246 research outputs found

    Short Communication: Metabolic Syndrome and Adaptogenic Nutritional Supplement "AdMax"

    Get PDF
    Metabolic syndrome manifestations include chronic fatigue, insulin resistance, elevated levels of glucose, lipids and cholesterol in the blood, and overweight. The main targets of nutritional supplement "AdMax" are the activation of energy metabolism and stress counteraction. In addition, the"AdMax" constituents decrease the concentration of blood glucose, enhance glucose utilization by cells, decrease the activity of triglyceride lipase and lower blood cholesterol levels. Comparison of metabolic syndrome manifestations to the activities of "AdMax" constituents argues that "AdMax" can be used as a preventive and treatment remedy for metabolic syndrome

    Selective Plant Extracts and their Combination as the Nutritional Therapeutic Remedies

    Get PDF
    The article is a survey of some plant extracts that possess ability to restore metabolic disturbances evoked by chronic stress. Chronic stress triggers a number of common illnesses, including depression, chronic physical and mental fatigue, neuroses, cardiovascular diseases, ulceration of stomach and intestine, diabetes mellitus, obesity and alcohol abuse. One of the early consequences of chronic stress is the decrease of functional activity of immune system that reduces resistance against infections, allergies, asthma, autoimmune disorders, rheumatoid arthritis. The initial stages of chronic stress consequences are suppression of immune system, disturbances of hormonal balance, hydrocarbon, lipid, and energy metabolism. Applicability of the extracts from Leuzea carthamoides, Rhodiola rosea, Eleutherococcus senticosus, Schizandra chinensis and their combination “AdMax†to counteract the initial stages of chronic stress consequences is considered

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Transcriptome Profiling of Nasonia vitripennis Testis Reveals Novel Transcripts Expressed from the Selfish B Chromosome, Paternal Sex Ratio

    Get PDF
    A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo—normally a female—into a male, thereby insuring transmission of the “selfish” PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex

    Molecular evolutionary trends and biosynthesis pathways in the Oribatida revealed by the genome of Archegozetes longisetosus

    Get PDF
    Background Oribatid mites are a specious order of microarthropods within the subphylum Chelicerata, compromising about 11,000 described species. They are ubiquitously distributed across different microhabitats in all terrestrial ecosystems around the world and were among the first animals colonizing terrestrial habitats as decomposers and scavengers. Noted for their biosynthesis capacities and biochemical diversity, the majority of oribatid mites possess a pair of exocrine opisthonotal oil-glands used for chemical defense and communication. Genomic resources are lacking for oribatids despite their species richness and ecological importance. Results We used a comparative genomic approach to investigate the developmental, sensory and glandular biosynthetic gene repertoire of the clonal, all-female oribatid mite species Archegozetes longisetosus Aoki, a model species used by numerous laboratories for the past 30 years. Here, we present a 190-Mb genome assembly constructed from Nanopore MinION and Illumina sequencing platforms with 23,825 predicted protein-coding genes. Genomic and transcriptional analyses revealed patterns of reduced body segmentation and loss of segmental identity gene abd-A within Acariformes, and unexpected expression of key eye development genes in these eyeless mites across developmental stages. Consistent with the soil dwelling lifestyle, investigation of the sensory genes revealed a species-specific expansion of gustatory receptors, the largest chemoreceptor family in the genome used in olfaction, and evidence of horizontally transferred enzymes used in cell wall degradation of plant and fungal matter, both components of the Archegozetes longisetosus diet. Using biochemical and genomic data, we were able to delineate the backbone biosynthesis of monoterpenes, an important class of compounds found in the major exocrine gland system of Oribatida – the oil glands. Conclusions With the Archegozetes longisetosus genome, we now have the first high-quality, annotated genome of an oribatid mite genome. Given the mite’s strength as an experimental model, the new sequence resources provided here will serve as the foundation for molecular research in Oribatida and will enable a broader understanding of chelicerate evolution

    Reconstruction of a Genetic Pathway Using Transcriptome Mapping in a Metazoan

    Get PDF
    RNA‐seq is a technique that is commonly used to identify downstream elements to a genetic or chemical perturbation. In theory, global transcriptomes contain enough information to perform a full‐fledged genetic analysis of a pathway. Early attempts to do this using microarrays in single celled organisms reported partial reconstruction of a genetic pathway. Using the hypoxia pathway, we show that genetic reconstructions can be performed using global transcriptome data. We obtained the transcriptomes of 5 C. elegans single mutants and 2 double mutants at the young adult stage. We show that in a blinded computational study, we were able to identify relevant genetic relationships between all genes in a pathway. In addition, we identified a core set of ~500 genes that make up the bulk of the C. elegans hypoxia response. Multiple of these genes are directly implicated in the Electron Transport Chain (ETC), metabolism regulation or chemical damage responses

    Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling

    Get PDF
    Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control
    corecore