88 research outputs found

    Novel Management Methods: Immunocontraception and Other Fertility Control Tools

    Get PDF
    Impacts of overabundant ungulate populations on human activities and conservation include crop and forestry losses, collisions with vehicles, disease transmission, nuisance behaviour, damage to infrastructures, predation on livestock and native species, and reduction of biodiversity in plant and animal communities (e.g. Curtis et ai., 2002; Massei et al., 2011; Reimoser and Putman, 2011; Ferroglio et ai., 2011; Langbein et al., 2011). Current trends in human population growth and landscape development indicate that human-ungulate conflicts in Europe, as well as in the United States, are likely to increase in parallel with increased expansion in numbers and range of many of these species (Rutberg and Naugle, 2008; Brainerd and Kaltenborn, 2010; Gionfriddo et aI., 2011 a). Many of these conflicts have been traditionally managed by lethal methods. However, current trends in distribution and numbers of wild boar, feral pigs and deer in Europe and in the United States (e.g. Saez-Royuela and Telleria, 1986; Waithman et ai., 1999; Ward, 2005; Apollonio et al., 2010) suggest that recreational hlllting is not sufficient to control ungulate densities. In addition, ethical considerations regarding humane treatment of animals are increasingly shaping public attitudes about what are considered acceptable methods of mitigating human-wildlife conflicts, and lethal control is often opposed (Beringer et al., 2002; Wilson, 2003; Barfield et al., 2006; McShea, 2012). Public antipathy towards lethal methods increasingly constrains the options available for ungulate management, particularly in urban and suburban areas and in protected areas where culling is often opposed on ethical, legal or safety grounds (Kirkpatrick et al., 2011; Boulanger et al., 2012; Rutberg et al., 2013). Consequently, interest in non-lethal methods, such as translocation or fertility control, has increased (Fagerstone et ai., 2010)

    Experimental Tests of Nonsurgical Reproductive Inhibitors to Prevent Coyote Reproduction

    Get PDF
    Sterilization is an effective nonlethal tool to reduce livestock depredation by coyotes (Canis latrans) because adults without pups to provision are less likely to kill livestock. Surgical sterilization is costly and invasive, so identifying non-surgical methods for canids that allows wide-scale application is important. We conducted a preliminary assessment of two types of reproductive inhibitors (gonadotropin releasing hormone (GnRH) vaccine and deslorelin, a GnRH agonist, on coyote reproductive capabilities. We treated captive coyotes with a GnRH vaccine (n = 6 males, n = 6 females) or deslorelin (n = 6 males), measured number of litters and pups born, and compared their behavior and hormone levels to captive coyote pairs in which the male was surgically vasectomized (n = 6). At least half of the pairs receiving treatment with either of the non-surgical reproductive inhibitors produced pups and litter size was larger than expected compared to historical records. Male coyotes treated with deslorelin showed decreased testosterone levels, whereas there was no difference in testosterone levels in males treated with GnRH vaccine compared to controls. Behavior did not differ between any groups. Despite the lack of efficacy of either reproductive inhibitor tested, our research suggests that hormonal alterations that disrupt reproduction of coyotes are unlikely to negatively affect behavior and further investigation of non-surgical reproductive inhibitors for wild canids is warranted

