research

Clebsch Potentials in the Variational Principle for a Perfect Fluid

Abstract

Equations for a perfect fluid can be obtained by means of the variational principle both in the Lagrangian description and in the Eulerian one. It is known that we need additional fields somehow to describe a rotational isentropic flow in the latter description. We give a simple explanation for these fields; they are introduced to fix both ends of a pathline in the variational calculus. This restriction is imposed in the former description, and should be imposed in the latter description. It is also shown that we can derive a canonical Hamiltonian formulation for a perfect fluid by regarding the velocity field as the input in the framework of control theory.Comment: 15 page

    Similar works

    Full text

    thumbnail-image

    Available Versions