Equations for a perfect fluid can be obtained by means of the variational
principle both in the Lagrangian description and in the Eulerian one. It is
known that we need additional fields somehow to describe a rotational
isentropic flow in the latter description. We give a simple explanation for
these fields; they are introduced to fix both ends of a pathline in the
variational calculus. This restriction is imposed in the former description,
and should be imposed in the latter description. It is also shown that we can
derive a canonical Hamiltonian formulation for a perfect fluid by regarding the
velocity field as the input in the framework of control theory.Comment: 15 page