has to be created by the receiving process. This channel creation can be done

either at the time of process creation or at the time a process decides to

await the arrival of capability. Since the creation occurs only once, it

seems reasonable to designate it to the process-creation routine. In the fol-

lowing it will therefore be assumed that there is a communication channel of

receiving type "event-wait channel" and mode "event-count-mode" for each pro-

cess, and that the system wide segment channel table (cf. Fig. 3.6) contains

the event channel name and process-id corresponding to each prcsno. Consider

the system routines "await-read" and "await-write" mentioned in Section 3.2

(cf. Figs. 3.7, 3.8). Their main function is to indicate that the process is

blocked for lack of a specific type of capability and to call the wait coordin-

ator so as to wait on the event channel for this process.

call wc$wait(chn-list, ev-ind, sts)

where chn-list is a single element list consisting of the
event channel name

ev-ind is an indicator returned--it has no use here

sts is return status information

The next few paragraphs indicate where and how the two system primitives

leave the indication.

55

EvENr ~ NIAME -rYPICAL E^7ry

Channel Table

Figure 3.6

A FUNCrioN

OF PRCSAJO

PRocEss_ il,

I EVE-IVT' CH^,NJAJEL IVAP-le-

"Await-reade "

Figure 3.7

"Await-write"

Figure 3.8

57

In the case of "await-read", the indication is made by setting the

read-blocked flag in the appropriate CM entry. In the case of "await-write",

though, it seems that the indication should not be left only in a CM entry;

for a process can receive write capability by some other process giving up

read capability for that segment, the CM entry for the former process not

being referred to or altered at all. The information has thus to be "global"

(in contra-distinction to the "local" nature of the "await-read" indication)

at least in part. The count-indicator in count provides this part of the indi-

cation and the write-blocked flag, the rest of it.

The "send" and "done" procedures do more than just their Van Horn func-

tion. For instance, "send" checks the prcsno-row entry for the sending pro-

cess and say segment j (i.e., the segment whose associated unique number is

j). If the entry is greater than zero, it increments the Van Horn count in the

corresponding entry for the sendee process provided the sendee process is not

the process itself. In addition, if the incremented Van Horn count has be-

come positive and if the read-blocked flag in the same entry is on, "send"

*
resets the flag, looks up channel table for the channel key for the sendee

process and calls the MULTICS Event Channel Manager with

call ecm$set-event (rec-prcs, ev-chn, ev-id, sts)

where rec-prcs is the process-id of the receiving process

ev-chn is the channel name

ev-id is any identifier (say 11... 1) for the event

sts is return status information

"Send" can also cause loss of write capability. It is therefore re-

quired to check the jth entry in count whenever the incremented Van Horn count

the combination of channel name and process-id

58

of the sendee process becomes positive. If this entry of count is one, the

sender possessed write capability for segment j (prior to the send) which it

has now lost. If the count is greater than one then no capability has been

lost. "Send" increments the jth entry of count to indicate that one more

process has read capability for segment j. Further, if write capability was

lost, "send" calls "put-descriptor" to reset the descriptor field of the ap-

propriate entry in the descriptor segment of the sending process to indicate

only a read permit (and clears the associative memory as mentioned earlier).

"Done" is required to decrement by one the CM entry for the current pro-

cess and the segment concerned (segment j say). If thereby this CM entry be-

comes zero, "done" must reduce the count in the j h entry of count by one, as

this process has lost read capability for segment j, and reset the descriptor

for this process by calling "put-descriptor" and "cam". If, further, that

count becomes one, some process has gained write capability for segment j and

it could be blocked in "await-write" awaiting write capability for this seg-

ment. "Done" must determine which process, if any, this is and revive it. It

therefore looks up the count-indicator in the j h entry of count which indi-

cates if a process having read capability is blocked for lack of write capa-

bility for segment j, and the process-id of this process (a zero process-id

means no such process exists). If count-indicator is non-zero, "done" con-

sults channel table to get the channel key corresponding to this process. It

then calls the Event Channel Manager with

call ecm$set-event(rec-prcs,ev-chn,ev-id,sts)

where the arguments are the same as before. The write-blocked flag in the

CM entry of the revived process is then reset and the count-indicator for

that segment is cleared.

The function of "await-write" in terms of leaving an indication is now

obvious. First, it sets the write-blocked flag in the CM entry for the cur-

59

rent process and that segment (segment j say). Further if the current pro-

cess posseses read capability for segment j, "await-write" examines count-

thindicator in the j entry in count. If that entry is zero, the presno

of the current process is put in, and a call to "wc$wait" made as before.

Suppose, however, that the entry is non-null. Then there is already a pro-

cess blocked in "await-write" and it has read capability. The same is true

of the current process. Clearly neither process can ever be able to pro-

ceed, i.e., the two process are in a "deadly embrace" [6] as a result of a

programming error. Here then is the first situation encountered so far

which requires special error indication. Such indication might be say, the

typing out at a console of an error message with the prcsno's of the pro-

cesses involved and the aborting of all processes in the computation.

The reader is reminded that it is perfectly legitimate for m-l pro-

cesses (where m is the current number of processes) to be blocked for lack

of write capability, provided only one of them has read capability at a time.

This does not necessarily guarantee that a process will not be blocked indef-

initely as a result of incorrect programming; this situation will require sep-

arate error handling. Such a situation can arise if the count entry for the

segment becomes zero while a process is still blocked, or because the only

process with write capability for the segment is destroyed (cf. Chapter 4).

The detection of the former case is part of the activity of "done".

