5 research outputs found

    Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning

    No full text
    Low-cost automotive laser scanners for environmental perception are needed to enable the integration of advanced driver assistant systems into all automotive vehicle segments, which is a key to reduce the number of traffic accidents on roads. Within the scope of the European-funded project MiniFaros, partners from five different countries have been cooperating in developing a small-sized low-cost time-of-flight-based range sensor. An omnidirectional 360-deg laser scanning concept has been developed based on the combination of an omnidirectional lens and a biaxial large aperture MEMS mirror. The concept, design, fabrication, and first measurement results of a resonant biaxial 7-mm gimbal-less MEMS mirror that is electrostatically actuated by stacked vertical comb drives is described. Identical resonant frequencies of the two orthogonal axes are necessary to enable the required circle scanning capability. A tripod suspension was chosen, since it minimizes the frequency splitting of the two resonant axes. Low-mirror curvature is achieved by a thickness of the mirror of more than 500 pm. Hermetic wafer-level vacuum packaging of such large mirrors based on multiple wafer bonding has been developed to enable a large mechanical tilt angle of +/- 6.5 deg in each axis. Due to the large targeted tilt angle of +/- 15 deg and because of the MEMS mirror actuator having a diameter of 10 mm, a cavity depth of about 1.6 mm has been realized

    A randomized controlled non-inferiority trial of placebo versus macrolide antibiotics for Mycoplasma pneumoniae infection in children with community-acquired pneumonia: trial protocol for the MYTHIC Study.

    No full text
    Mycoplasma pneumoniae is a major cause of community-acquired pneumonia (CAP) in school-aged children. Macrolides are the first-line treatment for this infection. However, it is unclear whether macrolides are effective in treating M. pneumoniae CAP, mainly due to limitations in microbiological diagnosis of previous studies. The extensive global use of macrolides has led to increasing antimicrobial resistance. The overall objective of this trial is to produce efficacy data for macrolide treatment in children with M. pneumoniae CAP. The MYTHIC Study is a randomized, double-blind, placebo-controlled, multicenter, non-inferiority trial in 13 Swiss pediatric centers. Previously healthy ambulatory and hospitalized children aged 3-17 years with clinically diagnosed CAP will be screened with a sensitive and commercially available M. pneumoniae-specific IgM lateral flow assay from capillary blood. Mycoplasma pneumoniae infection in screened patients will be verified retrospectively by respiratory PCR (reference test) and IgM antibody-secreting cell enzyme-linked immunospot (ELISpot) assay (confirmatory test for distinguishing between carriage and infection). Patients will be randomized 1:1 to receive a 5-day treatment of macrolides (azithromycin) or placebo. The co-primary endpoints are (1) time to normalization of all vital signs, including body temperature, respiratory rate, heart rate, and saturation of peripheral oxygen (efficacy), and (2) CAP-related change in patient care status (i.e., admission, re-admission, or intensive care unit transfer) within 28 days (safety). Secondary outcomes include adverse events (AEs), as well as antimicrobial and anti-inflammatory effects. For both co-primary endpoints, we aim to show non-inferiority of placebo compared to macrolide treatment. We expect no macrolide effect (hazard ratio of 1, absolute risk difference of 0) and set the corresponding non-inferiority margins to 0.7 and -7.5%. The "at least one" success criterion is used to handle multiplicity with the two co-primary endpoints. With a power of 80% to reject at least one null hypothesis at a one-sided significance level of 1.25%, 376 patients will be required. This trial will produce efficacy data for macrolide treatment in children with M. pneumoniae CAP that might help to reduce the prescription of antibiotics and therefore contribute to the global efforts toward reducing antimicrobial resistance. ClinicalTrials.gov, NCT06325293. Registered on 24 April 2024
    corecore