350 research outputs found

    Gochlear implants from model to patients

    Get PDF
    Cochlear implants (CI) are by now an accepted form of rehabilitation for profoundly deaf patients. CI users regain part of their hearing by direct electrical stimulation of the auditory nerve. With modern cochlear implants most users are able to achieve open-set speech understanding and are able to use the telephone. There are, however, still a lot of unanswered questions regarding the optimal design, stimulation paradigms, fitting methods and objective measurements. With the development of a realistic computer model of the implanted cochlea, as described in this thesis, these questions are analyzed from a fundamental perspective. This realistic model enables the analysis of clinical devices and gives insight in discrepancies between human and animal results. Insights gained from the model are used to improve clinical practice. Based on the model outcomes presented the characteristics of an improved electrode design were defined, and finally tested in a temporal bone study.UBL - phd migration 201

    Residual hearing affects contralateral routing of signals in cochlear implant users

    Get PDF
    Introduction: Contralateral routing of signals (CROS) can be used to eliminate the head shadow effect. In unilateral cochlear implant (CI) users, CROS can be achieved with placement of a microphone on the contralateral ear, with the signal streamed to the CI ear. CROS was originally developed for unilateral CI users without any residual hearing in the nonimplanted ear. However, the criteria for implantation are becoming progressively looser, and the nonimplanted ear can have substantial residual hearing. In this study, we assessed how residual hearing in the contralateral ear influences CROS effectiveness in unilateral CI users. Methods: In a group of unilateral CI users (N = 17) with varying amounts of residual hearing, we deployed free-field speech tests to determine the effects of CROS on the speech reception threshold (SRT) in amplitude-modulated noise. We compared 2 spatial configurations: (1) speech presented to the CROS ear and noise to the CI ear (SCROSNCI) and (2) the reverse (SCINCROS). Results: Compared with the use of CI only, CROS improved the SRT by 6.4 dB on average in the SCROSNCI configuration. In the SCINCROS configuration, however, CROS deteriorated the SRT by 8.4 dB. The benefit and disadvantage of CROS both decreased significantly with the amount of residual hearing. Conclusion: CROS users need careful instructions about the potential disadvantage when listening in conditions where the CROS ear mainly receives noise, especially if they have residual hearing in the contralateral ear. The CROS device should be turned off when it is on the noise side (SCINCROS). CI users with residual hearing in the CROS ear also should understand that contralateral amplification (i.e., a bimodal hearing solution) will yield better results than a CROS device. Unilateral CI users with no functional contralateral hearing should be considered the primary target population for a CROS device.Disorders of the head and nec

    The temporal fine structure of background noise determines the benefit of bimodal hearing for recognizing speech

    Get PDF
    Cochlear implant (CI) users have more difficulty understanding speech in temporally modulated noise than in steady-state (SS) noise. This is thought to be caused by the limited low-frequency information that CIs provide, as well as by the envelope coding in CIs that discards the temporal fine structure (TFS). Contralateral amplification with a hearing aid, referred to as bimodal hearing, can potentially provide CI users with TFS cues to complement the envelope cues provided by the CI signal. In this study, we investigated whether the use of a CI alone provides access to only envelope cues and whether acoustic amplification can provide additional access to TFS cues. To this end, we evaluated speech recognition in bimodal listeners, using SS noise and two amplitude-modulated noise types, namely babble noise and amplitude-modulated steady-state (AMSS) noise. We hypothesized that speech recognition in noise depends on the envelope of the noise, but not on its TFS when listening with a CI. Secondly, we hypothesized that the amount of benefit gained by the addition of a contralateral hearing aid depends on both the envelope and TFS of the noise. The two amplitude-modulated noise types decreased speech recognition more effectively than SS noise. Against expectations, however, we found that babble noise decreased speech recognition more effectively than AMSS noise in the CI-only condition. Therefore, we rejected our hypothesis that TFS is not available to CI users. In line with expectations, we found that the bimodal benefit was highest in babble noise. However, there was no significant difference between the bimodal benefit obtained in SS and AMSS noise. Our results suggest that a CI alone can provide TFS cues and that bimodal benefits in noise depend on TFS, but not on the envelope of the noise.Disorders of the head and nec

    Learning Effects in Psychophysical Tests of Spectral and Temporal Resolution

    Get PDF
    Disorders of the head and nec

    A 14b 200MS/s DAC with SFDR>78dBc, IM3

    Get PDF
    A 14-bit 200MS/s current-steering DAC with a novel digital calibration technique called dynamic-mismatch mapping (DMM) is presented. Compared to traditional static-mismatch mapping and dynamic element matching, DMM reduces the nonlinearities caused by both amplitude and timing errors, without noise penalty. This 0.14µm CMOS DAC achieves a state-of-the-art performance of SFDR>78dBc, IM

    The effect of stimulus level on excitation patterns of individual electrode contacts in cochlear implants

    Get PDF
    Objective: Spread of excitation (SOE) in cochlear implants (CI) is a measure linked to the specificity of the electrode-neuron interface. The SOE can be estimated objectively by electrically evoked compound action potential (eCAP) measurements, recorded with the forward-masking paradigm in CI recipients. The eCAP amplitude can be plotted as a function of the roving masker, resulting in a spatial forward masking (SFM) curve. The eCAP amplitudes presented in the SFM curves, however, reflect an interaction between a masker and probe stimulus, making the SFM curves less reliable for examining SOE effects at the level of individual electrode contacts. To counter this, our previously published deconvolution method estimates the SOE at the electrode level by deconvolving the SFM curves (Biesheuvel et al., 2016). The aim of this study was to investigate the effect of stimulus level on the SOE of individual electrode contacts by using SFM curves analyzed with our deconvolution method.Design: Following the deconvolution method, theoretical SFM curves were calculated by the convolution of parameterized excitation density profiles (EDP) attributable to masker and probe stimuli. These SFM curves were subsequently fitted to SFM curves from CI recipients by iteratively adjusting the EDPs. We first improved the EDP parameterization to account for stimulus-level effects and validated this updated parameterization by comparing the EDPs to simulated excitation density profiles (sEDP) from our computational model of the human cochlea. Secondly, we analyzed SFM curves recorded with varying probe stimulus level in 24 patients, all implanted with a HiFocus Mid-Scala electrode array. With the deconvolution method extended to account for stimulus level effects, the SFM curves measured with varying probe stimulus levels were converted into EDPs to elucidate the effects of stimulus level on the SOE.Results: The updated EDP parameterization was in good agreement with the sEDPs from the computational model. Using the extended deconvolution method, we found that higher stimulus levels caused significant widening of EDPs ( p < 0.001). The stimulus level also affected the EDP amplitude ( p < 0.001) and the center of excitation ( p < 0.05). Concerning the raw SFM curves, an increase in current level led to higher SFM curve amplitudes ( p < 0.001), while the width of the SFM curves did not change significantly ( p = 0.62).Conclusion: The extended deconvolution method enabled us to study the effect of stimulus level on excitation areas in an objective way, as the EDP parameterization was in good agreement with sEDPs from our computational model. The analysis of SFM curves provided new insights into the effect of the stimulus level on SOE. We found that the EDPs, and therefore the SOE, mainly became wider when the stimulus level increased. Lastly, the comparison of the EDP parameterization with simulations in our computation model provided new insights about the validity of the deconvolution method.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )Disorders of the head and nec
    • …
    corecore