It is possible for a process to gain read capability after it blocks for

lack of write capability. Consequently, "send" (which gives this read capa-

bility) checks the write-blocked flag, and when it is set, examines count-

indicator. If it is zero, "send" puts in the prscno of the write-blocked pro-

cess. It can find count-indicator non-zero whereupon the error action men-

tioned above is taken.

60
The final versions of "send", "done", "await-read" and "await-write"'

that arise from the discussion above are those shown in figures 3.4 to 3.8.

3.5 More Changes to MULTICS Routines

In Section 3.2 the condition-handler in NULTICS for the Access Violation

Condition was changed to be AC so as to catch these faults and determine if

they are genuine or simulated. Some more routines need changes too, but this

discussion was postponed up to this section in order to present more impoortant

aspects of the access-checking scheme. For instance, MULTICS "make-unknown"

which deletes KST entries must be made to delete corresponding entries in the

segment segno-equivalents of that process. For, the segment numbers of seg-

ments made unknown are reusable by other segments and therefore incorrect use

of the pre-existing segno-equivalents entry for that segment number can occur

later unless the entry is deleted. When a segment fault is taken, the handler

calls the MULTICS primitive "seg-fault". One of the functions of "seg-fault"

is to put a descriptor field into the descriptor word for that segment. This

can be disastrous as the Van Horn capability has not been considered at all in

this process! It is necessary to change "segfault" so that it calls the system

primitive "put-descriptor" to do the job of putting in the descriptor field of

the descriptor word. In this connection one must remember that the user-im-

posed MULTICS restrictions on access override any other constraints. The

effective MULTICS mode for each segment must therefore be stored in a table,

(the user restriction segment) indexed by unique number, which is used each

time the descriptor field of any descriptor word is inserted. The most re-

strictive of the Van Horn capability and the MULTICS effective mode stored in

the table, called the "'permission"', is what is put into the descriptor field.

"Put-descriptor" takes one argument viz a segment number. It uses segno-

equivalents to get the unique number for this segment and computes the capa-

61

bility of the current process for that segment. That together with the user

restriction gives the permission, which is inserted in the descriptor. The

user-restriction segment that was mentioned above has to be filled in. This

could be done either by MULTICS "1segfault"r or MULTICS "makeknown". It turnt

out that MULTICS "makeknown" is better suited; for, several MULTICS routines

(eg., "delete-segment") need to check the effective mode of a user with respect

to a segment. This mode is of course meaningless unless modified by comparison

with the Van Horn capability. The mode is obtained from the Known Segment

Table (that obtained from the directory branch is used only to update Active

Segment Table and Known Segment Table entries). It is necessary, therefore,

to modify suitably the Known Segment Table (KST) entry. A good scheme seems

to be to put in a TRAP mode for all entries. In this way control traps to the

entry point "get-mode" (in put-descriptor) which returns the permission (cf. Fig.

3.9).

Now MULTICS "make-known" makes the KST entries and so it has to be modi-

fied to put in the TRAP mode in the new KST entry (except when the mode is only

E i.e., Itexecute" or if the ring number > rmin) while putting the MULTICS mode

in the user-restrictions-table. Similarly, when MULTICS "segfault" consults

the AST entry to check for obsolescence of the KST entry, it must update the

user-restrictions entry and not the KST entry.

MULTICS procedures like "delete-seg" read out the permission and

if it is not of the kind sought, signal an error instead of blocking the pro-

cess awaiting receipt of the capability. To eliminate this incorrect behavior,

the MULTICS function "check-access" and primitive"hcs$check-accesd'must be

changed to take one more argument viz, an expected permission, except when

permission to execute is sought. Then, if the lack of permission results

from a lack of Van Horn capability (this comparison is only made if the ring

number is > rmin), "check-access" calls "await-read" or "fawait-write"f as

appropriate. If, however, the lack of permission is because of user restrict-

62

"Put-des criptor"

Figure 3.9

63

ions, an error.-status return is appropriate. The "append" mode is so re-

turned if permitted by the user and if write capability exists.

Lastly, the primitives "delete-entry" and "change-name", which can be

called by the user to delete a segment or to change the name of an entry in

a directory, are two of four routines which directly call ring zero file

system primitives to achieve their effect. The file system primitives check

write access for the segment and the directory respectively, using the informa-

tion in the directory heirarchy and not in the KST. Consequently, it is not

the permission but the MULTICS access that is used. To overcome this problem

these two routines, "append-branch" and "append-link" must be changed to call

check-access before calling the file system primitives. "Truncate-seg"does not

present such problems as it calls a routine which uses KST access information.

3.6 Protection of System Data Bases

It is obvious that a user could (intentionally, perhaps) change the con-

tents of the system data bases (as, for example, the CM entries) or procedures

and thus make the computation non-determinate. These data bases and procedures

must therefore be protected from the user. In terms of MULTICS concepts, the

data bases mtst lie in inner rings with respect to user procedures. They must

have access brackets that end at or below r (as defined at the beginning of
min

this chapter), and system procedures must be of the execute-only type. Further-

more, as the system routine "put-descriptor", has to make access to the des-

criptor segment, it must be in ring zero. The other procedures can be in any

ring below ring rmih, preferably as far out as possible.

One aspect that was implicit in the discussion of the previous sections

will now be made explicit. This is the prevention of races in the access to

data. For instance when a process is reading a CM entry, another process

must be prevented from changing it. This requires write-locking of that entry

while a process is reading it. The mechanism for locking is provided by

64

MULTICS as described in Chapter 2. This is why each CM entry and count

entry has four words for use of the locking mechanism. The duration of lock-

ing by the procedure AC will now be indicated.

