93 research outputs found

    Formation of chondrules in radiative shock waves I. First results, spherical dust particles, stationary shocks

    Full text link
    The formation of chondrules in the protoplanetary nebulae causes many questions concerning the formation process, the source of energy for melting the rims, and the composition of the origin material. The aim of this work is to explore the heating of the chondrule in a single precursor as is typical for radiation hydrodynamical shock waves. We take into account the gas-particle friction for the duration of the shock transition and calculate the heat conduction into the chondrules. These processes are located in the protoplanetary nebulae at a region around 2.5 AU, which is considered to be the most likely place of chondrule formation. The present models are a first step towards computing radiative shock waves occurring in a particle-rich environment. We calculated the shock waves using one-dimensional, time-independent equations of radiation hydrodynamics involving realistic gas and dust opacities and gas-particle friction. The evolution of spherical chondrules was followed by solving the heat conduction equation on an adaptive grid. The results for the shock-heating event are consistent with the cosmochemical constraints of chondrule properties. The calculations yield a relative narrow range for density or temperature to meet the requested heating rates of R>104Kh1R > 10^4\,K\, h^{-1} as extracted from cosmochemical constraints. Molecular gas, opacities with dust, and a protoplanetary nebula with accretion are necessary requirements for a fast heating process. The thermal structure in the far post-shock region is not fully consistent with experimental constraints on chondrule formation since the models do not include additional molecular cooling processes.Comment: 8 pages,5 figure

    Acceleration of cosmic rays in supernova-remnants

    Get PDF
    It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism

    A cosmic ray driven instability

    Get PDF
    The interaction between energetic charged particles and thermal plasma which forms the basis of diffusive shock acceleration leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homogeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves

    Supernova Blastwaves in Low-density Hot Media: a Mechanism for Spatially Distributed Heating

    Get PDF
    Most supernovae are expected to explode in low-density hot media, particularly in galactic bulges and elliptical galaxies. The remnants of such supernovae, though difficult to detect individually, can be profoundly important in heating the media on large scales. We characterize the evolution of this kind of supernova remnants, based on analytical approximations and hydrodynamic simulations. We generalize the standard Sedov solution to account for both temperature and density effects of the ambient media. Although cooling can be neglected, the expansion of such a remnant deviates quickly from the standard Sedov solution and asymptotically approaches the ambient sound speed as the swept-up thermal energy becomes important. The relatively steady and fast expansion of the remnants over large volumes provides an ideal mechanism for spatially distributed heating, which may help to alleviate the over-cooling problem of hot gas in groups and clusters of galaxies as well as in galaxies themselves. The simulations were performed with the FLASH code.Comment: 12 pages, 3 figures, 1 table, accepted for ApJ, uses aaste

    Approximate supernova remnant dynamics with cosmic ray production

    Get PDF
    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation

    Time-dependent galactic winds I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration

    Full text link
    Cosmic rays are transported out of the galaxy by diffusion and advection due to streaming along magnetic field lines and resonant scattering off self-excited MHD waves. Thus momentum is transferred to the plasma via the frozen-in waves as a mediator assisting the thermal pressure in driving a galactic wind. The bulk of the Galactic CRs are accelerated by shock waves generated in SNRs, a significant fraction of which occur in OB associations on a timescale of several 10710^7 years. We examine the effect of changing boundary conditions at the base of the galactic wind due to sequential SN explosions on the outflow. Thus pressure waves will steepen into shock waves leading to in situ post-acceleration of GCRs. We performed simulations of galactic winds in flux tube geometry appropriate for disk galaxies, describing the CR diffusive-advective transport in a hydrodynamical fashion along with the energy exchange with self-generated MHD waves. Our time-dependent CR hydrodynamic simulations confirm the existence of time asymptotic outflow solutions (for constant boundary conditions). It is also found that high-energy particles escaping from the Galaxy and having a power-law distribution in energy (E2.7\propto E^{-2.7}) similar to the Milky Way with an upper energy cut-off at 1015\sim 10^{15} eV are subjected to efficient and rapid post-SNR acceleration in the lower galactic halo up to energies of 1017101810^{17} - 10^{18} eV by multiple shock waves propagating through the halo. The particles can gain energy within less than 33\,kpc from the galactic plane corresponding to flow times less than 51065\cdot 10^6\,years. The mechanism described here offers a natural solution to explain the power-law distribution of CRs between the "knee" and the "ankle". The mechanism described here offers a natural and elegant solution to explain the power-law distribution of CRs between the "knee" and the "ankle".Comment: 15 pages, 7 figure

