627 research outputs found

    Phase space measure concentration for an ideal gas

    Full text link
    We point out that a special case of an ideal gas exhibits concentration of the volume of its phase space, which is a sphere, around its equator in the thermodynamic limit. The rate of approach to the thermodynamic limit is determined. Our argument relies on the spherical isoperimetric inequality of L\'{e}vy and Gromov.Comment: 15 pages, No figures, Accepted by Modern Physics Letters

    Non-additivity of Renyi entropy and Dvoretzky's Theorem

    Full text link
    The goal of this note is to show that the analysis of the minimum output p-Renyi entropy of a typical quantum channel essentially amounts to applying Milman's version of Dvoretzky's Theorem about almost Euclidean sections of high-dimensional convex bodies. This conceptually simplifies the (nonconstructive) argument by Hayden-Winter disproving the additivity conjecture for the minimal output p-Renyi entropy (for p>1).Comment: 8 pages, LaTeX; v2: added and updated references, minor editorial changes, no content change

    Average output entropy for quantum channels

    Full text link
    We study the regularized average Renyi output entropy \bar{S}_{r}^{\reg} of quantum channels. This quantity gives information about the average noisiness of the channel output arising from a typical, highly entangled input state in the limit of infinite dimensions. We find a closed expression for \beta_{r}^{\reg}, a quantity which we conjecture to be equal to \Srreg. We find an explicit form for \beta_{r}^{\reg} for some entanglement-breaking channels, and also for the qubit depolarizing channel Δλ\Delta_{\lambda} as a function of the parameter λ\lambda. We prove equality of the two quantities in some cases, in particular we conclude that for Δλ\Delta_{\lambda} both are non-analytic functions of the variable λ\lambda.Comment: 32 pages, several plots and figures; positivity condition added for Theorem on entanglement breaking channels; new result for entrywise positive channel

    Rate of parity violation from measure concentration

    Full text link
    We present a geometric argument determining the kinematic (phase-space) factor contributing to the relative rate at which degrees of freedom of one chirality come to dominate over degrees of freedom of opposite chirality, in models with parity violation. We rely on the measure concentration of a subset of a Euclidean cube which is controlled by an isoperimetric inequality. We provide an interpretation of this result in terms of ideas of Statistical Mechanics.Comment: 10 pages, no figure
    • …
    corecore