    Longevity of an immunocontraceptive vaccine effect on fecundity in rats

    Get PDF
    Increases in human-wildlife conflicts alongside cultural shifts against lethal control methods are driving the need for alternative wildlife management tools such as fertility control. Contraceptive formulations suitable for oral delivery would permit broader remote application in wildlife species. This study evaluated the contraceptive effect and immune response to two novel injectable immunocontraceptive formulations targeting the Gonadotropin Releasing Hormone (GnRH): MAF-IMX294 and MAF-IMX294P conjugates, both identified as having potential as oral contraceptives. The study also explored whether in multiparous species immunocontraceptives may either totally prevent reproduction or also affect litter size. Female rats, chosen as a model species, were given three doses of either MAF-IMX294 or MAFIMX294P to compare anti-GnRH immune response and reproductive output up to 310 days posttreatment. Both formulations induced anti-GnRH antibody titres in 100% of rats and significantly impaired fertility compared to control animals. Following treatment with MAF-IMX294 and MAF-IMX294P 0 of 9 and 1 of 10 females respectively produced litters following the first mating challenge 45 days posttreatment, compared to 9 of 9 control animals. Across the whole 310 day study period 7 of 9 females from the MAF-IMX294 group and 10 of 10 females in the MAF-IMX294P group became fertile, producing at least one litter throughout six mating challenges. No significant differences were found between the two formulations in antibody titre response or duration of contraceptive effect, with an average time to first pregnancy of 166 days for MAFIMX294 and 177 days for MAF-IMX294P for all females that became fertile. Following treatment with MAF-IMX294 and MAF-IMX294P the first litter produced post-infertility in treated females was significantly smaller than in control animals. This indicates treatment with immunocontraceptives may induce an overall suppression of fecundity extending past an initial infertility effect. This increases the potential long-term impact of these immunocontraceptives in multiparous species such as commensal rodents

    Long-term effect of a GnRH-based immunocontraceptive on feral cattle in Hong Kong

    Get PDF
    Increasing human-wildlife conflicts worldwide are driving the need for multiple solutions to reducing “problem” wildlife and their impacts. Fertility control is advocated as a non-lethal tool to manage free-living wildlife and in particular to control iconic species. Injectable immunocontraceptives, such as GonaCon, stimulate the immune system to produce antibodies against the gonadotrophin-releasing hormone (GnRH), which in turn affects the release of reproductive hormones in mammals. Feral cattle (Bos indicus or Bos taurus) in Hong Kong are an iconic species whose numbers and impacts on human activities have increased over the last decade. Previous studies have proven that a primer vaccination and booster dose of GonaCon in female cattle are safe and effective in reducing pregnancy levels one year post-treatment. The aims of this project were 1. to evaluate the longevity of the effect of GonaCon in feral cattle up to four years post-vaccination; and 2. to assess if a second booster dose of GonaCon, administered at either two or four years post-vaccination, extends the contraceptive effect in this species. Vaccination with Gona- Con, administered as a primer and booster dose, was effective in causing significant infertility in free-living cattle for at least three years post-vaccination, with the percentage of pregnant animals in the vaccinated group decreasing from 76% at vaccination to 35%, 19% and 7% in years 2, 3 and 4 post-vaccination, compared with 67% at vaccination to 50%, 57% and 14% respectively in the control group. A second booster dose of GonaCon administered either 2 or 4 years after vaccination rendered 100% of the Treated cattle infertile for at least another year. These results suggested that vaccination with GonaCon can reduce feral cattle population growth and that a second booster dose can extend the longevity of the contraceptive effect

    Long-term effect of a GnRH-based immunocontraceptive on feral cattle in Hong Kong

    Get PDF
    Increasing human-wildlife conflicts worldwide are driving the need for multiple solutions to reducing “problem” wildlife and their impacts. Fertility control is advocated as a non-lethal tool to manage free-living wildlife and in particular to control iconic species. Injectable immunocontraceptives, such as GonaCon, stimulate the immune system to produce antibodies against the gonadotrophin-releasing hormone (GnRH), which in turn affects the release of reproductive hormones in mammals. Feral cattle (Bos indicus or Bos taurus) in Hong Kong are an iconic species whose numbers and impacts on human activities have increased over the last decade. Previous studies have proven that a primer vaccination and booster dose of GonaCon in female cattle are safe and effective in reducing pregnancy levels one year post-treatment. The aims of this project were 1. to evaluate the longevity of the effect of GonaCon in feral cattle up to four years post-vaccination; and 2. to assess if a second booster dose of GonaCon, administered at either two or four years post-vaccination, extends the contraceptive effect in this species. Vaccination with Gona- Con, administered as a primer and booster dose, was effective in causing significant infertility in free-living cattle for at least three years post-vaccination, with the percentage of pregnant animals in the vaccinated group decreasing from 76% at vaccination to 35%, 19% and 7% in years 2, 3 and 4 post-vaccination, compared with 67% at vaccination to 50%, 57% and 14% respectively in the control group. A second booster dose of GonaCon administered either 2 or 4 years after vaccination rendered 100% of the Treated cattle infertile for at least another year. These results suggested that vaccination with GonaCon can reduce feral cattle population growth and that a second booster dose can extend the longevity of the contraceptive effect

