174 research outputs found

    Early galaxy formation and its large-scale effects

    Get PDF
    Galaxy formation in the first billion years mark a time of great upheaval in the history of the Universe: the first galaxies started both the `metal age' as well as the era of cosmic reionization. I will start by reviewing the dust production mechanisms and dust masses for high-redshift galaxies which will be revolutionized in the ALMA era. I will then show how the JWST will be an invaluable experiment to shed light on the impact of reionization feedback on early galaxy formation. As we look forward towards the era of 21cm cosmology, I will highlight the crucial and urgent synergies required between 21cm facilities (such as the SKA) and galaxy experiments (JWST, E-ELT and Subaru to name a few) to understand the physics of the epoch of reionization that remains a crucial frontier in the field of astrophysics and physical cosmology. Time permitting, I will try to give a flavour of how the assembly of early galaxies, accessible with the forthcoming JWST, can provide a powerful testbed for Dark Matter models beyond `Cold Dark Matter'

    Cosmic Lighthouses : Unveiling the nature of high-redshift galaxies

    Get PDF
    We are in the golden age for the search for high-redshift galaxies, made possible by a combination of new instruments and innovative search techniques. One of the major aims of such searches is to constrain the epoch of reionization (EoR), which marks the second major change in the ionization state of the Universe. Understanding the EoR is difficult since whilst it is galaxy evolution which drives reionization, reionization itself influences galaxy evolution through feedback effects. Unraveling the interplay of reionization and galaxy evolution is further complicated by of a lack of understanding of the metal enrichment and dust distribution in high redshift galaxies. To this end, a class of galaxies called Lyman Alpha Emitters (LAEs) have been gaining enormous popularity as probes of all these three processes. In this thesis, we couple state of the art cosmological SPH simulations (GADGET-2) with a physically motivated, self-consistent model for LAEs, so as to be able to understand the importance of the intergalactic medium (IGM) ionization state, dust and peculiar velocities in shaping their observed properties. By doing so, the aim is to gain insight on the nature of LAEs, put precious constraints on their elusive physical properties and make predictions for future instruments such as the Atacama Large Millimeter Array (ALMA). Using our LAE model in conjunction with a code that builds the MW merger tree (GAMETE), we build a bridge between the high-redshift and the local Universe. We also use SPH simulations (GADGET-2) to study the nature of the earliest galaxies that have been detected as of yet, place constraints on their contribution to reionization, and predict their detectability using the next generation of instruments, such as the James Web Space Telescope (JWST).Comment: PhD Thesi

    Early galaxy formation in warm dark matter cosmologies

    Full text link
    We present a framework for high-redshift (z7z \geq 7) galaxy formation that traces their dark matter (DM) and baryonic assembly in four cosmologies: Cold Dark Matter (CDM) and Warm Dark Matter (WDM) with particle masses of mx=m_x = 1.5, 3 and 5 keV{\rm keV}. We use the same astrophysical parameters regulating star formation and feedback, chosen to match current observations of the evolving ultra violet luminosity function (UV LF). We find that the assembly of observable (with current and upcoming instruments) galaxies in CDM and mx3keVm_x \geq 3 {\rm keV} WDM results in similar halo mass to light ratios (M/L), stellar mass densities (SMDs) and UV LFs. However the suppression of small-scale structure leads to a notably delayed and subsequently more rapid stellar assembly in the 1.5keV1.5 {\rm keV} WDM model. Thus galaxy assembly in mx2keVm_x \leq 2 {\rm keV} WDM cosmologies is characterized by: (i) a dearth of small-mass halos hosting faint galaxies; and (ii) a younger, more UV bright stellar population, for a given stellar mass. The higher M/L ratio (effect ii) partially compensates for the dearth of small-mass halos (effect i), making the resulting UV LFs closer to CDM than expected from simple estimates of halo abundances. We find that the redshift evolution of the SMD is a powerful probe of the nature of DM. Integrating down to a limit of MUV=16.5M_{UV} =-16.5 for the James Webb Space Telescope (JWST), the SMD evolves as log\log(SMD)0.63(1+z)\propto -0.63 (1+z) in mx=1.5keVm_x = 1.5 {\rm keV} WDM, as compared to log\log(SMD)0.44(1+z)\propto -0.44 (1+z) in CDM. Thus high-redshift stellar assembly provides a powerful testbed for WDM models, accessible with the upcoming JWST.Comment: Accepted for publication in Ap