In the case of AC, when it is trying to determine read capability, it

refers to the CM entry. If the capability is missing, it will be recalled

that it sets the "read-blocked" flag and calls "await read". Now, if another

process should increment (and make positive) that CM entry between the time

when the first process reads the CM and the time it sets the flag and calls

"await-read", the blocked process misses the reviving action. The CM entry

must, therefore be locked by AC before it is read and unlocked after the read-

blocked flag is set.

When AC is testing for write-capability it uses a CM entry and a count-

entry. AC must, therefore lock the CM entry and then read it. If the CM entry

is negative or zero, it must get the write-blocked flag, unlock the CM entry

and call "await-write". If the CM entry is positive, AC must lock the count

entry and read it. If that entry is one,AC can unlock the GM and count entries

and return with the knowledge that the process has write capability (there is

no possibility of mishap since only this process has read capability for the

segment and it is operating in AC, so that no "sends" or "dones" are possible).

If that entry is greater than one, however, AC must set the write-blocked flag

in the CM entry, insert the pr.csno in count-indicator, unlock the count

entry and call "await-write". If the count-entry is zero error-status informa-

tion must be returned (or put into a segment for copying later) and perhaps

all the processes in the computation aborted. "Send", "done", "put-descript-

or ", etc., also use the locking mechanism in a similar way. Hereafter, the

details of locking and unlocking will be specified without such a detailed

explanation.

65

Chapter 4

The previous chapter discussed how processes and segments in the system

are controlled in accordance with Van Horn's discipline after they come into

existence. This chapter discusses problems presented by the creation of pro-

cesses and segments and presents a set of solutions.

4.1 The Fork

Processes are created by an operation known as forking. Conway [7] de-

fines fork as a meta-instruction that starts a new process executing at a

label. It can be interpreted more generally as the operation of creating a sub-

computation to be executed in parallel. In particular, the sub-computation

could consist of a single process. As an external procedure defines a compu-

tation, the execution of an external procedure in parallel corresponds to the

execution of a sub-computation in parallel. The case where this external pro-

cedure is of the conventional type is a case where the sub-computation consists

of a single process. If it uses a fork, one has a generalised sub-computation

consisting of several processes. With this association of external procedures

and sub-computations, it will be seen that a fork is quite reasonably inter-

preted, in the context of processes executing procedures, as a call to set a

new process executing an external procedure with certain arguments.

As a counterpart of fork, one needs an operation whereby a parallel

process is terminated. Dennis and Van Horn [51 suggest 'g qit' as such an

operation. They also indicate that Conway's [7] loin serves as a mechan-

ism whereby a process can continue just when some processes have terminated.

In terms of the system being implemented it turns out that a quit is achieved

very simply by a return of the procedure called at a fork. There are several

variations of the basic join [51 which is "join t,w" where "t is the word name

of a count to be decremented and w the word name of an instruction word to be

executed if the count becomes zero..-."[5]. Translated in terms of processes

in the system and reduced to essentials this means join awaits the termination

of a process and the process then proceeds to execution of the next instruction.

Such a join is "join (process-name, prcsno)". If further it is made a convention

that the process, termination of which is awaited, is the most recently cre-

ated one, no argument is necessary and one obtains "join". Finally, "join (n)"

awaits the termination of the n most recently created processes. All three

join's are provided for in this system, although the first one is sufficient.

4.2 Creation of Segments

When a data segment is created, there are three attributes which are of

importance. These are the symbolic name, the directory in which the segment

resides and the access bracket. The second attribute has only one of two pos-

sibilities. If the segment is meant to be potentially accessible to all pro-

cesses, it is ordinarily put in the working directory (which, it turns out,

is usually common to all of a user's processes). If the segment is meant to

be private to this process, it is put in the process directory. As for the

access bracket, it need only have a lower limit higher than rmin, being any-

thing the user chooses, otherwise. The first attribute is not that easy to

handle. This is made clear in the following paragraph.

Let it be assumed that the system naively takes the character string spec-

ified by the user as the name to be assigned to a shared segment. Suppose,

further, that this string is "alpha". As long as the computation runs by it-

self no ambiguities as to which segment is referred to by "alpha" arise, as-

suming that the user has not multiply defined segments with the same name.

Suppose, however, that another user decides to incorporate this computation as

a sub-computation. The principle of modularity requires that the user be not

required to know details of the embedded sub-computation. It is quite pos-

sible, therefore, that the user has also used alpha as a name for a shared

segment. Because of the common working directory, a multiple definition of

the name alpha and consequent ambiguity result. The MULTICS concept of re-

lating segment names to procedures provides the solution to this problem.

From the above discussion it follows immediately that a call to the

system procedure "createsegment" (cf. Fig. 4.1) is

call createsegment (name, typel, type2, access-bracket, calling-

procedure).

where

name is the name to be assigned to the segment

type 1 is "directory type" (0) or "non-directory
type" (1) for the segment.

type 2 is "private" (0) or "shared" (1)

access-bracket is the ring access bracket (r1 , r2) r, r2> rmin

calling-procedure is the symbolic name of the procedure making
the call.

This routine calls MULTICS "append-branch":
RAW,

call append-branch (dir, name, type 1, or 01, 256)
REAW,

which creates a related entry named "name" in "dir" (specified as the work-

ing directory or process directory--depending on "type 2"--whose names are

easily found using the MULTICS functions "wdir" and "pdir" respectively).

The entry is of type "type 1" with the user permitted mode REAW (read, exe-

cute, append, write) if it is a directory entry and mode RAW if it is a non-

directory entry. The maximum length of the segment is 256 K words. Since

arrangement has been made in the above creation of an entry for all proc-

esses to get the same segment and not a copy in their own process director-

ies, the entry corresponds to one segment. Effectively, then, one segment

with the specified name has been created, as was desired.