    Effect of vaccination with a novel GnRH-based immunocontraceptive on immune responses and fertility in rats

    Get PDF
    1. As human-wildlife conflicts increase worldwide, novel methods are required for mitigating these conflicts. Fertility control, based on immunocontraceptives, has emerged as an alternative option to lethal methods for managing wildlife. 2. Immunocontraceptives are vaccines that generate an immune response to key components of an animal\u27s reproductive system. Some of these vaccines target the gonadotropin-releasing hormone (GnRH) and have been used successfully as contraceptives for many wildlife species. However, the need to capture animals for treatment limits the field applications of injectable vaccines. The availability of orally delivered immunocontraceptives would increase the breadth of applications of fertility control for wildlife management. 3. This study explored a new approach to developing an oral immunocontraceptive, exploiting the bioadhesive and immunologically active properties of killed Mycobacterium avium cell wall fragments (MAF). The MAF was conjugated to a GnRH recombinant protein called IMX294, used as a GnRH-specific immunogen. 4. An initial trial using the MAF-IMX294 conjugate provided the first evidence that an orally delivered immunocontraceptive vaccine could generate anti-GnRH antibody titres in laboratory rats. 5. Increasing the dose and frequency of vaccine administered to rats, in a second trial, enhanced the immune response, eliciting titres that reduced the proportion of females giving birth. This provided the first evidence of the contraceptive effect of an oral anti-GnRH vaccine. 6. Future work is required to further increase the immunogenic effect of the oral vaccine and to establish a dosing schedule that is effective for practical field applications

    Evaluation of antibody response to an adjuvanted hapten-protein vaccine as a potential inhibitor of sexual maturation for farmed Atlantic salmon

    Get PDF
    An experimental contraceptive vaccine was evaluated in Atlantic salmon (Salmo salar). A peptide derived from the beta subunit of luteinizing hormone (LH) was conjugated to two different carrier proteins, bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH), and formulated with one of four immunostimulants in a water-in-oil emulsion. Specific antibody responses to the peptide and each carrier protein were evaluated. While the antibody response to KLH was stronger than the response to BSA, both carrier proteins stimulated comparable antibody responses to the LH peptide. The immunostimulant proved to be more important for enhancing the LH peptide antibody response than the carrier protein selection; vaccines containing a combination of Aeromonas salmonicida and Vibrio anguillarum stimulated significantly greater LH peptide antibody production than any of the other three immunostimulants evaluated at 12 weeks post-vaccination. This study provides proof-of-concept for specific antibody production against a hapten-carrier protein antigen in Atlantic salmon and reinforces the importance of vaccine immunostimulant selection

    Effects of immunization against bone morphogenetic protein-15 and growth differentiation factor-9 on ovarian function in mares