    The habitability of the Universe through 13 billion years of cosmic time

    Get PDF
    The field of astrobiology has made tremendous progress in modelling galactic-scale habitable zones which offer a stable environment for life to form and evolve in complexity. Recently, this idea has been extended to cosmological scales by studies modelling the habitability of the local Universe in its entirety (e.g. Dayal et al. 2015; Li & Zhang 2015). However, all of these studies have solely focused on estimating the potentially detrimental effects of either Type II supernovae (SNII) or Gamma Ray Bursts (GRBs), ignoring the contributions from Type Ia supernovae (SNIa) and active galactic nuclei (AGN). In this study we follow two different approaches, based on (i) the amplitude of deleterious radiation and (ii) the total planet-hosting volume irradiated by deleterious radiation. We simultaneously track the contributions from the key astrophysical sources (SNII, SNIa, AGN and GRBs) for the entire Universe, for both scenarios, to determine its habitability through 13.8 billion years of cosmic time. We find that SNII dominate the total radiation budget and the volume irradiated by deleterious radiation at any cosmic epoch closely followed by SNIa (that contribute half as much as SNII), with GRBs and AGN making up a negligible portion (<1%). Secondly, as a result of the total mass in stars (or the total number of planets) slowly building-up with time and the total deleterious radiation density, and volume affected, falling-off after the first 3 billion years, we find that the Universe has steadily increased in habitability through cosmic time. We find that, depending on the exact model assumptions, the Universe is 2.5 to 20 times more habitable today compared to when life first appeared on the Earth 4 billion years ago. We find that this increase in habitability will persist until the final stars die out over the next hundreds of billions of years.Comment: Under refereeing in Ap

    Constraining dust formation in high-redshift young galaxies

    Full text link
    Core-collapse supernovae (SNe) are believed to be the first significant source of dust in the Universe. Such SNe are expected to be the main dust producers in young high-redshift Lyman α\alpha emitters (LAEs) given their young ages, providing an excellent testbed of SN dust formation models during the early stages of galaxy evolution. We focus on the dust enrichment of a specific, luminous LAE (Himiko, z6.6z\simeq 6.6) for which a stringent upper limit of 52.1 μ52.1~\muJy (3σ3\sigma) has recently been obtained from ALMA continuum observations at 1.2 mm. We predict its submillimetre dust emission using detailed models that follow SN dust enrichment and destruction and the equilibrium dust temperature, and obtain a plausible upper limit to the dust mass produced by a single SN: md,SN<0.15m_\mathrm{d,SN} < 0.15--0.45 M_\odot, depending on the adopted dust optical properties. These upper limits are smaller than the dust mass deduced for SN 1987A and that predicted by dust condensation theories, implying that dust produced in SNe are likely to be subject to reverse shock destruction before being injected into the interstellar medium. Finally, we provide a recipe for deriving md,SNm_\mathrm{d,SN} from submillimetre observations of young, metal poor objects wherein condensation in SN ejecta is the dominant dust formation channel.Comment: 10 pages, 3 figures, accepted for publication in MNRA

    Coevolution of metallicity and star formation in galaxies to z=3.7: I. A fundamental plane

    Get PDF
    With the aim of understanding the coevolution of star formation rate (SFR), stellar mass (M*), and oxygen abundance (O/H) in galaxies up to redshift z=3.7, we have compiled the largest available dataset for studying Metallicity Evolution and Galaxy Assembly (MEGA); it comprises roughly 1000 galaxies with a common O/H calibration and spans almost two orders of magnitude in metallicity, a factor of 10^6 in SFR, and a factor of 10^5 in stellar mass. From a Principal Component Analysis, we find that the 3-dimensional parameter space reduces to a Fundamental Plane of Metallicity (FPZ) given by 12+log(O/H) = -0.14 log (SFR) + 0.37 log (M*) + 4.82. The mean O/H FPZ residuals are small (0.16 dex) and consistent with trends found in smaller galaxy samples with more limited ranges in M*, SFR, and O/H. Importantly, the FPZ is found to be redshift-invariant within the uncertainties. In a companion paper, these results are interpreted with an updated version of the model presented by Dayal et al. (2013).Comment: 19 pages, 10 figures, 4 tables, accepted for publication in MNRA

    The dust enrichment of early galaxies in the JWST and ALMA era

    Full text link
    Recent observations with the James Webb Space Telescope are yielding tantalizing hints of an early population of massive, bright galaxies at z>10z > 10, with Atacama Large Millimeter Array (ALMA) observations indicating significant dust masses as early as z7z\sim 7. To understand the implications of these observations, we use the DELPHI semi-analytic model that jointly tracks the assembly of dark matter halos and their baryons, including the key processes of dust enrichment. Our model employs only two redshift- and mass-independent free parameters (the maximum star-formation efficiency and the fraction of supernova energy that couples to gas) that are tuned against all available galaxy data at z59z \sim 5-9 before it is used to make predictions up to z20z \sim 20. Our key results are: (i) the model under-predicts the observed ultraviolet luminosity function (UV LF) at z>12z > 12; observations at z>16z>16 lie close to, or even above, a "maximal" model where all available gas is turned into stars; (ii) UV selection would miss 34\% of the star formation rate density at z5z \sim 5, decreasing to 17\% by z10z \sim 10 for bright galaxies with MUV<19\rm{M_{UV}} < -19; (iii) the dust mass (MdM_d) evolves with the stellar mass (MM_*) and redshift as log(Md)=1.194log(M)+0.0975z5.433\log(M_d) = 1.194\log(M_*) + 0.0975z - 5.433; (iv) the dust temperature increases with stellar mass, ranging between 303330-33 K for M10911MM_* \sim 10^{9-11}M_\odot galaxies at z7z \sim 7. Finally, we predict the far infrared LF at z520z \sim 5-20, testable with ALMA observations, and caution that spectroscopic redshifts and dust masses must be pinned down before invoking unphysical extrema in galaxy formation models
    corecore