28,108 research outputs found

    Comment on "Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn5_5"

    Full text link
    Recently, Rourke et al. reported point-contact spectroscopy results on the heavy-fermion superconductor CeCoIn5_5 [1]. They obtained conductance spectra on the c-axis surfaces of CeCoIn5_5 single crystals. Their major claims are two-fold: CeCoIn5_5 has i) d-wave pairing symmetry and ii) two coexisting order parameter components. In this Comment, we show that these claims are not warranted by the data presented. [1] Rourke et al., Phys. Rev. Lett. 94, 107005 (2005).Comment: accepted for publication in Phys. Rev. Lett., final for

    An inequality involving the second largest and smallest eigenvalue of a distance-regular graph

    Get PDF
    For a distance-regular graph with second largest eigenvalue (resp. smallest eigenvalue) \mu1 (resp. \muD) we show that (\mu1+1)(\muD+1)<= -b1 holds, where equality only holds when the diameter equals two. Using this inequality we study distance-regular graphs with fixed second largest eigenvalue.Comment: 15 pages, this is submitted to Linear Algebra and Applications

    Enhancing the conductance of a two-electron nanomechanical oscillator

    Full text link
    We consider electron transport through a mobile island (i.e., a nanomechanical oscillator) which can accommodate one or two excess electrons and show that, in contrast to immobile islands, the Coulomb blockade peaks, associated with the first and second electrons entering the island, have different functional dependences on the nano-oscillator parameters when the island coupling to its leads is asymmetric. In particular, the conductance for the second electron (i.e., when the island is already charged) is greatly enhanced in comparison to the conductance of the first electron in the presence of an external electric field. We also analyze the temperature dependence of the two conduction peaks and show that these exhibit different functional behaviors.Comment: 16 pages, 5 figure

    Cdk5 Phosphorylates Dopamine D2 Receptor and Attenuates Downstream Signaling

    Get PDF
    The dopamine D2 receptor (DRD2) is a key receptor that mediates dopamine-associated brain functions such as mood, reward, and emotion. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase whose function has been implicated in the brain reward circuit. In this study, we revealed that the serine 321 residue (S321) in the third intracellular loop of DRD2 (D2i3) is a novel regulatory site of Cdk5. Cdk5-dependent phosphorylation of S321 in the D2i3 was observed in in vitro and cell culture systems. We further observed that the phosphorylation of S321 impaired the agonist-stimulated surface expression of DRD2 and decreased G protein coupling to DRD2. Moreover, the downstream cAMP pathway was affected in the heterologous system and in primary neuronal cultures from p35 knockout embryos likely due to the reduced inhibitory activity of DRD2. These results indicate that Cdk5-mediated phosphorylation of S321 inhibits DRD2 function, providing a novel regulatory mechanism for dopamine signaling.X111111sciescopu

    Search for Boosted Dark Matter at ProtoDUNE

    Full text link
    We propose the first experimental test of the inelastic boosted dark matter hypothesis, capitalizing on the new physics potential with the imminent data taking of the ProtoDUNE detectors. More specifically, we explore various experimental signatures at the cosmic frontier, arising in boosted dark matter scenarios, i.e., relativistic, inelastic scattering of boosted dark matter often created by the annihilation of its heavier component which usually comprises of the dominant relic abundance. Although features are unique enough to isolate signal events from potential backgrounds, vetoing a vast amount of cosmic background is rather challenging as the detectors are located on the ground. We argue, with a careful estimate, that such backgrounds nevertheless can be well under control by performing dedicated analyses after data acquisition. We then discuss some phenomenological studies which can be achieved with ProtoDUNE, employing a dark photon scenario as our benchmark dark-sector model.Comment: Supplemental material include
    corecore