68

CREA-M SEGM-EN7

ArvpL IRGL/T7 /i- 7c

CALLAJ4 PROCE~uR

EOkAW-Arr- ceA-no

NAIm-e is IN-J

cR EA'T-CAr 0

SIGNAL VS/AvITjQ.J
PRcCESSES ANIJZ
I)ELETE - ENTRY

L$NLOCK oqAi-TCRfA7(

SV'r CRC&,mkFZ 5W.

4NJD JNtTIALISE Cr-M

c EXIfT

"Createsegment"

Figure 4.1

69

"Createsegment" then relates this entry to the calling procedure by

using the MULTICS primitive for relating. It then creates the appropriate

access bracket and call bracket for the segment by a call to a MULTICS rou-

tine:

call set-protection (path-name, plist, glist, ac names)

where path-name is the path name of the segment relative to the
working directory or root directory.

plist is (a , a2 , a)--the access bracket (a1 , a2)
and t e call Bracket (a2, a2)--if a1 r1
a2> r1 else, (r1 , a2, a2) or (r1 , r1). r =rmin

glist are irrelevant here and are therefore null above.
acnames

This routine ("createsegment") is to be used for the creation of data

segments only. Creation of procedure segments and specification of access

rights of other users is by calls to MULTICS routines. Also, if the segment

is to be used by other procedures, the user must relate it to these procedures

so as to guarantee that they get the correct segment when they use that name.

4.3 Deletion of Segments

In essence, the deleting-of segments is a very simple affair. MULTICS

provides the primitive "delete-entry" which is called thus:

call delete-entry (dir, entry, courtesy flag)

where dir is the directory where the entry is to be
found

entry is the entry in this directory which cor-

responds to the segment

courtesy flag is a flag which indicates whether or not this
routine should wait until all processes read-
ing from this segment finish. This flag can
be specified as 2, meaning do not show any
courtesy (as the system ensures that no other
process is reading it, by the definition of
Van Horn write capability).

Write-permission is required for dir and entry.

70

4.4 Miscellaneous Aspects of Segment Creation

With creation of segments permitted within the system, one can conceive

of a situation wherein aprocess makes reference to a segment but the segment

has not been created yet because of delays in the process which was to create

it. As the system stands, the MULTICS search module would merely signal an

error because the segment is not found. Such action is clearly erroneous.

*
The process should instead block , awaiting creation of the segment. This is

ensured by the mechanism indicated in the next paragraph.

A segment, await creation, is added to the working directory and to each

process directory. These segments are created at the first call to "fork"

(or when a user changes his working directory) and upon creation of the process

respectively. This segment is used to record the segment names for which a

futile search results. The MULTICS search module is changed so that it locks

the await-creation segment and makes an entry for the missing segment in it.

An entry in await-creation consists of the segment name, process-id and the

event-channel-id of the process. The search module then calls the MULTICS

"w$wait" primitive after unlocking the segment. The procedure "1createsegment"

locks await-creation in the appropriate directory (determined by its third

argument) and checks to see if the name of the newly created segment is found

as an entry. It deletes the entry if found and signals on the channel spec-

ified by the entry by calling the MULTICS primitive "ecm$set-event", unlocks

the segment and returns.

Another fact deserves mention. This is that the working directory and

process directories need not be subject to Van Horn's discipline. They are

From the point of view of practicality it is probably more appropriate at this
point to ask the user if the process should wait or not (the failure to find
the segment could be, for instance, the result of a typographical error in the
name of the segment). In the latter case the computation should probably be
abandoned.

not used as data segments, and the individual segments in them created by

the user are disciplined as indicated in Chapter 3, so that no non-deter-

minacy results. Moreover, if these segments were subject to the discipline

the user would be burdened by the large number of "sends" and Idones" required.

Moreover, these calls cannot even be specified a priori when data-dependent

process creation is required. In short, the pattern of such capability trans-

fers is complex. For this reason these directories must be in rings interior

to r min. No user procedure can delete the process-directory as the directory

in which it resides is not write-accessible in rings outside r min.

It should be noted that when MULTICS routines are used to create segments,

in no case can any of these segments have any number in the call or access

bracket lower than the ring from which an attempt to set the protection list

is made. Thus all such segments are guaranteed to be in rings outside r .
min

and subject to the Van Horn discipline and no non-determinacy is possible.

4.5 The Naming of Processes

A naming scheme for processes should be such that the user knows the name

of a process at the time the program is written (to program sends, for instance),

and yet no conflict arises due to the nesting of computations. Such a scheme

will now be described.

One way of ensuring that a name is always associated with a pre-speci-

fied object irrespective of any other uses of the same name is by use of a tree

structure. The advantage offered by this structure is that a name is not used

by itself to identify an object; rather it is qualified by the names on the

branches on a path to it from the root of the tree. In this way two or more

objects can be represented by the same name provided their qualifiers are dif-

ferent.

In the case of the fork, it will be recalled that only one new process is

created by a fork. The heirarchy of process creation is thus a bifurcated tree

72

whose terminal nodes represent processes that are currently active. If the

branches of the tree are numbered 1 or 2 according as the branch lies to the

left or to the right, one arrives at a set of unique names for each current

process. Such a tree is shown in Figure 4.2.

An interesting property of this structure istethat the path-name (set of

labels on a path from the root of the tree to a node) of a node for a son

process is always the path-name of the father with the last 1" stripped off

and replaced by 2. Further even if the whole tree is made a sub-tree of a

bigger tree (this corresponds to embedding of a computation in a bigger one),

the same rule holds. This algorithm therefore provides a means of naming

processes which resultsJin predictable and distinct names for all active

processes and 2) in rules for determining the name of any node (or process)

whose position relative to some node is known, the rules being independent

of the depth of the nodes below the root (i.e., independent of the degree of

nesting of computations).