    Solar-Like Cycle in Asymptotic Giant Branch Stars

    Get PDF
    I propose that the mechanism behind the formation of concentric semi-periodic shells found in several planetary nebulae (PNs) and proto-PNs, and around one asymptotic giant branch (AGB) star, is a solar-like magnetic activity cycle in the progenitor AGB stars. The time intervals between consecutive ejection events is about 200-1,000 years, which is assumed to be the cycle period (the full magnetic cycle can be twice as long, as is the 22-year period in the sun). The magnetic field has no dynamical effects; it regulates the mass loss rate by the formation of magnetic cool spots. The enhanced magnetic activity at the cycle maximum results in more magnetic cool spots, which facilitate the formation of dust, hence increasing the mass loss rate. The strong magnetic activity implies that the AGB star is spun up by a companion, via a tidal or common envelope interaction. The strong interaction with a stellar companion explains the observations that the concentric semi-periodic shells are found mainly in bipolar PNs.Comment: 10 pages, submitted to Ap

    Detection of the evolutionary stages of variables in M3

    Full text link
    The large number of variables in M3 provides a unique opportunity to study an extensive sample of variables with the same apparent distance modulus. Recent, high accuracy CCD time series of the variables show that according to their mean magnitudes and light curve shapes, the variables belong to four separate groups. Comparing the properties of these groups (magnitudes and periods) with horizontal branch evolutionary models, we conclude that these samples can be unambiguously identified with different stages of the horizontal branch stellar evolution. Stars close to the zero age horizontal branch (ZAHB) show Oosterhoff I type properties, while the brightest stars have Oosterhoff II type statistics regarding their mean periods and RRab/RRc number ratios. This finding strengthens the earlier suggestion of Lee et al. (1990) connecting the Oosterhoff dichotomy to evolutionary effects, however, it is unexpected to find large samples of both of the Oosterhoff type within a single cluster, which is, moreover, the prototype of the Oosterhoff I class globular clusters. The very slight difference between the Fourier parameters of the stars (at a given period) in the three fainter samples spanning over about 0.15 mag range in M_V points to the limitations of any empirical methods which aim to determine accurate absolute magnitudes of RR Lyrae stars solely from the Fourier parameters of the light curves.Comment: 4 pages, 4 figures. Submitted to Astrophys. J. Letter

    Time-dependent galactic winds

    Full text link
    Cosmic rays (CRs) are transported out of the galaxy by diffusion and advection due to streaming along magnetic field lines and resonant scattering off self-excited Magneto-Hydro-Dynamic (MHD) waves. Thus momentum is transferred to the plasma via the frozen-in waves as a mediator assisting the thermal pressure in driving a galactic wind. Galactic CRs (GCRs) are accelerated by shock waves generated in supernova remnants (SNRs), and they propagate from the disc into the halo. Therefore CR acceleration in the halo strongly depends on the inner disc boundary conditions. We performed hydrodynamical simulations of galactic winds in flux tube geometry appropriate for disc galaxies, describing the CR diffusive-advective transport in a hydrodynamical fashion (by taking appropriate moments of the Fokker-Planck equation) along with the energy exchange with self-generated MHD waves. Our time-dependent CR hydrodynamic simulations confirm that the evolution of galactic winds with feedback depends on the structure of the galactic halo. In case of a wind-structured halo, the wind breaks down after the last super nova (SN) has exploded. The mechanism described here offers a natural and elegant solution to explain the power-law distribution of CRs between the `knee' and the `ankle'. The transition will be naturally smooth, because the Galactic CRs accelerated at SN shocks will be `post-accelerated' by shocks generated at the inner boundary and travelling through the halo.Comment: Galaxies: evolution -- ISM: jets and outflows -- Galaxies: starburst -- supernova remnants -- cosmic ray
    corecore