183 research outputs found
Multi-parametric flow cytometric and genetic investigation of the peripheral B cell compartment in human type 1 diabetes.
The appearance of circulating islet-specific autoantibodies before disease diagnosis is a hallmark of human type 1 diabetes (T1D), and suggests a role for B cells in the pathogenesis of the disease. Alterations in the peripheral B cell compartment have been reported in T1D patients; however, to date, such studies have produced conflicting results and have been limited by sample size. In this study, we have performed a detailed characterization of the B cell compartment in T1D patients (n = 45) and healthy controls (n = 46), and assessed the secretion of the anti-inflammatory cytokine interleukin (IL)-10 in purified B cells from the same donors. Overall, we found no evidence for a profound alteration of the B cell compartment or in the production of IL-10 in peripheral blood of T1D patients. We also investigated age-related changes in peripheral B cell subsets and confirmed the sharp decrease with age of transitional CD19(+) CD27(-) CD24(hi) CD38(hi) B cells, a subset that has recently been ascribed a putative regulatory function. Genetic analysis of the B cell compartment revealed evidence for association of the IL2-IL21 T1D locus with IL-10 production by both memory B cells (P = 6·4 × 10(-4) ) and islet-specific CD4(+) T cells (P = 2·9 × 10(-3) ). In contrast to previous reports, we found no evidence for an alteration of the B cell compartment in healthy individuals homozygous for the non-synonymous PTPN22 Trp(620) T1D risk allele (rs2476601; Arg(620) Trp). The IL2-IL21 association we have identified, if confirmed, suggests a novel role for B cells in T1D pathogenesis through the production of IL-10, and reinforces the importance of IL-10 production by autoreactive CD4(+) T cells
Human IL-6R(hi)TIGIT(-) CD4(+)CD127(low)CD25(+) T cells display potent in vitro suppressive capacity and a distinct Th17 profile
To date many clinical studies aim to increase the number and/or fitness of CD4⁺CD127CD25⁺ regulatory T cells (Tregs) in vivo to harness their regulatory potential in the context of treating autoimmune disease. Here, we sought to define the phenotype and function of Tregs expressing the highest levels of IL-6 receptor (IL-6R). We have identified a population of CD4⁺CD127CD25⁺ TIGIT⁻ T cells distinguished by their elevated IL-6R expression that lacked expression of HELIOS, showed higher CTLA-4 expression, and displayed increased suppressive capacity compared to IL-6RTIGIT⁺ Tregs. IL-6RTIGIT⁻ CD127CD25⁺ T cells contained a majority of cells demethylated at FOXP3 and displayed a Th17 transcriptional signature, including RORC (RORγt) and the capacity of producing both pro- and anti-inflammatory cytokines, such as IL-17, IL-22 and IL-10. We propose that in vivo, in the presence of IL-6-associated inflammation, the suppressive function of CD4⁺CD127CD25⁺ FOXP3⁺IL-6RTIGIT⁻ T cells is temporarily disarmed allowing further activation of the effector functions and potential pathogenic tissue damage.This research was supported by the JDRF (9-2011-253/5-SRA-2015-130-A-N), the Wellcome Trust (WT091157/107212 and WT083650/Z/07/Z), the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, and the Cambridge Clinical Trials Unit (CCTU). RCF is funded by a JDRF advanced post-doctoral fellowship (3-APF-2015-88-A-N)
In-depth immunophenotyping data of IL-6R on the human peripheral regulatory T cell (Treg) compartment
We provide in this paper a detailed characterization of the human peripheral CD4 CD127CD25 regulatory T cell (Treg) compartment, with a particular emphasis in defining the population expressing higher levels of the IL-6 receptor (IL-6R). We provide a description of the phenotype of this population by assessing both the surface expression by flow cytometry as well as their transcriptional profile and functional features. In addition, we also present functional data describing the responsiveness of these subsets to IL-6 signalling and to IL-2 . The data presented in this paper support the research article "Human IL-6RTIGIT CD4CD127CD25 T cells display potent suppressive capacity and a distinct Th17 profile" (Ferreira RC et al., 2017; doi: 10.1016/j.clim.2017.03.002) [1]
Peptide-MHC Cellular Microarray with Innovative Data Analysis System for Simultaneously Detecting Multiple CD4 T-Cell Responses
Peptide:MHC cellular microarrays have been proposed to simultaneously characterize multiple Ag-specific populations of T cells. The practice of studying immune responses to complicated pathogens with this tool demands extensive knowledge of T cell epitopes and the availability of peptide:MHC complexes for array fabrication as well as a specialized data analysis approach for result interpretation. T cell cultures. A novel statistical methodology was also developed to facilitate batch processing of raw array-like data into standardized endpoint scores, which linearly correlated with total Ag-specific T cell inputs. Applying these methods to analyze Influenza A viral antigen-specific T cell responses, we not only revealed the most prominent viral epitopes, but also demonstrated the heterogeneity of anti-viral cellular responses in healthy individuals. Applying these methods to examine the insulin producing beta-cell autoantigen specific T cell responses, we observed little difference between autoimmune diabetic patients and healthy individuals, suggesting a more subtle association between diabetes status and peripheral autoreactive T cells.The data analysis system is reliable for T cell specificity and functional testing. Peptide:MHC cellular microarrays can be used to obtain multi-parametric results using limited blood samples in a variety of translational settings
Circulating C-peptide levels in living children and young people and pancreatic beta cell loss in pancreas donors across type 1 diabetes disease duration.