The rules for determining the names of processes during creation and

deletion activity are, 1) The name of the first process is 1. 2) At a fork

the name of the created process is the current name of the creating process

concatenated with 2. 3) The new name of the creating process after a fork is

its old name concatenated with 1. 4) At a join, the last 1 in the name of

the process doing the join is stripped off only if the son process has term-

inated. The name resulting from deconcatenation is examined again for pos-

sible removal of l's until no further removal is possible. The process per-

forming the join can then proceed.

The 'fonly" restriction in rule 4 is required because a join of the first

kind, i.e. "1join (process-name)" is permitted. Figures 4.3 (a) to (c) show

typical diagrams showing names of processes when forks and the three kinds of

join are performed. Figure 4.3 (d) shows the same sequences as in Figure 4.2 (a)

1111 1112 TERMfNAL NoDES fWDICATE

CuREN-r NAMES oF e'S"

11222

Process Creation Heirarchy and Naming

Figure 4.2

12

011 Lit 112

11.12 1111til

U 1.2112

11121

M122.

of

1112 -----

112

U2
A- - --- - - - -

I.i1

... 5111 + 13-* 1f it

(c) (i)

Three Kinds of Join's

Figure 4.3

75

but with rule 4 above modified to exclude the "only". The situation at the

line AB shows two processes having the same name. Also the usual rules for

finding the name of a son process do not apply (for instance at CD). This

demonstrates the need for the "only" in rule 4.

This scheme makes it very simple for a user to program his sends and

joins as the name of a process is now predictable. Further, such statements

as "Send capability for segment j to my creator's creator" can be implemented

too since all that is necessary is to strip off the last two digits of the

name of the sending process to get the sendee's process name. Clearly the

name of any node in the heirarchy can be created from a process' name by such

truncation and concatenation.

Three questions can be asked about this scheme. Firstly, does the large

number of names for a process imply that the sender must determine the sendee's

current name? Secondly, does this scheme preclude symbolic process names?

Finally, how can such a scheme be implemented? These questions are answered

below.

It will be recalled that the reason for adopting this scheme is to permit

reference to rows of the CM for sends and dones. It is vital, therefore, that

the name (actually, number) of a process as specified by the above scheme be

used in the name of the corresponding row segment of the CM. Now, since this

segment is created when the process is, the number of a process at the time

it was created is what is used to name the segment. This unique and fixed

number is all that is required to do a send/done to the corresponding process,

not the current number of the process. If, however, the process number spec-

ified for a send/done is obtained by stripping off some digits, such a number

could contain several l's at the. righ>thaiidznd .-These l's are-also stripped

(by the system procedure "send" or AC) to get the number of the process at birth

and the name of the corresponding CM segment.

The facility of symbolic names is easily introduced. The reader will

recall the scheme of integer variables used to record the unique numbers as-

signed to segments. The same scheme can be used here. The user declares an

integer variable with the symbolic name that is to be given to a process. This

variable is passed as an argument to "fork" which stores the number of the new

process in it. Any subsequent call to "send", "done" with this variable as

an argument results in an evaluation of that variable to get the process num-

ber which is then used to make access to CM. The number itself can be given

as an argument too. Of course, this symbolic name is meaningful only in the

process which passed it as an argument to "fork", unless passed as an argument.

Finally, the implementation of the scheme can now be specified. A lo-

cation called "prcsno" in a per-process private data area (such as the segno-

equivalents segment) is used to contain the current number of a process. It

is initially set upon creation of the process. It is continuously updated

as forks or joins occur. At a fork it is used to find the number of the new

process and to create a CM segment with the corresponding name.

In passing it may be mentioned that the CM segments are related to the

system procedures at the time of creation so that the user can use those same

names for his own segments if he wants to. (He can relate those segments to

his own procedures too.) This procedure is standard for all segments created

for system purposes.

4.6 Implementation of the Fork

Fork is implemented as an external procedure. A call to "fork" is:

call fork (entrypt-name, prcsname, arg-list)

where entrypt-name is the symbolic name of the external pro-
cedure to be called by the new process

prcsname is an integer type variable that will
provide the facility of a symbolic name
for the process. This argument can be null

arg-list is a list of the arguments to be passed to
the external procedure.

The implementation of the procedure is described a little later.

In connection with the creation of private segments for use by the

new process, it is noted that an external procedure is complete, in the sense

that the only information given to it from outside is that constituted by its

arguments and shared data. The creation of any private data structures (such

as segments) is thus the responsibility of the procedure. "Fork" does not

create any private segments (other than for system purposes) for use by the

new process.

One of the MULTICS routines used by "fork" is "give-call" which makes

another process call the procedure specified by the give-call with the speci-

fied arguments. It is a peculiarity of this procedure that the arguments are

not copied; rather, pointers to these arguments are created. In this way the

two processes use the same memory location(s) for each argument. It is very

possible, therefore, that a race between these processes could result, leading

to possible non-determinacy. What is required, therefore, is the "call by

value" feature of ALGOL. Implementation of this feature is discussed in sec-

tion 4.7.

The activities of "fork" are quite numerous and the reader may wish to

consult Fig. 4.4 throughout the discussion. The first task of "fork" is to

create a process. This is done by a call to MULTICS "create-wp". One of the

arguments is prcsno. This is obtained by concatenating the name of the creat-

ing process found at segno-equivalents prcsno with a 2. The call to "create-wp"

is therefore

call create-wp (prcsno, process-id, event-channel-name, status);

The last three arguments are returned by "create-wp". The first three argu-

ments are then stored as an entry in the segment oin-table. They are re-

Fo~~k

t

0

0

l'

I CRCA'
CHANI

+ MK
CmArJ&

RECORZ

A%"VA#rr.

c
4 copy

"Fork"

Figure4 .4

Fwomi< 2

quired by the procedure implementing the join.