    Get PDF
    Currently there is no contraceptive vaccine that can cause permanent sterility in mares. This study investigates the effect of vaccination against oocyte-specific growth factors, Bone Morphogenetic Protein 15 (BMP-15) and Growth Differentiation Factor 9 (GDF-9), on ovarian function of mares. It was hypothesized that immunization against these growth factors would prevent ovulation and/or accelerate depletion of the oocyte reserve. For this study, 30 mares were randomly assigned to three groups (n=10/group) and vaccinated with BMP-15 or GDF-9 peptides conjugated to KLH and adjuvant, or a control of phosphate buffered saline and adjuvant. Horses received vaccinations at weeks 0, 6, 12, and 18. Ovarian activity and estrous behavior were evaluated 3 days a week via ultrasonography and interaction with a stallion. The study was initiated on March1, 2016. Upon evaluation of ovulation rate, the GDF-9 group did not have a difference (P=0.66) in ovulation rate when compared to controls (10.8 and 10.0 ovulations, respectively), but the number of ovulations in the BMP-15 group was less (P=0.02; 4.9 ovulations). Average follicle size prior to ovulation was less (P \u3c 0.0001) in both treatment groups compared to controls. Estrous behavior was altered in both the BMP-15 and GDF-9 groups compared to controls after the second vaccination (P=0.05 and 0.03, respectively). Although further research is required to determine the continued effects of vaccination against GDF-9 on ovulation rates, these results indicate that vaccination against BMP-15 and GDF-9 could serve as a contraceptive in wild horse populations

    Fertility control for managing free-roaming feral cattle in Hong Kong

    Get PDF
    Human-wildlife conflicts are increasing worldwide. For instance, growing numbers of free-roaming feral cattle in Hong Kong are causing traffic accidents and damaging crops. Public antipathy towards lethal methods to manage wildlife has promoted research into alternative options, such as fertility control. The aims of this study were to assess the potential side effects and effectiveness of the injectable immunocontraceptive vaccine GonaCon on free-roaming feral cattle in Hong Kong. Sixty female cattle were captured and randomly assigned to treatment or control groups. Treatment animals were administered one dose of GonaCon, followed by a booster dose 3–6 months later. Control animals were administered an equivalent dose of a saline solution. The side effects of GonaCon were assessed by monitoring injection site, body condition and body weight at vaccination, at the booster stage and one year after initial vaccination. At the same times, blood samples were collected to quantify antibodies to the vaccine and to assess pregnancy status. GonaCon did not affect the body weight or body condition of cattle and had no adverse side effects such as injection site reactions, limping or abnormal behaviour. GonaCon did not appear to interrupt ongoing pregnancies but reduced fertility significantly: the proportion of pregnant animals in the GonaCon-treated group decreased from 76% at initial vaccination to 6% one year after vaccination, compared to 67% and 57% respectively in the control group. There was no difference between antibody titres at the booster stage or one year post vaccination, suggesting the booster dose maintained antibody levels. This study confirmed that GonaCon is safe and effective in inducing infertility in feral cattle, with a booster dose critical for maintaining infertility

    Reimmunization increases contraceptive effectiveness of gonadotropin-releasing hormone vaccine (GonaCon-Equine) in freeranging horses (\u3ci\u3eEquus caballus\u3c/i\u3e): Limitations and side effects

    Get PDF
    Wildlife and humans are increasingly competing for resources worldwide, and a diverse, innovative, and effective set of management tools is needed. Controlling abundance of wildlife species that are simultaneously protected, abundant, competitive for resources, and in conflict with some stakeholders but beloved by others, is a daunting challenge. Free-ranging horses (Equus caballus) present such a conundrum and managers struggle for effective tools for regulating their abundance. Controlling reproduction of female horses presents a potential alternative. During 2009±2017, we determined the long-term effectiveness of GnRH vaccine (GonaCon-Equine) both as a single immunization and subsequent reimmunization on reproduction and side effects in free-ranging horses. At a scheduled management roundup in 2009, we randomly assigned 57 adult mares to either a GonaCon-Equine treatment group (n = 29) or a saline control group (n = 28). In a second roundup in 2013, we administered a booster vaccination to these same mares. We used annual ground observations to estimate foaling proportions, social behaviors, body condition, and injection site reactions. We found this vaccine to be safe for pregnant females and neonates, with no overt deleterious behavioral side effects during the breeding season. The proportion of treated mares that foaled following a single vaccination was lower than that for control mares for the second (P = 0.03) and third (P = 0.08) post-treatment foaling seasons but was similar (P = 0.67) to untreated mares for the fourth season, demonstrating reversibility of the primary vaccine treatment. After two vaccinations, however, the proportion of females giving birth was lower (
    • …
    corecore