This is the author accepted manuscript. The final version is available from the American Diabetes Association via the DOI in this record Data Availability:
Further information about the data is available from the corresponding author upon request.C-peptide declines in type 1 diabetes although many long-duration patients retain low, but detectable levels. Histological analyses confirm that beta cells can remain following type 1 diabetes onset. We explored the trends observed in C-peptide decline in UK Genetic Resource Investigating Diabetes (UK GRID) cohort (N=4,079), with beta cell loss in pancreas donors from the network for Pancreatic Organ donors with Diabetes (nPOD) biobank and the Exeter Archival Diabetes Biobank (EADB) (combined N=235), stratified by recently reported age at diagnosis endotypes (< 7, 7-12, ≥ 13 years) across increasing diabetes durations. The proportion of individuals with detectable C-peptide declined beyond the first year after diagnosis, but this was most marked in the youngest age group (< 1 year duration: age < 7 years: 18/20 (90%), 7-12 years: 107/110 (97%), ≥ 13 years: 58/61 (95%) versus. 1-5 years post diagnosis: < 7 years: 172/522 (33%), 7-12 years: 604/995 (61%), ≥ 13 years: 225/289 (78%)). A similar profile was observed in beta cell loss, with those diagnosed at younger ages experiencing more rapid loss of islets containing insulin-positive (insulin+) beta cells < 1 year post diagnosis: age < 7 years: 23/26 (88%), 7-12 years: 32/33 (97%), ≥ 13 years: 22/25 (88%) versus. 1-5 years post diagnosis: < 7 years: 1/12 (8.3%) ,7-12 years: 7/13 (54%), ≥ 13 years: 7/8 (88%)). These data should be considered in the planning and interpretation of intervention trials designed to promote beta cell retention and function.Diabetes UKDiabetes UKDiabetes UKThe Leona M. & Harry B. Helmsley Charitable TrustJuvenile Diabetes Research FoundationWellcome Trus
Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity
<p>Abstract</p> <p>Background</p> <p>Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting β cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process.</p> <p>Methods</p> <p>Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed.</p> <p>Results</p> <p>The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D.</p> <p>Conclusion</p> <p>Our data strongly suggest that the immune related mechanisms taking place at this early age in the PLN, correlate with homeostatic changes influencing tissue integrity of the adjacent pancreatic tissue. Functional analysis of the identified genes suggested that similar mechanisms might be operating during pre-inflammatory processes deployed in tissues i) hosting parasitic microorganisms and ii) experiencing unrestricted invasion by tumour cells.</p
Chromosome contacts in activated T cells identify autoimmune disease candidate genes
BACKGROUND: Autoimmune disease-associated variants are preferentially found in regulatory regions in immune cells, particularly CD4+ T cells. Linking such regulatory regions to gene promoters in disease-relevant cell contexts facilitates identification of candidate disease genes. RESULTS: Within four hours, activation of CD4+ T cells invokes changes in histone modifications and enhancer RNA transcription that correspond to altered expression of the interacting genes identified by promoter capture Hi-C (PCHi-C). By integrating PCHi-C data with genetic associations for five autoimmune diseases we prioritised 245 candidate genes with a median distance from peak signal to prioritised gene of 153 kb. Just under half (108/245) prioritised genes related to activation-sensitive interactions. This included IL2RA, where allele-specific expression analyses were consistent with its interaction-mediated regulation, illustrating the utility of the approach. CONCLUSIONS: Our systematic experimental framework offers an alternative approach to candidate causal gene identification for variants with cell state-specific functional effects, with achievable sample sizes.This work was funded by the JDRF (9-2011-253), the Wellcome Trust (089989, 091157, 107881), the UK Medical Research Council (MR/L007150/1, MC_UP_1302/5), the UK Biotechnology and Biological Sciences Research Council (BB/J004480/1) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. The research leading to these results has received funding from the European Union’s 7th Framework Programme (FP7/2007-2013) under grant agreement no. 241447 (NAIMIT). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140)
Alterations of renal phenotype and gene expression profiles due to protein overload in NOD-related mouse strains
BACKGROUND: Despite multiple causes, Chronic Kidney Disease is commonly associated with proteinuria. A previous study on Non Obese Diabetic mice (NOD), which spontaneously develop type 1 diabetes, described histological and gene expression changes incurred by diabetes in the kidney. Because proteinuria is coincident to diabetes, the effects of proteinuria are difficult to distinguish from those of other factors such as hyperglycemia. Proteinuria can nevertheless be induced in mice by peritoneal injection of Bovine Serum Albumin (BSA). To gain more information on the specific effects of proteinuria, this study addresses renal changes in diabetes resistant NOD-related mouse strains (NON and NOD.B10) that were made to develop proteinuria by BSA overload. METHODS: Proteinuria was induced by protein overload on NON and NOD.B10 mouse strains and histology and microarray technology were used to follow the kidney response. The effects of proteinuria were assessed and subsequently compared to changes that were observed in a prior study on NOD diabetic nephropathy. RESULTS: Overload treatment significantly modified the renal phenotype and out of 5760 clones screened, 21 and 7 kidney transcripts were respectively altered in the NON and NOD.B10. Upregulated transcripts encoded signal transduction genes, as well as markers for inflammation (Calmodulin kinase beta). Down-regulated transcripts included FKBP52 which was also down-regulated in diabetic NOD kidney. Comparison of transcripts altered by proteinuria to those altered by diabetes identified mannosidase 2 alpha 1 as being more specifically induced by proteinuria. CONCLUSION: By simulating a component of diabetes, and looking at the global response on mice resistant to the disease, by virtue of a small genetic difference, we were able to identify key factors in disease progression. This suggests the power of this approach in unraveling multifactorial disease processes
- …