It will be recalled that the GM segment for the new process has to be

created by "fork". "Fork" thus takes the prcsno of the new process and cre-

ates a segment named "prscno-row" in the working directory by a call to MULTICS

"append-branch". The MULTICS mode of the user is such as to permit reading,

writing and appending (RWA).

Next, "fork" stores the prcsno of the new process in its second argu-

ment, the integer type variable that will be used in calls to other procedures

such as "join" to identify the new process. The-entry at prcsno in the segno-

equivalents segment of the forking process is updated by concatenating its

present contents with a "1".

At this stage the forking process must start up initiation activity

in the new process and block awaiting completion of that activity. For this

purpose "fork" makes the new process call "fork 2" with the prcsno of the

new process as argument and calls the MULTICS Wait Coordinator to await a

completion signal from the new process on the event channel created by "cre-

ate-wp".

Fork 2 is an external procedure which first creates an event channel

for use by other processes to wake up this process when it receives some ca-

pability (cf. Section 3.4). This is done by the call:

call ecm$create-ev-chn(ev-chn,mode , signl-ring)

where ev-chn is the event channel name returned by the procedure

mode is "0" (boolean) to indicate event-count mode

signl-ring $.s the ring number from which "wc$wait" and
"ecm$delete-ev-chn" can be called i.e., the
ring in which "join", "awAtt-read" and
"await-write" reside.

The channel-name returned, together with the process-id, i.e., the channel

key, is stored in channel table as the value of an entry whose key is the

prcsno of this process (the argument received by "fork 2"). "Fork 2" stores

its arguments at prcsno in the segno-equivalents segment of this process after

it creates the segments await-creation (cf. sec. 4.4) and segno-equivalents

(cf. sec. 3.3) in the process-directory. "Fork 2" then returns.

The forking process is awakened by the above return and "fork" creates

a segment named arguments in the process-directory of the new process. It

then issues a call to MULTICS "gvclf$give-call":

call gvclf$.give-call("proc-b-name",pres-b-id,rtn-chn stat-rtna,a....a)

where proc-b-name is the entry point specified by the first
argument of the call to "fork"

prcs-b-id is the process-id of the newly created pro-
cess (found in join table)

rtn-chn is the channel-name returned by "create-wp"

stat-rtn is return status information

a,... ,a is an argument list (consisting of the argu-
ment-list provided to "fork" and an "on"
switch--cf. sec. 4.7).

Fork then returns.

Some additional work is required of "fork" (before the last give-call),

the very first time it is called. This is the creation of several segments

for the first process in the system and for system use. Thus prcsno-row for

the first process, await-creation, join-table, channel-table, equivalence-

table, user-restriction-table and count have to be created in the working di-

rectory. Segments await-creation and segno-equivalents have to be created in

the process directory of the first process. An indication of whether or not

a call to fork is the first is provided by some variable in a shared segment.

4.7 Call by Value at a Fork

The reasons why a give-call to the new process at a fork should be a

call by value have been explained in section 4.6. Implementation of such a

81

call is not easy.

At first it appears that "fork" can be made to copy the values of the

arguments in arguments and then use pointers to these values in the give-call.

However, this solution is deceptive as "fork" cannot know the nature of an argu-

ment. The copying has thus to be done in the external procedure itself. That

is, a compiler should put in code at the start of every procedure to copy the

arguments in arguments and use pointers to these values as arguments. However,

as ordinary PL/I calls are calls by name, this code should not be executed

ordinarily. A switch to decide whether a procedure is called at a fork or in

a conventional manner is therefore required. A convenient way of obtaining

this switch is described in the next paragraph.

Suppose the compiler is further modified so that it puts in code for the

construction of one extra zero argument, in addition to those provided,in the

argument list created at a call to a procedure (say alpha). Then if n is the

number of arguments expected by alpha, the n + 1st argument in the argument

list handed to it is ordinarily zero. At a fork, however, it is the (n + 2)th

th thargument that is zero while the (n + 1) is "1." The (n + 1) argument there-

fore serves as a switch for the copying of arguments.

One additional consideration is that of ensuring that the forking pro-

cedure does not continue before the arguments have been copied. This is

achieved by having "fork" call the Wait Coordinator to wait on its channel

(whose key appears in channel table). The called external procedure signals

on this channel after copying is complete. This is shown in Figure 4.4.

4.8 Implementation of the joins

The three kinds of join are implemented as entry points in the procedure

segment join. The basic action of a join is to update the name of the process

calling join and to destroy terminated processes. It is the event which de-

cides when this action is to occur that distinguishes the three joins.

"Joinl" uses its arguments, i.e., either prcsno or process-name, to

look up join table for the channel key of the channel for the process whose

termination is awaited. It then calls the MULTICS primitive "wc$wait" to

await a signal on this channel. The signal is sent by a MULTICS procedure

when the process terminates, i.e., when control reaches a "return" statement

in the external procedure that was called at the fork which created the pro-

cess. Joinl then calls the system procedure "update" (cf. Fig. 4.5) and re-

turns.

Join2 uses the prcsno of the calling process to determine prcsno for

the son-process. (Join2 does not take any arguments.): It uses this prcsno

to get a channel key from join table. It then awaits signalling on this chan-

nel by the son process. Finally, it calls "update" and returns. "Join3" merely

calls "join2" n times where n is its argument.

Update checks if the son process has terminated (using MULTICS "we$test-

event"). If it has, update calls the MULTICS procedure "destroy-wp" to

destroy the terminated process:

call destroy-wp (process-id, status)

where process-id is the process-id of the son process (found
in join-table)

status is return status information.

It then calls MULTICS "delete-entry" to destroy the CM segment for this pro-

cess. The event channel for this process is destroyed too. It then updates

the current name of the joining process by deleting a trailing 1. Update re-

peats the above procedure until a stage is reached where a son-process has not

terminated. It then returns. The repetition is necessary as preceding calls

to "update" by joinl's may not have had any success in deletion of l's at all.

83

ENTRY

GET PR.C514 F4

SON

soi', poce3s

P-1 SECfrTw-N A

5'VENT CHANU4E

JPD)ATE PJRcSNc

F joir4,A16 P~mf

E(IT

Figure 4.5

4.9 Input-Output

No special comments on Input-Output activity are required as the usual

access checking mechanism is effective.

4.10 Initialisation of the Control Matrix

The foregoing sections have described the system almost completely. How-

ever, the problem that is still unsolved is that of initialisation of the Count

Matrix. This problem can be stated as, "If a process cannot give itself ad-

ditional capability (it must be given by some other process), how does the

first process get its capabilities?"

There are two ways of solving the above problem First, the MULTICS

routine that created the first process could be required to set up the initial

CM. However this does not take care of segments created by the first process.

Also, it is not possible to specify a priori all the segments that the first

process will use. Some form of "incremental initialisation" is therefore

required. One possibility is to have a convention that the first process to

attempt to access a segment is presumed to have the capability and a CM entry

is made for it. This produces a problem of races between the first process

and any other process in the sense that the latter may have been intentionally

denied capability for the segment (by not being given the capability) but

gets it all the same merely because it attempts access first.

A good convention is to assume that the first process always has capa-

bility for a segment unless the segment has been created by another process

in this computation. Any process that creates a segment is simultaneously

granted capability for it. No other process has capability for this segment

unless explicitly granted it. In other words the system routine Access Check-

er determines if a process lacks a capability. If it does, the routine finds

out if its name is "l" (the first process) and if it is, checks the count entry

85

for the segment to see if the created-switch is on. If the switch is on, this

is a genuine case of lack of capability and the usual procedure is followed.

If the switch is off, it is turned on and the CM entry for this process and

segment is initialised to "1". When a process creates a segment, the system

routine "createsegment" (cf. Fig. 4.1) creates an entry in count and sets

the created-switch on while initialising the creator's GM entry for that seg-

ment to "1". In this way the CM is initialised "incrementally".

All aspects of the system have been described at this stage. The next

chapter shows some examples of how the system may be used.

86

Chapter 5

5.1 Verification

It is perhaps appropriate at this stage to verify in an informal manner

that the system design given in the two previous chapters does, in fact, satisfy

all the conditions of Van Horn's model. It is clear that because of the access

checking mechanism only enabled processes can proceed with their computational

activities. Further, the locking mechanism used for GM entries ensures that these

processes also belong to the choice collection (effectively). The definitions

of activity of "done" and "send" in sections 3.3 and 3.4 ensure that an enabled

process begins computational activity in a finite time after it becomes enabled.

It can, therefore, be concluded that a computation carried out within this

system posseses all the properties of an MCM computation (provided the MULTICS

locking mechanism gives every process waiting for a locked CM entry a chance

to use the entry in a finite time).

5.2 An Example of Use of this System

The example chosen for purposes of illustration is the Gauss-Jordan

method of solution of a set of simultaneous linear equations of the form

[A'][X] = [C]

where [A'] is an N X N coefficient matrix,[X] is an Nxl vector of variables

and [C] is an Nxl vector of constants. The algorithm is shown in Fig.5.1.

It will be noted that after the kth pivot (Akk) is used, the k h column of

the augmented matrix [A] ([A'] with [C] added on as one more column) is not

used at all, i.e. it is as good as if it were deleted. This fact is useful in

understanding the destruction of segments in the program given at the end of

this chapter.

For the purposes of this ptogram, a matrix is assumed to be made up of

column segments. The program is written in PL/I. It is not claimed that the

87

NTRY

K:=

J:= I

>N

L+-1

Key:[A] is the augmented

matrix.The N+1th col.

is the solution at the

end.

Figure 5.1

program indicates the best way to implement the algorithm; it is chosen for

illustrative purposes only. It will be noted that Loop 2 is executed in parallel

in the program.The symbol for concatenation in the program is the set of two

vertical bars.

Several comments about the program are in order. SEGNM is the name of a

segment containing the array [A]. The two calls to "createsegment" in the loop

create non-directory segments in the working directory. These segments are re-

lated to the procedure and reside in ring 64. "Copyl" is a procedure that

copies thejth part of SEGNM (i.e. the jth column of [A]) into 'C'!l J.

"Transform" carries out the transformation inside Loop 2 on a column of the

augmented matrix ('C'llJ) and copies the transformed column into the 'D'IIJ

segment.'C'IJ is left unchanged."Call copy('S','D'l1I+1)" eepies the last

column of the augmented matrix, i.e. the solution, into the segment S. NM is

a function that returns prcsno for this process. DNM gives prcsno for the parent

process.

5.3 Embedding

To illustrate the embedding of computations it is proposed to show a

circuit analysis program that annlyses networks and prints out solutions.

It uses the program of section 5.2. Setting up of the equations and analysis

are done concurrently.The program is given at the end of the chapter."Set-up-

eqns" sets up the node equations for the network (specified on a graphic

input device, say) and returns the number of variables,N, and the set of loop

equations."Print" prints out the solution. The logical function "condition"

indicates when to stop. The rest of the functions are as in section 5.2.

It will be noted that the writer of "Cct-analyser" need not know that

"Lin-eqn-solver" is a multi-process computation.There is clearly an embedding

of a multi-process computation within a multi-process computation, here.

5.4 Conclusion

The preceding discussion has, the author hopes, illustrated that program-

ming a multiprocess computation in the proposed system is not difficult.Actual

implementation of this subsystem in MULTICS as a working sub-system runs into

two "problems". Firstly, one of the system procedures has to be in ring zero.

This is not normally permissible but this objection can be easily overcome as

that procedure is simple and, therefore, easily debugged.Moreover, the ring zero

procedure is required because MULTICS fails to distinguish between processes

working for the same user for access control purposes.Secondly, changes in

compilers are necessary in order to implement the call-by-value feature

required by"fork". This is a direct result of the inadequacies of existing

languages in the context of multi-processing, and is unavoidablewithout

language reform.

One assumption and two restrictions are required in order to assert.

that all of Van Horn's conditions for determinacy are met.The assumption is

that MULTICS ensures determinacy of single-process computation and this seems

reasonable.One restriction is that the MULTICS locking mechanism use a round-

robbin or similar scheme that ensures every process waiting for access to an

entry a chance to do so in a finite time.The other restriction requires a user

not to use a directory that is write-accessible outside the ring rmin as the

parent directory of a segment he/she wishes to use as a working directory.

Neither this restriction nor the restrictiorson the user that all procedures be

pure, that all shared data-bases must be segments and that Input-Output

activity is restricted to segments seem to constitute too stiff a price to

pay for the determinacy gained.

LINEQNSOLVER:PROCEDURE(SEGNMK,S, N
DECLARE K(*),N FIXED,

CCTANALYS

(SEGNMS) CHARACTER(6);
J=1;

Ll:CALL CREATESEGMENT('C'I|J,1,1,'64'
CALL CREATESEGMENT('D'IIJ,1,1,'64'
CALL COPY1('C'IIJ,SEGNM,J);
J=J+1;
IF J<(N THEN GO TO Ll;
1=1;

L2:J=1;
L3:CALL FORK(TRANSFORM,O,

CALL SEND(0,'C'IllI,NMI
CALL SEND(0,'C'||J,NMI
CALL SEND(0,'D1|J,NMI|
CALL DONE(O,'D'IIJ);

C',
(J)
(J)
J) I

'2'
'2'
2',

'LINEQNSOLVER');
'LINEQNSOLVER');

,,J);
,0)
,0)

0);

J=J+1;
IF J<=N THEN GO TO L3;
CALL JOIN3(N);
IF I=N THEN GO TO L5;
J=1;

L4:CALL COPY('C'IJ, 'D' J);
J=J+1;
IF J=N THEN GO TO L4;
CALL DELETEENTRY(WDIR,'C'l11,2
CALL DELETEENTRY(WDIR,'D'||1,2
1=1+1;
GO TO L2;

L5:CALL COPY('S','D'I|I+1);
CALL DELETEENTRY(WDIR,'D'111+1
CALL DELETE_ENTRY(WDIR, 'C'lll+1
CALL DONE(O,SEGA);
CALL SEND(0,'S',DNM 0);
CALL DONE(O,'S');
RETURN;

ER:PROCEDURE;
DECLARE(N1,N) FIXED,K(100),Kl(1
CALL CREATESEGMENT('SEGA',1,11,'
CALL CREATESEGMENT('SEGB',1,1,'
CALL SETUPEQNS('SEGA',NK);
CALL CREATESEGMENT('S',1,1,'64'

Ll:CALL FORK('LINEQNSOLVER',O,'S
CALL SEND(0,'SEGA',NMII2,0);
CALL SEND(0,'S',NM1|2,0);
CALL DONE(0,'S');
CALL SETUPEQNS('SEGB',N1,K1);
CALL JOIN;
CALL PRINT('S');
CALL COPY('SEGA','SEGB');
IF CONDITION THEN RETURN;
GO TO Ll;
END

,2);

,2)

00)
6 4 '
64'

'CCTANALYSER');
'CCTANALYSER');

,'CCTANALYSER);
EGA',K, 'S',N);

91

References

[1] Corbato,F.J.,et.al.,"A New Remote-Accessed Man-Machine System," a set of

six papers,AFIPS Conf. Proc. 27(FJCC 1965),Spartan Books,Washington,D.C.,

1965,pp.185-247.

[2] Crisman,P.A.,editorThe Compatible Time-Sharing System:A Programmer's

Guide, sdoad edition, M.I.T.Press, Cambridge,Mass.,1965.

[3] Van Horn,E.C.,"Computer Design for Asynchronously Reproducible Multipro-3

cessing," Ph.D. DissertationM.I.T.,Cambridge,Mass.,1966.

[4] Graham,R.M.,editorMULTICS System Programmers' Manual, Project MACM.I.T.,

Cambridge,Mass.1967.

[5] Dennis,J.B.,and Van Horn,E.C.,"Programming Semantics for Multiprogrammed

Computations," Communications of the ACM 9, 3 (March 1966),pp 143-155.

[6] Dijkstra, E.W.,Cooperating Sequential ProcessesDepartment of Mathematics,

Technological University,Eindhoven,Netherlands,Sept.1965.

[7] Conway,M.E.,"A Multiprocessor System Design," AFIPS Conf. Proc. 24 (FJCC

1963), Spartan Books,Baltimore Md.,ppl39-14 6 .

Abbreviations Used

AFIPS:American Federation of Information Processing Societies.

FJCC:Fall Joint Computer Conference.

ACM:Association for Computing Machinery.

M.I.T.:Massachusetts Institute of Technology.

Conf.:Conference.

Proc.:Proceedings.

